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Abstract.

We give some simple and direct algorithms for deriving the Fourier series which

describe the quasi-periodic motion of regular orbits from numerical integrations

of those orbits. The algorithms rely entirely on discrete Fourier transforms. We

calibrate the algorithms by applying them to some orbits which were studied earlier

using the NAFF method. The new algorithms reproduce the test orbits accurately,

satisfy constraints which are consequences of Hamiltonian theory, and are faster.

We discuss the rate at which the Fourier series converge, and practical limits on the

degree of accuracy that can reasonably be achieved.
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1. Introduction

This work develops eÆcient and accurate methods for computing Fourier

expansions of orbits in potentials of galactic type. Their ultimate pur-

pose is for use in constructing stellar dynamic models. EÆcient methods

are needed because galactic models require the use of large numbers of

orbits. The methods described here are designed speci�cally for regular

orbits, and may be useful also with nearly regular orbits whose charac-

teristics change slowly with time. This is not to suggest that regular and

near-regular orbits are the only ones of interest in galactic dynamics

{ they are not. But regular orbits can be an important component of

galaxies, and this work is relevant to them at least.

The methods to be described use Fourier analysis. Fourier analy-

sis of orbits in galactic-type potentials was pioneered by Binney and

Spergel (1982, 1984). There has been a recent upsurge of interest as a

result of the work of J. Laskar (1990, 1993, 1999) who has developed

accurate numerical methods of Fourier analysis which are known by

the acronym NAFF (Numerical Analysis of Fundamental Frequencies).

These methods were developed originally for solar system phenomena,

including mildly chaotic ones, but they were also applied by Papa-

philippou and Laskar (1996, 1998) to potentials of galactic type. Other

applications of NAFF to cuspy triaxial galactic-type potentials have

followed, including those by Carpintero and Aguilar (1998), Valluri
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and Merritt (1998), Wachlin and Ferraz-Mello (1998), and Merritt and

Valluri (1999). Copin, Zhao and de Zeeuw (2000) have that smooth

orbital densities can be derived from Fourier representations of orbits

obtained using NAFF, and have illustrated the method on a St�ackel

potential.

NAFF begins with the numerical integration of an orbit, and the

recording of its phase space coordinates at a sequence of equally spaced

time steps. A discrete Fourier transform (DFT) is applied to this data,

and the most prominent frequency is identi�ed as that belonging to

the largest Fourier coeÆcient [c.f. Binney and Spergel (1982)]. This

provides an initial estimate of the most prominent frequency. This es-

timate is re�ned by the use of Fourier integrals and window functions.

The re�ned frequency is that which maximizes the Fourier integral

which represents the amplitude associated with that frequency. This

component is then subtracted out, and subsequent Fourier components

are identi�ed sequentially in order of diminishing prominence, and

subtracted in turn.

This work provides an alternative way of performing the Fourier

analysis entirely with discrete transforms. It is natural to seek such

a method because the continuous orbit is discretized by the initial

numerical integration, and it is hard to see what can be gained by

switching to Fourier integrals subsequently. We describe our method in

Section 3, after �rst reviewing some essential elements of Hamiltonian

Dynamics in Section 2. We calibrate it in Section 4 by applying it to

three cases discussed in detail by Papaphilippou and Laskar (1996).

In Section 5 we compare our method with that of Laskar, and give

our conclusions. An appendix justi�es a key aspect of our method of

determining frequencies of Fourier components in a time series.

2. Hamiltonian Dynamics

A regular orbit in a system with n degrees of freedom lies on an n-
torus in phase space (Binney and Tremaine 1987). It is generally quasi-

periodic, and has n fundamental frequencies which we label as �1 to

�n. The position vector of the orbit has the Fourier representation

x(t) =
X
k

Xk(I)e
i(k��)t: (1)

where � is the n-vector of the fundamental frequencies, and k is an

n-vector with integer components. Summation is over all such integer

vectors k. The Fourier coeÆcients Xk are functions of the actions I.

