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Instabilities and modes of collisionless stellar disks

C. Hunter1

Department of Mathematics, Florida State University, Tallahassee, FL

32306-4510, U.S.A.

Abstract. Kalnajs's matrix method for calculating the normal modes
of oscillation and instabilities of collisionless stellar disks has been used
very sparingly since its publication 25 years ago. The fullest applications
have been to singular scalefree disks for which the dynamics simpli�es.
This paper discusses some of the diÆculties of implementing the method,
and describes some ways of overcoming them. It also discusses circum-
stances in which true modes of oscillation, free from Landau damping,
can exist.

1. Introduction

Kalnajs (1971,1977) formulated a matrix method for calculating the normal
modes of oscillation and instabilities of collisionless stellar disks. Remarkably few
successful applications of his method have been published since then. Kalnajs
(1978) gave only limited results for an isochrone disk. The most successful appli-
cations have been to singular disks, �rst by Zang (1976) to scalefree isothermal
disks, and more recently by Evans & Read (1998a,b) to scalefree disks with a
range of di�erent power-laws. Sawamura (1988) applied the method to a mildly
non-uniformly rotating disk with a potential quadratic in r2, while Vauterin &
Dejonghe (1996) studied a double Kuzmin-Toomre disk with a rotation curve
that is close to at outside a smooth core. Palmer & Papaloizou (1990) used
the matrix to study m = 1 instabilities in the presence of counter-rotation, but
simpli�ed the orbits as epicycles. The matrix method is by no means restricted
to the disk geometry and has been applied successfully to spherical systems, �rst
in a pioneering study by Polyachenko & Shukman (1981), and subsequently by
Palmer & Papaloizou (1987, 1988), Bertin et al (1989), Saha (1991) and Wein-
berg (1991a). These applications have focussed on the radial orbit instability.

2. The Matrix Method

The equilibrium state of a stellar disk is described by a distribution function f
of stars moving on orbits in a circularly-symmetric potential �(r). The response
of those orbits to a perturbed perturbed potential �0(r; �; t) can be calculated
from the collisionless Boltzmann equation (Binney & Tremaine 1987). We search
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for modes or instabilities with dependence on ei(m��!t), where m is the angular
wavenumber, and ! is the frequency. We represent the perturbed potential as

�0(r; �; t) = e
i(m��!t)

X
j

aj j(r); (1)

in terms of some set of potentials  j(r)e
im� whose mass densities �j(r)e

im� are
known and form a biorthonormal set. The response generates the density

X
j

X
k

Mjkak�j(r); (2)

and self-consistency requires that

X
k

Mjkak = aj : (3)

The components of the matrix M are the following integrals over the space of
the actions Jr and J�:

Mjk = �(2�)2
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The denominator terms, which can cause the integrals to be singular, contain
the two fundamental frequencies of oscillation in the two polar coordinates.
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The numerator terms
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 k(r) cos[`wr +m(w� � �)]dwr;

=
1

�
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 k(r) cos[`wr +m(w� � �)]
dr

j _rj
; (6)

are Fourier coeÆcients of the potential functions which are obtained by inte-
grating over an orbit. The angle variables wr and w� describe the conditionally
periodic motion on the orbital tori in phase space de�ned by the two actions.
Many Fourier coeÆcients are needed. Although di�erent angular wavenumbers
m can be considered separately, Fourier coeÆcients are needed for each radial
wavenumber `, for each orbit, i.e. for each (Jr; J�), and for each potential com-
ponent  k. The Fourier analysis is simpler when a disk is scalefree, because
there is then only a one-parameter family of orbits.
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Figure 1. All directly-rotating bound orbits lie within the shaded
regions of frequency space for (a) the Kuzmin-Toomre potential �(r) =

�(1 + r
2)�1=2, and (b) the singular isothermal potential �(r) = ln r.

Counter-rotating orbits occupy similarly shaped mirror-image regions
below the 
r-axis. The more deeply shaded region in (b) is that for

bound orbits in the cored isothermal potential �(r) = ln(1 + r
2)=2.

The bound-orbit region is an angular sector for all scalefree potentials
�(r) = r�=� with �1 � � � 2, is largest in the isothermal limit of
� = 0, and shrinks to a line in the two extreme cases of the Keplerian
� = �1 and harmonic � = 2 potentials (Touma & Tremaine 1997).

