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Abstract

A hydrodynamic theory is developed for solutions of nonhomogeneous nematic liquid

crystalline polymers (LCPs) of a variety of molecular con�gurations in proximity of

spheroids, extending the Doi kinetic theory for rodlike molecules. The new theory

accounts for the molecular aspect ratio as well as the �nite range molecular interaction

so that it is applicable to liquid crystals ranging from the rodlike liquid crystal at large

aspect ratios to the discotic one at small aspect ratios. It also exhibits enhanced shape

e�ects in the viscous stress and warrants a positive entropy production, thereby, the

second law of thermodynamics. When restricted to uniaxial symmetry in the weak ow

limit, the theory recovers the director equation of the Leslie-Ericksen (LE) theory, but

the stress tensor contains excessive gradient terms in addition to the LE stress tensor.

The theory predicts that the elastic moduliK1;K2 andK3 obey the orderingK3 < K1 <

K2 for stable, discotic (oblate spheroidal) LCPs in the weak ow limit. The ordering

is reversed for rodlike (prolate spheroidal) LCPs. It yields a positive Leslie viscosity

�2 (�3) in the ow-aligning (tumbling) regime for oblate (prolate) spheroidal LCPs.

Moment averaged, approximate, mesoscopic theories for complex ow simulations are

obtained via closure approximations.

1 Introduction

The nematic phase is one of the \simplest" liquid crystal phases known so far, in which

an orientational order, but no translational order, exists1;2. Liquid crystals of variety of

molecular con�gurations may form the nematic phase, which include the two drastically

di�erent con�gurations: rodlike and discotic liquid crystals. Most of the hydrodynamical

theories formulated for liquid crystal materials are prototyped based on the rodlike molecules,

which include the well known Leslie-Ericksen (LE) theory3, suitable to low molar weight liquid

crystals, the Doi kinetic theory4 and a variety of tensor based theories such as the Hand's

theory5, Beris and Edwards' (BE) theory formulated through Poisson brackets6, and Tsuji
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and Rey's (TR) phenomenological theory7, etc., perceived to be applicable to high molar

weight liquid crystalline polymers. Although the LE theory was �rst developed for rodlike

liquid crystals, it has also been applied to discotic liquid crystals8;9. Recently, Singh and

Rey used the TR theory to model homogeneous ows of discotic liquid crystalline polymers

by reversing the sign of a phenomenological \shape parameter" and showed some promising

results10. This approach appears to be not only convenient, but also reasonable from a

molecular point of view. However, a rigorous justi�cation seems to be lacking in adopting

the convenient practice. This paper is hence motivated to address the concerns.

We intend to develop a theory for nonhomogeneous ows of liquid crystalline polymers

with a few adjustable parameters that could model a variety of con�gurations of polymeric

liquid crystal molecules. We �nd the rigid spheroidal description of polymer molecule can

best serve the purpose. This approach has been undertaken by several pioneers so far. Isi-

hara studied the e�ect of the spheroidal shape on the phase transition behavior of colloidal

solutions11. Takserman-Krozer and Ziabicki studied the behavior of polymer solutions in a ve-

locity �eld by treating polymer molecules as rigid ellipsoids in dilute solutions12. In Helfrich's

molecular theory for nematic liquid crystals, the molecules are treated as equally and rigidly

oriented ellipsoids13. In an e�ort to address the relationship between the Doi kinetic theory

and the Leslie-Ericksen theory, Kuzuu and Doi generalized the Doi theory for homogeneous

lcps to account for the �nite aspect ratio of spheroidal molecules14 and gave the Leslie vis-

cosity coeÆcients in terms of the uniaxial order parameter and a few physical parameters in

the molecular theory, including the aspect ratio of the spheroid. Baalss and Hess also treated

liquid crystal molecules as spheroids in their liquid crystal theory15. Baalss and Hess' theory

predicts the liquid crystal is always ow aligning which has since been proven to be limited

since tumbling has been observed in many LC ows. On the other hand, the Kuzuu and

Doi theory handles both ow aligning and tumbling at di�erent aspect ratios and polymer

concentrations.