Actions and their conjugate angles � form a canonical set of variables,
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in terms of which the Hamiltonian is H(I) and independent of the

angles. The value of the action vector is constant for each speci�c orbit,

Consequently the angle �j increases uniformly with time at the rate

�j = @H=@Ij . The phase space variables of position and velocity have

Fourier representations in the action-angle variables (I; �) which are

given by the equations

x =
X
k

Xk(I)e
ik��; v =

X
k

i(k � �)Xk(I)eik��: (2)

Here we either require that each angle �j be zero at time t = 0, or

else absorb extra constant terms into the de�nitions of the Fourier

coeÆcients Xk(I).

Fourier series are strongly constrained by orbital symmetries, and

the Hamiltonian. Speci�cally

Ij =
1

2�

I
Cj

v � dx; (3)

where Cj is a circuit around the torus of constant I, and which is such

that the angle �j increases by 2�, but other angles are unchanged. Then

Ij =
X
k

kj(k � �)Xk �X�k =
X
k

kj(k � �)jXkj2; (4)

while X
k

kj(k � �)Xk �Xm�k = 0; (5)

wherem is a non-zero integer vector with zero j'th component (Binney

and Spergel 1984).

3. Implementing NAFF the Discrete Transform Way

3.1. Discrete Transforms and Windows

We use a centered time interval and integrate from time t = �T to

t = T , with positions and velocities recorded at 2N equally spaced

times in steps of �t = T=N . The discrete Fourier coeÆcients of a

function f(t) are calculated from its tabulated values as

Fk =
1

2N

NX
n=1�N

f(n�t)e��ink=N ; (6)

for k = 1�N to N , and can be computed using a fast Fourier transform.

We use the average 1
2
[f(T ) + f(�T )] when evaluating f(T ) in this
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formula (Briggs and Henson 1995). Then consistently f(t) is periodic
of period 2T in t and Fk is periodic of period 2N in k. We use the same

window functions

�p

�
t

T

�
=

2p(p!)2

(2p)!

�
1 + cos

�t

T

�p
; (7)

as Laskar. These window functions taper to zero at the ends of the

interval [�T; T ] with increasing rapidity for increasing values of p. They
are ideally suited to the DFT. This is because

1 + cos
�t

T
=

1

2
ei�t=N�t + 1 +

1

2
e�i�t=N�t: (8)

Hence the DFT of f(t)�1(t=T ) is simply derived from that of f(T ) as

F
(1)
k =

1

2
Fk�1 + Fk +

1

2
Fk+1: (9)

The Fourier coeÆcients of f multipled by window functions of any

order, f(t)�p(t=T ), can be computed iteratively with minimal e�ort

using the recursive relation

F
(p)
k =

p

2p� 1

�
1

2
F
(p�1)
k�1 + F

(p�1)
k +

1

2
F
(p�1)
k+1

�
; F

(0)
k = Fk: (10)

3.2. Estimating Frequencies

The essential purpose of the Fourier analysis is to identify the elemen-

tary frequency components of f(t). We now consider such a component

g(t) = ei�t, and its windowed Fourier coeÆcients. We denote the latter

as Gk(�). They are calculated from g(t) in the same way as in equation

(6), and we obtain

Gk(�) =
sin �

2N tan( �
2N )

= S(�); where � = �T � k�: (11)

This equation de�nes the function S(�) which is the discrete analog

of the sinc function which arises with continuous Fourier transforms,

and to which it indeed tends as N ! 1. It is even and periodic of

period 2N� in �, and vanishes at all integer multiples of �, except for
those which are also integer multiples of 2N�. The windowed Fourier

coeÆcients of g(t) can also be calculated iteratively and are

G
(p)
k (�) = S(p)(�) =

p

2p� 1

�
1

2
S(p�1)(� + �) + S(p�1)(�)

+
1

2
S(p�1)(� � �)

�
; (12)