3. Orbit populations

All orbits in the circularly-symmetric unperturbed potential �(r) have two iso-
lating integrals of motion. These are commonly chosen to be the energy E and
angular momentum L, but alternative choices are possible provided that they
identify orbits uniquely. The alternative of the actions Jr and J� = L arises when
action-angle variables are used in the derivation of the matrix equation (3). The
turning radii rmax and rmin, which characterize the shape of the rosette orbits,
can also be used (Hunter 1992, Vauterin & Dejonghe 1996). Another choice,
which is relevant to the form of the matrix elements (4), is that of the orbital
frequencies 
r and 
�. Figure 1 shows the regions of the (
r;
�) frequency
space in which bound orbits lie. The form in Figure 1a is generic to potentials
with a central core, while the outer form in Figure 1b is generic to scalefree po-
tentials. In all cases, the upper boundary is formed by circular orbits for which

r is the epicyclic frequency �, and 
� is the angular velocity 
c of circular
motion. The lower boundary corresponds to radial orbits for which 
� = 
r=2.
The slimness of the bound-orbit region is related to the fact that 
c��=2 varies
little over the whole range of a cored potential, as Lindblad (1959) noted for the
Milky Way, and as Figure 6-10b of Binney & Tremaine (1987) for an isochrone
potential shows. Figure 1a shows more generally that 
� � 
r=2 is small for
orbits of all shapes, and not just for epicycles. This property has signi�cant
consequences in x4. The di�erence 
� �
r=2 becomes large near the center for
singular potentials in Figure 1b, as also in Figure 6-10a of Binney & Tremaine
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Figure 2. (a) Fourier coeÆcients b	0;`(Jr; J�) for the angular
wavenumber m = 2, as functions of the index `, for the orbits with
the given ranges, and for the simplest potential  0(r) which has no
sign changes. (b) The radial position and the lag of the angular posi-
tion � behind the angle variable w� for the widest ranging orbit of (a).
The left hand scale is for r, and the right hand one for w� � �.

(1987). Orbits near the center have the highest frequencies, while those at large
distances lies at small frequencies.

4. Fourier analysis of orbits

There is a well-known theorem of Fourier analysis that the Fourier coeÆcients
(6) for any orbit in any smooth potential ultimately decay exponentially rapidly
with their index ` simply because motion in the radial variable r is periodic in
the angle wr. However the theorem says nothing about the rate of this decay,
and it can be quite slow in `. For a nearly circular orbit, r and (w� � �) both
have small variations which are nearly sinusoidal in time. Such an orbit is well
representated by three Fourier coeÆcients, a dominant one with ` = 0, and two
smaller ones with ` = �1. Figure 2a shows how the decay with increasing `
becomes markedly slower as the orbit becomes more eccentric. Figure 2b shows
that the primary reason for this is the non-uniformity of the motion in (w�� �).
Exponential decay in ` does not occur until ` is large enough for variations in
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cos(`wr) to be suÆciently rapid to cause cancellations in the regions of most
rapid change. Hence, as Zang (1976) �rst found, many Fourier coeÆcients may
be required for the accurate representation of an eccentric orbit. Much more
extreme orbits than that of Figure2b are included when distribution functions
of the standard f(E;L) form are used.

5. Resonances, and the accurate and eÆcient computation of the

Matrix

An orbit is resonant with a wave with dependence on ei(m��!t) if its frequency
! = `
r + m
� for some integer `. A resonance causes the integrals which
de�ne the matrix elements (4) to be singular. These singular integrals must
be evaluated according Landau's (1946) rule; that is they must be obtained
from analytical continuation of exponentially growing solutions with Im(!) > 0.
Consequently the matrix elements (4) are generally complex-valued for a real
resonant frequency ! because their de�ning integrals are sums of real princi-
pal value integrals and pure imaginary contributions from the residues at the
resonance.

5.1. Computation of the Matrix M

Equation (3) shows that instabilities and modes are found by searching for fre-
quencies ! for which the matrix M has a unit eigenvalue. This search is nec-
essarily iterative because of the nonlinear dependence of M on !, and hence
requires repeated evaluations of M . Here we describe a method which simpli-
�es those evaluations and which evaluates their singular integrals accurately.
We integrate over the frequency space of Figure 1. We use the oblique coordi-
nate � = `
r +m
� as one integration variable, and some other independent
coordinate � as the other. We integrate in � �rst. This gives an integral of

the form
R �max

�min

F (�)d�=(� � !). This integral is then converted to the stan-

dard form
R
1

�1
F (�)d�=(� � !), in the variables � and ! which are obtained by

the shifting and scaling transformations �(`) = 2(� � �min)=(�max � �min) � 1

and !(`) = 2(! � �min)=(�max � �min) � 1. (Note the `-dependence of � and
!; the limits �max and �min vary widely with `.) We expand the function

F (�) =
P
1

n=0 �nPn(�) in Legendre polynomials. Then Neumann's formula
(Abramowitz & Stegun 1965, eq. [8.8.3]), gives the matrix elements as

Mjk(!) =
1X

`=�1

(
�2

1X
n=0

�n (j; k; `)Qn [! (`)]