Our theory can be viewed as an extension of the Kuzuu and Doi theory to owing systems

of nonhomogeneous liquid crystalline polymers. We model the LCP molecules as spheroids

of equal shapes and sizes. We will derive an intermolecular potential that is valid for all

values of the aspect ratios of the spheroids and a corresponding Smoluchowski equation for

the orientational probability density function. Aimed at developing a theory that would be

practical in complex ow simulations, we then approximate the intermolecular potential with

an approximate potential. At this level of approximation, we will show that the approxi-

mate theory extends the Doi kinetic theory with the Marrucci-Greco potential16 to include

a symmetric intermolecular potential to guarantee a positive entropy production, which is

required for a well-posed hydrodynamic theory. Our theory relates the physical parameters
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in the model to the molecular geometry, which provides invaluable insights into the inter-

connection between the molecular shape and its e�ect to mesoscopic material properties. In

addition, the length parameters for the �nite range of molecular interaction resulted from

our di�erent averaging procedure16 di�er from those in the Marrucci-Greco's potential. By

absorbing the aspect ratio into the dimensionless concentration (de�ned later in the next

section), the intermolecular potential indeed looks like the Maier-Saupe potential in the case

of homogeneous liquid crystal materials, justifying the convenient use of the liquid crystal

theories developed for rodlike molecules in the context of homogeneous discotic liquid crystals

by Singh and Rey10. In addition, our theory exploits the inuence of the molecular shape on

the distortional elasticity for the �rst time, which undoubtedly will shed new lights on how

to generalize other tensor theories of nonhomogeneous liquid crystals to nonhomogeneous

discotic LCs. The most relevant theories among them perhaps would be the BE and TR

theory.

The rest of the paper is divided into two sections. In the section to follow immediately,

we derive the kinetic theory, stress expressions, and its approximate forms; show the theory

satisfy the second law of thermodynamics in isothermal ows to establish the well-posedness

of the theory. In the last section, we discuss some preliminary properties of the important

physical parameters in the theory by establishing the connection to the LE theory in the limit

of weak ows. More detailed rheological evaluations of the model are postponed to a sequel.

2 Kinetic theory for LCPs of spheroidal molecules

We �rst propose an intermolecular potential that accounts for the intermediate range

molecular interaction for liquid crystalline polymers of the spheroidal con�guration with

�nite aspect ratios and derive one of its approximations through the gradient expansion

of the probability density function (de�ned below)16. Then, we extend the Smoluchowski

equation in the Doi kinetic theory for rodlike lcps to accommodate the spheroidal shape of

the liquid crystalline polymer and derive a consistent stress expression using the virtual work

principle2;4.

Intermolecular potential

We assume all LCP molecules are of the same spheroidal con�guration immersed in viscous

solvent. With the axis of revolution of the spheroid identi�ed with the z-axis in the Cartesian
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coordinate (x; y; z), the surface of the spheroid is represented by:

x = c sin� cos �;

y = c sin� sin�;

z = b cos�;

0 � � � �; 0 � � < 2�;

(1)

where b is the length of the semi-axis in the axis of revolution (identi�ed with ez now) and c

is that in the transverse direction. The aspect ratio of the spheroid is then de�ned as

r =
b

c
: (2)

Let f(m;x; t) be the probability density function (pdf) corresponding to the probability

that an arbitrary LCP molecule of the spheroidal shape is in its axis of revolutionm (jjmjj =
1) at location x and time t. The material point at location x is assumed a sphere, whose

radius is suÆciently large relative to the LCP molecule and small relative to the experimental

apparatus, and the macroscopic velocity gradient in the sphere is assumed a constant provided

it exists. For spheroidal molecules, the excluded volume has been calculated by Isihara in

his work on phase transition behavior of colloidal solutions11. Using his excluded volume, we

then propose the following form of the intermolecular potential with �nite range molecular

interaction, extending the work of Marrucci and Greco for rodlike molecules16,

Vi(m) =
�kT

jSjjdV j
Z
S

Z
dV

Z
jjm0jj=1

B(m;m0)f(m0;x+ s+ r; t)dm0drds: (3)

Here � is the number density of the LCP molecule per unit volume, the excluded volume

formula is given by

B(m;m0) = 2v + 2c2br
R �
0

R 2�
0

p
(sin2 �+r2 cos2 �)