S(0)(�) = S(�):
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Figure 1. Fourier transforms G
(p)

k (�) = S(p)(�) of a simple exponential ei�t with no

windowing (p = 0) and with the �rst two window functions (7) for N = 10

An explicit expression for the DFT of g(t)�1(t=T ) is

G
(1)
k (�) =

sin �

2N tan( �
2N )

h
1� sin2( �

2N )= sin2( �
2N )

i ; (13)

The DFT of g(t) and of g(t) multiplied by the �rst two of the

window functions (7) are shown in Fig. 1. With increasing p the central
peaks become successively wider while the side lobes decay increasingly

rapidly so that frequencies increasingly stand out from the background.

Fig. 1 is plotted for the impractically small value of N = 10 to empha-

size the periodicity of period 2N of all discrete Fourier coeÆcients. As

N becomes large, the discrete Fourier coeÆcients approach the limits

lim
N!1

G
(p)
k (�) =

sin �

�

pY
j=1

�
1� �2

j2�2

� : (14)

Although the DFT in Fig. 1 are plotted for continuous ranges of their

arguments, they are of course known only at discrete values of � which
are � apart in any application.

We estimate unknown frequencies � using ratios of adjacent Fourier

coeÆcients. This idea is due to Lanczos (1956) who used it with the
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Figure 2. Ratio of two adjacent �nite transforms G
(2)

k�1(�)=G
(2)

k (�) as functions of

� = �T �k� for N = 10. The ratio is approximately (p�� �)=[�+(p+1)�] for large

N .

p = 1 (Hanning) window function. It was rediscovered by Carpintero

and Aguilar (1998) who used it without windowing (p = 0). We use it

without restriction on p as follows. We look for a prominent frequency

by locating a range of k values where the Fourier coeÆcients Fk are

relatively large, and humps similar to those shown in Fig. 1 develop.

As Fig. 2 implies, the ratios F
(p)
k�1=F

(p)
k are positive for a limited range of

k values. We select some k for which the ratio is positive and equal to C

say. We then �nd the frequency � for which the ratio G
(p)
k�1(�)=G

(p)
k (�)

has the same ratio C. This gives us an equation

G
(p)
k�1(�)

G
(p)
k (�)

=
S(p)(� + �)

S(p)(�)
= C; (15)

for �. We show in the Appendix that it is in fact a polynomial equation

of degree 2p in � = tan(�=2N). One need not compute all its roots,

all but two of which are complex for positive C (c.f. Fig. 2), because

S(p)(� + �)=S(p)(�) becomes negative outside the range �(p + 1)� �
� � p� where the numerator and denominator are out of phase. Hence

we need only the small real root for � which lies in the narrow range

�(p + 1)�=2N � �=2N � p�=2N . From � , we have � and then the
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Table I. Two sets of estimates of the frequency of

from T = 20 integrations of the x-axis orbit with

E = �:4059 in the logarithmic potential (17) of

Section 4.1. The value 2.1390519547 is accurate.

N = 256 N = 512

p � p �

1 2.1390476260 1 2.1390476324

2 2.1390519936 2 2.1390519918

3 2.1390519526 3 2.1390519541

4 2.1390519586 4 2.1390519547

5 2.1390520877 5 2.1390519547

6 2.1390523943 6 2.1390519547

7 2.1390528801 7 2.1390519547

8 2.1390535210 8 2.1390519547

frequency � = (� + k�)=T . These estimates should become increas-

ingly accurate with increasing p, as the sidelobes decay and individual

frequencies stand out. One can easily test whether this is the case by

checking for consistency between estimates at neighboring values of k,
and by calculating a sequence of estimates for successive increments