)
: (7)

Here the Qn are Legendre functions of the second kind. The expansion and
integration over frequency space can all be done implicitly, and the coeÆcients
�n all evaluated by the following integrations over action space which are free
of singularities:

�n(j; k; `) =
�4(2n+ 1)�2

(�max � �min)

ZZ �
`
@f

@Jr
+m

@f

@J�

� b	j;`
b	k;`Pn(�)dJrdJ�: (8)
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Figure 3. Frequency space for a Kuzmin-Toomre disk for orbits
which are con�ned to the region r � 3. The dot-dashed lines have
slope 0.5 and the dashed line has unit slope. As explained in the text,
the thick sections of the 
�-axis are gaps in which there can be discrete
m = 2 modes.

Note the dependency of the �n; there is a di�erent set for each orbit, for each
n, and for each radial wavenumber `. But once they have been obtained, the
matrix elements can then be evaluated rapidly for any frequency from the double
sum (7). The Legendre Q-functions have branch point singularities at ! = �1.
Landau's rule is satis�ed by taking branch cuts from those singularities to be in
the lower half Im(!) < 0 of the complex !-plane.

5.2. Discrete modes

Mathur (1990) has shown how collisionless stellar systems can have true oscil-
latory modes which are free from Landau damping. Such modes occur in gaps
in the continuous spectrum. Orbits for the one-dimensional systems and radial
modes of spherical systems which he considered have a single frequency 
 with
a �nite range. The gaps lie between the intervals [
min;
max], [2
min; 2
max],
[3
min; 3
max], etc. There is always a principal gap of frequencies which are
less in magnitude than 
min, but there may not be any others. There are none
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unless 2
min > 
max. Mathur proved the existence of a discrete mode in the
principal gap for one speci�c case. Weinberg (1991b) studied a one-dimensional
model for the vertical oscillations of the Galactic disk and found discrete modes
in the principal and other gaps.

Gaps in the continuous spectrum can occur for disks, and Figure 3 shows
how. It shows the part of frequency space of a Kuzmin-Toomre potential for
orbits which are con�ned to lie within the outer radius r = 3. There is then a
least radial frequency 
r, and a principal gap has opened up for m = 0 radial
modes. There is also a least angular frequency 
�. Gaps for modes of angular
wavenumber m can be found by sliding the center of a pencil of lines of slope
`=m for all integers `, both positive and negative, up and down the 
�-axis,
and locating positions of the center for which no lines of the pencil cross any
part of the orbital-frequency space. Such points correspond to possible values
of !=m for discrete modes. Figure 3 shows two such gaps for discrete m = 2
modes. The upper gap is 0:178 > !=2 > 0:130. Its lower limit comes from
the ` = �1 line which is tangent to the upper edge of frequency space, and
its upper from the least 
r of the outermost circular orbit. The lower is the
gap of 0 > !=2 > �0:025 between the 
� = 
r=2 lower boundary of frequency
space, and the ` = �2 line of slope 1 through its lower left hand corner. The
whole range 0:178 > ! > �0:025 provides a gap for discrete m = 1 modes.
Athanassoula & Sellwood (1986), who truncated a Kuzmin-Toomre disk at the
radius r = 6, for which the upper m = 2 gap of Figure 3 does not exist because
the lower left hand corner of frequency space the lies at (0:069; 0:067). They
and Hunter (1992) found slow-growing instabilities with !=2 > 0:130, i.e. modes
with no Lindblad resonances. But, as Weinberg (1991b, 1994) has noted, modes
which are only weakly damped and which persist for long periods of time may
occur either near the ends of gaps, or even when there are no gaps and only few
resonant stellar orbits.

6. Summary

This paper has discussed ways of helping the Kalnajs Matrix method become
a more e�ective tool for investigating instabilities and modes of collisionless
stellar systems. These ways were developed when earlier investigations showed
the need for them. They are now being incorporated in ongoing work. Or-
bital properties, as always, play a central role. It is surprising that the orbital
frequencies 
r and 
� have been so little used to characterize orbits. Orbital
frequency space is helpful for clarifying the signi�cance of resonances, and as a
basis for our simpli�ed and acccurate method for evaluating matrix elements.
With those simpli�cations, the Fourier analysis is the largest remaining compu-
tational task. Inordinately long Fourier series are needed for extremely eccentric
orbits. Because there is no evidence that such orbits generally form a signi�cant
component of disk galaxies, it is simplest to select distribution functions which
exclude them. There are several important issues which remain to be elucidated
concerning instabilities and modes of disk galaxies. One which we have discussed
is that of the existence and prevalence of long-lived modes. Another which we
have scarcely mentioned is that of the stark di�erences which have been found
between the behaviors of singular and cored models.
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