(sin2 �0+r2 cos2 �0)2
sin�d�d�; (4)

in which v is the volume of the spheroidal LCP with the semi-axes (b; c)11, S is the surface

of the spheroid with the axis of revolution m, dV is a sphere of radius l centered at 0,

cos �0 = w �m0;

w = cos�m+ sin� cos �e1 + c sin� sin �e2;
(5)

with e1 and e2 the two orthonormal vectors perpendicular to m, jdV j denotes the volume of

dV and jSj the surface area of S. We note that w is the unit normal of the tangent plane

at the contacting point of the two spheroidal molecules of the axis of revolution m and m0,

respectively, and parameterized relative to m.
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The intermolecular potential de�ned by (3) is a nonlocal potential. Moreover, from a

practical point of view, the excluded volume given in (4) is too complicated for a hydrody-

namical theory of liquid crystals to be used for complex ow simulations. We thus seek an

approximate excluded volume expression that would lead to a less complex intermolecular

potential.

We seek the Legendre polynomial expansion of the excluded volume (4),

B(m;m0) = 2v +B0(r)�
1X
l=1

Bl(r)P2l(cos 6 mm0); (6)

in which 6 mm0 is the angle between m and m0.

As shown by Isihara11, the �rst two coeÆcients B0 and B1 are

B0 = 2�bc2r[1
r
+ rp

r2�1arcsin(
p
r2�1
r

)][1 + 1

2r
p
r2�1 ln(

r+
p
r2�1

r�
p
r2�1)];

B1 = 8�c2brh3(r)h4(r);

h3 =
1
4
[arcsin(

p
1�r2)p

1�r2 � 3arcsin(
p
1�r2)

4
p
1�r23

+ 3r
4(1�r2) � r

2
];

h4 =
5
2
[ 3
2(1�r2) + 1 + 1�r2

r2
� 1

4
p
1�r2 (1 +

3
1�r2 )ln

1+
p
1�r2

1�
p
1�r2 ]:

(7)

We remark that formulae in Isihara's paper11 for the case of r > 1 are erroneous.

Note that

cos2 6 mm0 = (m �m0)2 =mm :m0m0; (8)

where mm is the outer (tensor) product of m with m, \�" denotes the contraction operation

between two tensors over a pair of indices. In this paper, the number of dots in tensor

operations denotes the number of pairs of indices contracted in the operation17. If we truncate

series expansion (6) at the second order, the excluded volume is approximated by

B(m;m0) � 2v +B0(r) +
B1(r)

2
� 3

2
B1(r)mm :m0m0: (9)

With this, we arrive at an approximate intermolecular potential

Vi � �3

2
�kTB1mm : [

1

jdV jjSj
Z
S

Z
dV

Z
km0k=1

m0m0f(m0;x+ s+ r; t)dm0drds] + const; (10)

which resembles the intermolecular potential that Marrucci and Greco proposed for rodlike

molecules 16 except that our �rst integral is over a spheroid in stead of along the direction

of m. The Legendre polynomial approximation up to the quadratic order given in (9) turns

out to be an excellent approximation to (4) for all values of r. Figure 1 demonstrates a very
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good agreement between the excluded volume given in (4) less 2v, normalized by 1
2�bc2

, and

its second order Legendre polynomial approximation at r = 3. At r = 4 and r = 1=4, for

example, the two curves become nearly indistinguishable (not shown in Figure 1 though).

Following Marrucci and Greco's approach16, we expand the probability density function

f(m0;x+ s + r; t) at x in its taylor series,

f(m0;x+ s + r; t) = f(m0;x; t) +rf � (s+ r) +
1

2
rrf : (s+ r)(s+ r) + � � � ; (11)

where r is the gradient operator and the derivatives are evaluated at (m0;x; t). Neglecting

the terms higher than the second order, we obtain a simpli�ed intermolecular potential for

spheroidal LCPs,

Vsi = �3NkT

2
[I+ (

l2

10
+
L1

8
)� +

L2 � L1

8
mm : rr]hmmi :mm+ const; (12)

where

N = B1(r)�;

D1 = 1 + r2p
1�r2arcsinh(

p
1�r2
r

);

L1 =
2bc
r
� L2

2r2
;