of p, and checking whether they converge. Table 1 shows the results

of two analyses of the x-axis orbit discussed in Section 4.1, using the

same integration interval but di�erent spacings. The right hand set

show consistent convergence to the true frequency, while the left hand

set lack consistency, although getting quite close at p = 4,

3.3. Aliasing

Aliasing is an unavoidable consequence of discretization. Two compo-

nents ei�t and ei
t are indistinguishable on the grid speci�ed in Section

3.1 if (� � 
)�t = 2m� for any integer m. From a practical point

of view, two components may interfere and complicate our method

for determining frequencies when (� � 
)�t=2� is close to an inte-

ger. That is the reason for the lack of convergence in the left hand

column of Table 1. The aliasing there is between the fundamental

frequency � and its harmonics with frequencies 37� and 39� because

38��t=2� = 1:0107: (Because x is real, all frequencies occur in �
pairs.) The Gk for the fundamental frequency peaks between k = 13

and k = 14, while those for the two harmonics peak near k = 8 and

k = 19 respectively. Both of these peaks are much lower because their

amplitudes are A19 = :301 � 10�4 and A20 = :235 � 10�4, whereas
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A1 = :8622. Nevertheless the lower peaks spread with increasing p (see
Fig. 1) and cause the improvement of the estimates of � to stop after

p = 4. Aliasing can always be overcome by increasing N and decreasing

�t and moving the peaks further apart. As the second column of Table

1 shows, doubling the number of data points in an interval of the same

length removes the diÆculty.

3.4. Determining Amplitudes

By working with ratios, the amplitude of a Fourier component has no

in
uence on the estimation of the frequency. However, once one has an

accurate estimate of that frequency, one can estimate its amplitude in

f(t), and that of its conjugate e�i�t, by

A� =
F
(p)
k

G
(p)
k (�)

; A�� =
F
(p)
`

G
(p)
` (��)

; (16)

respectively.

The iterated Fourier transforms of f(t)�A�e
i�t �A��e

�i�t, that is

of f(t) with the dominant frequency removed, are F
(p)
k � A�G

(p)
k (�)�

A��G
(p)
k (��). Note that G(p)

k (��) = G
(p)
�k(�). The only additional work

needed here is that of calculating the values of G
(p)
k (�) with the chosen

� for all k in [�N;N ]. Then one can repeat the procedure iteratively

to estimate as many frequencies and amplitudes as needed.

One can modify this step-by-step procedure once the n fundamen-

tal frequencies have been determined by assuming that all subsequent

frequencies are combinations k � � suitable to that orbit (see Section

4). These amplitudes can be calculated systematically by applying

equation (16) near a peak of G
(p)
k and then subtracting. One should

subtract in at least approximate order of magnitude. Once one has

a set of frequencies and amplitudes, their accuracy can be checked

by evaluating the truncated Fourier series and comparing with the

tabulated values of f from which it was derived.

4. Applications

We test the DFT method on orbits in the logarithmic potential

�(x; y) = ln

 
R2
c + x2 +

y2

q2

!
; (17)

with 
attening q < 1 and a core radiusRc (Binney and Tremaine 1987).

We investigate the same three orbits for the case Rc = 0:1 and q = 0:9
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to which Papaphilippou and Laskar (1996), hereafter PL, applied their

NAFF procedures.

4.1. One-dimensional orbits

Though simple dynamically, x-axis orbits for which y � 0 provide an

excellent opportunity for testing the methods of Section 3 because true

values can be computed with high precision. The position vector of an

orbit which starts at x = 0 at time t = 0 has the Fourier representation

x(t) =
1X
j=1

Aj sin(2j � 1)�t: (18)

The frequency � for an orbit of energy E is

�

�
=
p
2

Z xmax

0

dxp
E � �(x; 0)

; �(xmax; 0) = E: (19)

The Fourier series is a sine series because of the initial conditions,

and with odd multiples of �t only because of the evenness of � in x.
Estimates of the coeÆcients Aj, which are all positive, can be compared

with exact values computed from

Aj =
4�

�

Z �=2�

0
x(t) sin(2j � 1)�t dt: (20)

PL give frequencies and amplitudes for the orbit which starts at

x = 0:49 with v = 1:4, and hence E = �:4059. The right column of

Table 1 gives our determination its frequency, while Fig. 3b plots the

Fourier coeÆcients. After an initial steep decline (A2=A1 = :076), the
rate of decay of Aj with increasing j decreases, and A25=A24 = :798
at the edge of the plot. This is because x needs many sine terms to

describe its time variation accurately, and, correspondingly, the phase-

plane trajectory of Fig. 3a is not elliptical. The slow decay of the Aj

coeÆcients does not, as PL suggest, indicate any inaccuracy in the

representation in action/angle variables. In fact it is related to the

small magnitude of the core radius Rc as we now show. The Fourier

series (18) of the analytic function x(t) become the Laurent series

x =
1X
j=1

i

2
Aj

�
��2j�1 + 1

�2j�1

�
(21)

in the variable � = ei�t (Davis, 1975). This series converges in an

annular region of the complex �-plane, which includes the physical orbit
on which j�j = 1. However, it is singular at the two real values of � for
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which x = �iRc and the logarithmic potential is in�nite. We locate

these points by integrating the energy equation, written for x = iw,
from t = 0 where w = 0 and � = 1, to w = Rc. We �nd that the

singularity lies at � = �c where

�c = exp

"
�p
2

Z Rc

0

dwp
E � ln(R2

c � w2)

#
: (22)

Integrating in the direction of decreasing � shows that there is a match-

ing singularity where w = �Rc at � = 1=�c. Hence the Laurent series

(21) converges only in the annulus 1=�c < j�j < �c, which implies

(Davis, 1975) that

lim
j!1

Aj+1

Aj
=

1

�2c
: (23)

The numerical value of this limit for the PL orbit is 0:8702, and this is

the limit to which the ratios of the Aj plotted in Fig. 3b are gradually

climbing.
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a. The phase plane b. Fourier coeÆcients

Figure 3. The x-axis orbit at energy E=-.4059

4.2. Two-dimensional orbits

The evenness of the potential (17) restricts the two-dimensional Fourier

series too. When �1 is the fundamental frequency of the oscillation in

x, and �2 is the frequency of that in y, then the Fourier expansions are

x =
1X

j=�1

1X
k=�1

Aj;ke
i[(2j+1)�1+2k�2]t; A�j�1;�k = �Aj;k;

y =
1X

j=�1

1X
k=�1

Bj;ke
i[2j�1+(2k+1)�2]t; B�j;�k�1 = �Bj;k: (24)
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This is the case for box orbits (Ratcli�, Chang, and Schwarzschild,

1984) while for loop orbits, for which the most prominent motion in

both x and y is the circulation about the center, both series have the

same form

x =
1X

j=�1

1X
k=�1

Aj;ke
i[(2j+1)�1+k(�1+�2)]t; A�j�1;�k = �Aj;k;

y =
1X

j=�1

1X
k=�1

Bj;ke
i[(2j+1)�1+k(�1+�2)]t; B�j�1;�k = �Bj;k: (25)

Orbits have another symmetry. If they are started on the x-axis at
their maximum excursion in x with initial conditions x = xmax, _x = 0,

and y = 0, then the solutions for x and y are respectively even and odd

in t. Hence x has a cosine series and y a sine series. An orbit which is

started at some other time will reach x = xmax at time t = t0 say, and
so its x and y are even and odd in (t � t0). Consequently the Fourier

coeÆcients of (24) have the forms

Aj;k = �jAj;kje�i[(2j+1)�1+2k�2]t0 ; Bj;k = �jBj;kjei[�=2�2j�1t0�(2k+1)�2t0];
(26)

for some unknown t0, and similar formulas apply to loop orbits. The

arguments of the complex Fourier coeÆcients allow us to deduce the

values of both �1t0 and �2t0, though only modulo �.