L2 =
2bcr
D1

[ 1
1�r2 � r2

2(1�r2) � r4

2(1�r2)3=2arcsinh(
1�r2
r
)];

� = r � r; (Laplacian):

(13)

The bracket hi denotes an average over all possible molecular directions at (x; t) with respect

to the probability density function f :

h(�)i =
Z
jjmjj=1

(�)f(m;x; t)dm: (14)

We can rewrite the potential in the same form as that of Marrucci-Greco's by introducing

two new parameters L and L, of the unit of length, to denote the �nite range of molecular

interaction:

L =
q
24[ l

2

10
+ L1

8
]; L =

q
3(L2 � L1): (15)

Then,

Vsi = �3NkT

2
(I+

L2

24
� +

L2

24
mm : rr)hmmi :mm+ const; (16)

which is identical to the Marrucci-Greco potential for rodlike molecules formally16. In our

de�nition of the intermolecular potential, we note that L is still positive even when the
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length parameter l is assigned zero in (16), which distinguish (16) from the Marrucci-Greco

potential16. We remark that the form of the potential given in (16) is independent of the

choice of the surface S on which the average is calculated so long as the surface is smooth

and symmetric about the axis of revolution m although the shape as well as the size of S

a�ect the numerical values of L1 and L2. This observation suggests that the potential may

be generalized to more complex molecular con�gurations other than spheroids. But, we will

not pursue it here.

The �rst term in (16) corresponds to the homogeneous excluded-volume interaction of

the Maier-Saupe type while the second and third term model the e�ect of the long-range

distortional elasticity. N is a dimensionless polymer number density � which also characterizes

the strength of the intermolecular potential and varies with respect to the aspect ratio r and

so the shape parameter a (de�ned later). Figure 2 depicts the dependence of N=(8�c2b�)

as a function of the shape parameter a. It approaches 1 as jaj ! 1� and equals zero at

a = 0 since B(r = 1) = 0. The behavior of N=(8�c2b�) indicates that the strength of the

intermolecular potential weakens as jaj decreases for spheroidal molecules with �xed volumes

and �xed polymer number density. So, the critical number density at which phase transition

takes place increases as shape parameter jaj decreases, i.e., the closer the spheroid is to the

sphere, the higher the critical number density is. (16) also illustrates that the Marrucci-Greco

potential is valid for spheroidal LCPs approximately, rectifying the use of the Maier-Saupe

type potential for homogeneous discotic LCPs10.

Notice that both L1 and L2 are positive for all values of the aspect ratio r;however, L is

positive for r > 1 and negative for 0 < r < 1. In fact, L=bc is an odd function of the shape

parameter a via (23). Figure 3 portraits the variation of L1=bc; L2=bc and L=bc with respect

to a, respectively.

Free energy and the symmetric, e�ective intermolecular potential

Let's denote a �nite volume of the LCP material by G in R3. The free energy for the

volume of LCPs is then given by4;14

A[f ] = �kT

Z
G

Z
kmk=1

[flnf � f + VHf +
1

2kT
fVsi]dmdx; (17)

where VH is the potential for the external �eld. Through integration by part, the free energy

can be rewritten into

A[f ] = �kT
R
G

R
kmk=1 [flnf � f + VHf +

1
2kT

fVei]dmdx�

�NkTL2

32

R
@G [(M4

...rM) � nn � (r �M4)
...Mnn]ds;

(18)
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where nn is the external unit normal of @G, the boundary of G, and

Vei = �3NkT

2
[(I+ L2

24
�)M :mm+ L2

48
(mmmm :: rrM+

mmrr ::M4)] + const;

M = hmmi; M4 = hmmmmi;

(19)

M and M4 are the second and fourth moments of m with respect to the probability density

function f , respectively. Neglecting the contribution from the surface integrals, we conclude

that the contribution of Vei to the bulk free energy is equivalent to that of Vsi. However,

the symmetrization of the intermolecular potential is crucial for a well-posed hydrodynamic

theory, in which the positive entropy production and therefore the second law of thermody-

namics is warranted. We will show later that the symmetric Vei respect the second law of

thermodynamics at this level of approximation. We thus name Vei the e�ective intermolecu-

lar potential and adopt it in the following derivations. In fact, the e�ective intermolecular

potential de�nes the chemical potential in its usual form:

� =
ÆA

Æf
= kT lnf + Vei + kTVH : (20)

Next, we derive the Smoluchowski equation for the probability density function f consistent

with the spheroidal LCPs.