4.2.1. A box orbit

Our estimates of the fundamental x and y frequencies for the box orbit

which is at x = 0:49, _x = 1:3156, y = 0, _y = 0:4788, at t = 0 are found

from an integration with T = 100 and N = 4096, as

�1 = 2:16322769; �2 = 3:01399443: (27)

There are 53 conjugate pairs of amplitudes Aj;k and 51 conjugate pairs

of Bj;k whose magnitudes exceed 10�5. The ten largest are listed in

Table II, and one member of each pair is displayed in Fig. 4. Only a

few terms in k are needed, but many more in j because the decay in

j resembles that in the one-dimensional orbit of Section 4.1. Summing

the partial series (24) using the coeÆcients of magnitude greater than

10�5 reproduces the orbit with average errors of 3�10�5 at each tabular

point.

We can use the Fourier coeÆcients to calculate the two actions and

to verify the Hamiltonian constraints. Equations (4) and (5) require

that
1X

j=�1

1X
k=�1

f(2j + 1) [(2j + 1)�1 + 2(k �m)�2]Aj;kA�j�1;m�k
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Figure 4. Magnitudes of Fourier coeÆcients for x, �lled circles, and y, open circles,

for the box orbit. There are open circles for all 0 � j � 13, k = 1, but some are

hidden by overlapping �lled circles.

Table II. The ten largest Fourier coeÆcients of the box series (24) for the

frequencies (27). The arguments are consistent with equation (26) and the

values �1t0 = 1:03468 (mod �) and �2t0 = 1:00447 (mod �).

j k jAj;kj argAj;k j k jBj;kj argBj;k

0 0 0.38565023 5.24850 0 0 0.12072946 3.70791

1 0 0.02912085 0.03754 1 -1 0.10684730 0.50590

1 -1 0.02252003 5.18808 1 0 0.01611545 4.78014

0 -1 0.01264537 0.97426 2 0 0.00517818 5.85237

2 0 0.00821225 1.10977 3 0 0.00224771 0.64141

3 0 0.00338263 2.18199 2 -2 0.00163069 0.44548

0 1 0.00171443 0.09796 2 -1 0.00140476 4.71972

4 0 0.00167051 3.25422 4 0 0.00113731 1.71363

5 0 0.00091742 4.32644 3 -1 0.00081479 5.79195

6 0 0.00054005 5.39867 5 0 0.00063138 2.78586
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Spectral Analysis of Orbits 13

+2j [2j�1 + (2k � 2m+ 1)�2]Bj;kB�j;m�k�1g = ÆmoI1;
1X

j=�1

1X
k=�1

f2k [(2j � 2m+ 1)�1 + 2k�2]Aj;kAm�j�1;�k (28)

+(2k + 1) [2(j �m)�1 + (2k + 1)�2]Bj;kBm�j;�1�kg = ÆmoI2:

The constraints are satis�ed to an accuracy which is consistent with

the truncations of the Fourier series, and the actions are I1 = 0:76050,
I2 = 0:06422.

4.2.2. A loop orbit

The two most prominent frequencies of the loop orbit which begin from

x = 0:49, _x = 0:4788, y = 0, _y = 1:3156, found from an integration

with T = 50 and N = 2048, are

�1 = 2:948610113; �2 = 1:357500105: (29)

These two fundamental frequencies are related to the frequencies 


and ��
 of epicyclic motion ((Binney and Tremaine, 1987), Chapter

3). They are more easily determined accurately for this orbit which

keeps away from the core, and for which the Fourier series converge

faster. There are 42 conjugate pairs of amplitudes Aj;k and 43 pairs

of amplitudes Bj;k whose magnitudes exceed 10�6. The ten largest are

listed in Table III, and one member of each pair is displayed in Fig.

5. Amplitudes decay more rapidly with j than with k. Summing the

partial series (25) using the coeÆcients of magnitude greater than 10�6

reproduces the orbit with average errors of 3 � 10�6 at each tabular

point.

When equations (4) and (5) are applied to the series (25), we get

the conditions

1X
j=�1

1X
k=�1

(2j + k + 1) [(2j + k + 1)�1 + k�2] (Aj;kA�j�1�m;2m�k

+Bj;kB�j�1�m;2m�k) = ÆmoI1;
1X

j=�1

1X
k=�1

k [(2j + k + 1)�1 + k�2] (Aj;kAm�j�1;�k (30)

+Bj;kBm�j�1;�k) = ÆmoI2:

The constraints are well satis�ed in this case because of the more

convergent Fourier series, and the actions are I1 = 0:62879, I2 =

0:04366.
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Figure 5. Magnitudes of Fourier coeÆcients for x, �lled circles, and y, open circles,

for the loop orbit. Three open circles at j = 2 and two at j = 3 are hidden by

overlapping �lled circles.

Table III. The ten largest Fourier coeÆcients of the loop series (25) for the

frequencies (29). The arguments are consistent with �1t0 = :33891 (mod �)

and �2t0 = 1:08622 (mod �) and equation (25).

j k jAj;kj argAj;k j k jBj;kj argBj;k

0 0 0.21093349 5.94428 0 0 0.24538048 4.37348

0 -1 0.09038719 1.08622 0 -1 0.07740396 5.79861

0 1 0.01189380 1.37755 0 1 0.01382317 6.08994

1 0 0.00273923 5.26646 1 0 0.00313257 3.69566

1 -2 -0.00181571 1.83354 0 2 0.00187210 1.52321

0 2 -0.00160147 3.09401 1 -2 0.00137322 0.26275

0 -2 0.00122769 5.65295 1 1 0.00106544 5.41212

1 1 0.00093184 0.69973 1 -1 0.00082623 5.12079

1 -1 0.00089276 0.40841 0 3 0.00033780 3.23967

0 3 0.00028643 4.81047 1 2 0.00032815 0.84539
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5. Discussion

5.1. Comparisons with NAFF

The discrete transform procedure described in this paper resembles

NAFF in its basic approach in that it assumes quasi-periodic motion

and seeks to calculate an adequate description of that motion. It is

more streamlined than existing procedures. A single discrete Fourier

transform is taken once and there is no need to either calculate Fourier

integrals, maximize them, or for orthogonal projection. Test calcu-

lations show that the procedure attains high accuracy in estimating

frequencies and amplitudes, and frequency components do not need to

be subtracted twice (Laskar, 1993).

Laskar (1999) proves a theorem which shows that his procedure of

locating the maximum of j�(�)j, where the function �(�) is de�ned as

�(�) =
1

2T

TZ
�T

f(t)�p

�
t

T

�
e�i�tdt; (31)

locates the most prominent frequency to withinO(1=T 2p+2). This proof

assumes that the integral for �(�), which has in practice to be evaluated
numerically because values of f are known only at tabular points, is

known exactly. It is evident that all but one of the orders of T�1 in

the accuracy come from the windowing, and only the �nal (2p + 2)'th

from the maximization. Laskar's standard choice is p = 1; he reports

trying other p values, but not noting much improvement. We do �nd

signi�cant improvements with the use of larger p, and have much suc-

cess with p in the range of 3 to 5. Our iterative procedure does not lock

us into any a priori choice of p, and we can check for convergence and

consistency.

We di�er from Laskar in that we �t the Fourier series for x, whereas

he �ts the complex combination x+ iv, which has Fourier coeÆcients

(1�k � �)Xk. The series for x has the somewhat more rapidly decaying

coeÆcients which should make it easier to �t. The velocity vector v

cannot contain any signi�cant information that is not in x because both

are computed simultaneously from accurate numerical integration of an

orbit { we use the DOP 853 integrator of Hairer and Wanner (Hairer,

Norsett, and Wanner, 1991). Hence we see no reason why �tting x+ iv
should be any improvement over �tting x.
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5.2. Summary and Conclusions

We have shown how the spectral analysis of orbits can be carried out

wholly, eÆciently and accurately using the DFT. We have given ex-

amples, and have investigated the rates of convergence of their Fourier

series. This may be slow if the motion in the orbit is far from sinusoidal

in time, and an impractically large number of terms may then be needed

for an accurate Fourier representation.