Smoluchowski equation (kinetic equation)

For a rigid spheroidal suspension in a viscous solvent, Je�rey calculated the velocity of

its axis of revolution m as follows18:

_m = 
 �m+ a[D �m�D :mmm]; (21)

where, D and 
 are the rate of strain tensor and vorticity tensor, de�ned by

D =
1

2
(rv +rvT ); 
 =

1

2
(rv �rvT ); (22)

respectively, v is the velocity vector �eld for the owing LCP, rv = @vi
@xj

is the velocity

gradient, and the superscript T denotes the transpose of a second order tensor; �1 � a � 1

is a shape parameter related to the molecular aspect ratio r by

a =
r2 � 1

r2 + 1
: (23)

a = 1: the spheroid degenerates into an in�nitely thin rod; a = 0: it is a sphere; a = �1: it
deforms into an in�nitely thin disk. Following the development of the Smoluchowski equation

for polymer solutions by Doi and Edwards4 with both the rotary and translational di�usion
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included and utilizing the result of Je�rey's (21), we arrive at the Smoluchowski (kinetic)

equation for the probability density function f(m;x; t) for spheroidal lcps:

df

dt
= @

@x
� [(Dk(a)mm+D?(a)(I�mm)) � (@f

@x
+ f

kT

@V

@x
)]+

R � [Dr(m; a)(Rf + 1
kT
fRV )]�R � [m� _mf ];

(24)

where Dr(m; a) = D̂r(a)(
R
km0k=1 km�m0kf(m0;x; t)dm0)�2 is the rotary di�usivity, in-

versely proportional to the relaxation time due to molecular rotation, D̂r(a) a shape-dependent

rotary di�usion constant, Dk(a) and D?(a) are shape-dependent, translational di�usivities

characterizing the translational di�usion in the direction parallel and perpendicular to m,

respectively, k is the Boltzmann constant, T is the absolute temperature, V is the poten-

tial including the intermolecular potential Vei and the external potential (magnetic and/or

electric �eld e�ect) VH ,

V = Vei + �kTVH ; (25)

@
@x

= r and R = m� @
@m

are the spatial and the rotational gradient operator, respectively,

and d

dt
(�) denotes the material derivative @

@t
(�) + v � r(�). In the Smoluchowski equation,

rotary convection and di�usion as well as spatial (translational) convection and di�usion are

all included. In the following, we will assume the translational di�usion is weak and thus

neglected.

Like in most kinetic theories, the macroscopic, or average, internal orientational properties

of nematic liquid crystals are de�ned in terms of the moments of m with respect to the

probability density function f 4. Often, one uses the second moment M or its deviatoric

part Q (a second order, symmetric, traceless tensor Q) known as the orientation tensor (or

structure tensor):

Q = hmmi � I=3: (26)

Taking the second moment of m in the 3-dimensional space of m with respect to the

probability density function governed by the kinetic equation (24), we arrive at the mesoscale

orientation tensor equation
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8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

d
dt
M� 
 �M+M � 
� a[D �M +M �D] = �2aD : hmmmmi�

6D0
r [M� I

3
� 1

6kT
(hm�RVmi+ hmm�RV i)] =

2a
3
D� 2aD : QM� 6D0

r [Q� N

2
((I+ L2

24
�)M �M+M � (I+ L2

24
�)M)+

N(I+ L2

24
�)M : hmmmmi � NL2

96
((rrM)

...M4 + ((rrM)
...M4)

T+

M4

...rrM+ (M4

...rrM)T +Mrr...M4 + (Mrr...M4)
T�

4hmmmmmmi :: rrM� 2M4rr ::M4)]+

D0
r�[hm�RVHmi+ hmm�RVHi]:

(27)

where D0
r is an averaged rotary di�usivity resulted from the averaging process4, which is

assumed a shape dependent constant in this study. We remark that the averaged rotary

di�usivity is also possibly orientation dependent; then the \tube-dilation" e�ect for rodlike

LCPs or the analogous e�ect for disklike LCPs, perhaps should be termed \disk-expansion"

e�ect, can be modeled by replacing the constant rotary di�usivity D0
r by

4

D0
r

(1� 3
2
Q : Q)2

: (28)

The translational di�usion can be easily incorporated into the orientation tensor equation

once it is identi�ed as signi�cant. In that case, an additional variable for the polymer density

would have to be introduced along with its governing equation resulted from the averaging of

the kinetic equation. In the above, we have chosen not to include it in the orientation tensor

equation for the sake of simplicity, which is also consistent with the customary practice in

this �eld.

Analogous to the derivation of orientation tensor equation, we can also obtain an evolu-

tionary equation for M4 from the kinetic equation:

d

dt
(M4)ijkl � [
imM4;mjkl �M4;ijkm
ml �M4imkl
mj �M4ijml
mk]�

a[DimM4mjkl +M4imklDmj +M4ijmlDmk +M4ijkmDml] = �4aM6ijklmnDmn�

20 �Dr[M4ijkl � 1
10
(hÆijmkmli+ hÆikmjmli+ hÆilmjmki+ hmiÆjkmli+

hmiÆjlmki+ hmimjÆkli)� 1
20kT

(hm�RVmmmiijkl + hmm�RVmmiijkl+

hmmm�RVmiijkl + hmmmm�RV iijkl)];

(29)
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where �Dr is another averaged rotary di�usivity resulted from the averaging process, which is

assumed equal to D0
r for simplicity in the following, and indices are used to clarify the tensor

products. The equation of M contains the fourth and sixth order moments and that of M4

includes even eighth order moments, posing a closure problem typical to kinetic theories4.

With the kinetic equation, we next derive the consistent stress tensor.

Derivation of the stress tensor

We treat the LCP system as incompressible. Then, the stress tensor consists of three

parts: the presure �pI, the viscous stress � v and the elastic stress � e. We derive the elastic

stress �rst by applying the virtual work principle2;4 on a �nite volume of the LCP material

denoted by G called control volume. In order to take into account the nonlocal e�ect of

the intermolecular potential (19), the virtual deformation �eld Æ� = Ærx, the variation of

all tensor �elds and their �rst order derivatives are assumed zero at the boundaries of the

control volume19.

The free energy of the LCP system in the material volume is given by (18). Consider a

virtual deformation Æ� of the material in G. According to the virtual work principle4, the

virtual work that the exterior must do to the material to realize Æ� is

ÆW =
Z
G
� e : Æ�dx; (30)

where � e is the elastic stress part of extra stress. In response to the virtual deformation Æ�,

the variation of f is calculated from the kinetic equation by neglecting all terms except for

the rotational convection term4:

Æf =
df

dt
Æt = �R � (m� _mf)Æt: (31)

The change in the free energy must then equal the work done to the material, i.e.,

ÆA = ÆW: (32)

This equation yields the elastic stress,

� e = 3a�kT [M� I

3
� 1

6kT
(hm�R(V )mi+ hmm�R(V )i)]�

�

2
[hm�R(V )mi � hmm�R(V )i]� �NkTL2

32
[rM : rM� (rrM) :M]+

�kTNL2

64
[rrM...M4 + (rr �M4) :M�rM : (r �M4)�rM4

...rM];

(33)

where

(rM : rM)ij = riMklrjMkl: (34)
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The details of the derivation is given in Appendix B. The antisymmetric part of the elastic

stress is

� ea = ��
2
[hm�RVmi � hmm�RV i]+

�kTNL2

64
[rrM...M4 + (rr �M4) :M�rM : (r �M4)�rM4

...rM]a;

(35)

where the subscript a indicate the antisymmetric part of the second order tensor.