There are two choices which have to be made at the outset, the

duration 2T of the integration and the number 2N of outputs. The

DOP 853 routine makes it easy to obtain frequent output, and hence

to make N suÆciently large to avoid complications from aliasing. The

choice of T is signi�cant because the inverse of the DFT (6) is

f(t) =
NX

k=1�N

Fke
�ikt=T : (32)

We need T to be suÆciently large that j��jT=� is large for the di�er-

ence j��j between any pair of frequencies which are signi�cant in the

spectrum, so that they are represented by well-separated k values in

expansion (32). We also need �N=T , the highest frequency in expansion
(32) to be large enough that all the frequencies which are present in

the true solution are represented in its discrete approximation.

Copin, Zhao, and de Zeeuw (2000) have shown that orbital density is

proportional to the reciprocal of the Jacobian of the transformation be-

tween position and angles for that orbit. That Jacobian is known from

the Fourier series (1), and allows orbital densities, which are needed to

construct stellar dynamic models, to be calculated signi�cantly more

accurately than is possible with the binning methods (Schwarzschild,

1979) that have been used for so long. The DFT method, which gives

a fast and accurate way of determining the Fourier series (1), therefore

has great potential for applications to galactic modeling.

Appendix

We show here that the equation

G
(p)
k�1(�) = CG

(p)
k (�); (33)

for determining �, and thence the frequency �, is a polynomial equation

of degree 2p in tan(�=2N). It follows from equation (11) that

Gk(�) =
sin �

2N�
; Gk+`(�) =

(�1)` sin �
2N

1 + ��`

� � �`
; (34)
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where

� = tan
�

2N
; �` = tan

`�

2N
: (35)

The iterated coeÆcient G
(p)
k can be related directly to the basic G-

coeÆcients by repeated application of relation (10), or more directly

by expanding equation (7) binomially using equation (8), to get

G
(p)
k =

(p!)2

(2p)!

pX
`=�p

 
2p

`+ p

!
Gk+`

=
sin �

2N�

"
1 +

pX
`=1

(�1)`(p!)2
(p� `)!(p+ `)!

2(1 + �2` )�
2

�2 � �2`

#
(36)

In passing from the �rst line to the second, we have combined Gk�`

terms in pairs. The term in the square brackets is the ratio of two

polynomials of degree p in �2. Its numerator has (1 + �2) as a factor

because it vanishes when �2 = �1. This is seen by setting �2 = �1, and
recognizing the sum as the binomial expansion of (p!)2(1�1)2p=(2p)! =
0.

The other iterated coeÆcient of

G
(p)
k�1 =

(p!)2

(2p)!

pX
`=�p

 
2p

`+ p

!
Gk�1+`; (37)

is less symmetric in � , but it is likewise rational in � with a numerator

polynomial of degree 2p divided by a denominator polynomial of degree

(2p+1). Its denominator di�ers from that of G
(p)
k only in having a factor

(� � ��p�1) and lacking one in (� � �p). Furthermore the numerator of

G
(p)
k�1 also has (1+�2) as a factor. This follows from the alternative and

symmetric expression for it we get from equation (36) when we replace

� by ~� = tan[(� + �)=2N ] = (� + �1)=(1 � ��1), because (1 + ~�2) =
(1+�2)(1+�21 )=(1���1)2. Consequently when we multiply equation (33)
by all denominator terms and cancel all common factors, a polynomial

equation of degree 2p in � remains.
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