For the viscous stress, we use the results of Je�rey's18, Batchelor's20 and Hinch and

Leal's21;22;23 on spheroidal suspensions in viscous solvent to arrive at:

� v = 2�sD+ 3�kT [�1(a)(D �M+M �D) + �2(a)D : hmmmmi)]; (36)

where

�s = � + 3
2
�kT�3(a);

�3(a) =
�(0)

I1
; �1(a) = �(0)( 1

I3
� 1

I1
); �2(a) = �(0)[ J1

I1J3
+ 1

I1
� 2

I3
];

I1 = 2r
R1
0

dxp
(r2+x)(1+x)3

; I3 = r(r2 + 1)
R1
0

dxp
(r2+x)(1+x)2(r2+x)

;

J1 = r
R1
0

xdxp
(r2+x)(1+x)3

; J3 = r
R1
0

xdxp
(r2+x)(1+x)2(r2+x)

;

r = 1+a
1�a ;

(37)

� is the solvent viscosity, �1;2;3(a) are three friction coeÆcients. 3�kT�i(a); i = 1; 2; 3 are

identi�ed as two shape-dependent viscosity parameters due to the polymer-solvent interaction.

The total extra stress is given in the constitutive equation for the extra stress

� = � e + � v: (38)

Expanding the terms in (33), we obtain the extra stress tensor expression explicitly:

� = 2�sD+ 3a�kT [M� I

3
� N

2
((I+ L2

24
�)M �M+M � (I+ L2

24
�)M

�2(I+ L2

24
�)M : hmmmmi)]� �kTNL2

16
(�M �M�M ��M)+

a�kTNL2

32
[4M6 :: rrM + 2M4rr ::M4 �rrM...M4 � (rrM...M4)

T�

M4

...rrM� (M4

...rrM)T � (Mrr...M4)
T �Mrr...M4]� �kTNL2

32
[rrM...M4�

(rrM...M4)
T �M4

...rrM + (M4

...rrM)T �Mrr...M4 + (Mrr...M4)
T ]

+3�kT [�1(a)(DM+MD) + �2(a)D : hmmmmi]�

�kT

2
[a(hm�R(VH)mi+ hmm�R(VH)i)� (hm�R(VH)mi �mmR(VH)i)]:

(39)
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From 21;22, it follows that

lima!1 �1(a) = 0; lima!1 �2(a) =1;

lima!�1 �1(a) = �1; lima!�1 �2(a) =1:

(40)

So, the formulae are not meant to be applied to the two extremes a = �1 and a = 1 at all.

To obtain the viscous stress in practice, one should calibrate the coeÆcient at a �xed aspect

ratio 0 < r = r0 < 1 and then extrapolate the formulae to all the other �nite values of r

since after all the friction coeÆcients need to be experimentally determined. In the range of

a � 1 though, the stress contribution from the term D �M +M �D is negligible, consistent

with the Doi theory for rodlike molecules4.

Figure 4. depicts the three friction coeÆcients �i(a); i = 1; 2; 3 as functions of the shape

parameter a. When a > 0, all are positive and �1(a) is smaller than �2(a) as well as �3(a);

�1(a) becomes negligibly small as a approaches 1 while �2(a) goes to in�nity and �3(a) settles

at a �nite positive value. For a < 0, �1(a) becomes negative and comparable in magnitudes

to �2(a), giving rise to a non-negligible \shape-induced-antidrag" to the total stress from the

term D �M +M �D. This indicates that the oblate spheroidal molecule has the tendency

to weaken the viscous stress due to the shape-induced polymer-solvent interaction. However,

this will by no means change the dissipative nature of the stress. As shown in the appendix,

the viscous stress part due to the polymer-solvent interaction is indeed dissipative for all

values of a 2 (�1; 1) and all possible orientation despite �1(a) < 0 at a < 0.

The kinetic equation (24), orientation tensor equation (27) and (29), constitutive equation

for the extra stress (39), balance of linear momentum (41) and the continuity equation (42),

both given next, constitute the hydrodynamical model for spheroidal LCPs.

Balance of linear momentum

�
dv

dt
= r � (�pI+ �) + f ; (41)

where � is the uid density, p is the scalar pressure and f the external force. Correponding

to the incompressibility, v satis�es the

continuity equation

r � v = 0: (42)

Balance of angular momentum and the anisotropic elasticity

Finally, we want to make sure that the derived theory obeys the balance of angular

momentum. From Doi and Edwards' book4, we know that the torque on a test molecule

oriented along m is given by

T = �RVei; (43)

13



absence of external e�ects. In this mesoscopic theory, the material point is implicitly (tacitly)

de�ned as a sphere in which the velocity gradient is assumed constant and all LCP molecules

convect spatially in an identical manner within the sphere. Due to the anisotropic elasticity

from the intermolecular potential, there exists an additional torque associated to the spatial

convection on the \material points". Then, the total torque on a unit volume of the material

is

tk = �
R
kmk=1Tkf(m;x; t)dm+ �NkTL2

32
[M4ij��r�r�Mij +Mijr�r�M4��ij�

r�M4ij��r�Mij �r�Mijr�M4��ij ]���k;

(44)

where ���k is the alternator tensor17. Integrating over the control volume G and applying

integration by parts whenever necessary, our calculations end up with

Z
G
�ij�ijkdx =

Z
G
tkdx: (45)

This equality indicates that the body torque balances the antisymmetric part of the stress ten-

sor on the control volumeG, con�rming that the balance of angular momentum is maintained2.

We note that the balance of the angular momentum is achieved on the entire control volume

G subject to the assumptions on the zero boundary conditions alluded to earlier rather than

in a pointwise sense due to the nonlocality of the intermolecular potential. The presence of

the anisotropic elasticity is due to the long-range anisotropic molecular interaction. It is the

interaction between the spatial convection and the long-range anisotropic molecular inter-

action that causes the additional torque on the material point. The role of the anisotropic

elasticity needs to be investigated in more details.

Entropy production and energy dissipition

In an isothermal process, the entropy production or (energy dissipition) is equal to the

decrease in the total energy2

T _S = � d

dt
[
Z
G
(
1

2
�v � v)dx+ A[f ]]; (46)

where S denotes the entropy of the control volume G. As it is demonstrated in Appendix A

that

T _S =
R
GhDr(m; a)kR(lnf + 1

kT
Vei)k2idx+

R
Ghr(lnf + 1

kT
Vei) � (Dk(a)mm+

D?(a)(I�mm)) � r(lnf + 1
kT
Vei)idx+

R
GDvdispdx;

(47)

where

Dvdisp = 2�D : D+ 3�kT (�3D+ �1(M �D+D �M) + �2D : hmmmmi) : D: (48)
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It is nonnegative de�nite provided the translational di�usion coeÆcient matrix

(Dk(a)mm+D?(a)(I�mm)) (49)

is nonnegative de�nite, which is warranted provided Dk(a) and D?(a) are nonnegative as

implicitly assumed. This indicates the theory warrants a positive entropy production and

thereby abeys the second law of thermodynamics.

Approximate theory

The equation for the orientation tensor and the stress expression both contain fourth and

sixth order tensors, indicating a strong coupling to the kinetic equation. To decouple the

kinetic equation, which often yields a much simpler governing equation system for LCPs, one

has used a variety of decoupling or closure approximations23;24;25;26;27. The simplest among

all the choices of the closure approximations is the quadratic closure for fourth order tensors

and cubic closure for sixth order tensors given below

hmmmmi � hmmihmmi;

hmmmmmmi � hmmihmmihmmi:
(50)

The orientation tensor equation and the stress expression are given by (27) and (39), re-

spectively, after the above substitutions. These equations along with the momentum and

continuity equation constitute the approximate theory for spheroidal LCPs.

An improved approximate theory may be obtained if we use both M and M4 as orienta-

tional variables and approximate sixth order and eighth order tensors by

hmmmmmmi � a
(1)
1 hmmihmmmmi+

a
(1)
2 hmmmmihmmi+ a

(1)
3 hmmihmmihmmi;

a
(1)
1 + a

(1)
2 + a

(1)
3 = 1;

hmmmmmmmmi � a
(2)
1 hmmmmihmmmmi+ a

(2)
2 hmmihmmihmmmmi

a
(2)
3 hmmmmihmmihmmi+ a

(2)
4 hmmihmmmmihmmi;

a
(2)
1 + a

(2)
2 + a

(2)
3 + a

(2)
4 = 1:

(51)

The speci�c values of the weight parameters a
(i)
j can be caliberated based on the ow types.

Of course, more sophisticated closures may be employed to improve the approximation given

here6;7;23;24. Most of the closures are ow-type dependent so that their performance in di�erent

types of ows vary widely24;25;26;27. Unless a speci�c ow problem is identi�ed, we don't see

the need for enumerating all the closure approximations here.
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Given the theory outlined above, we next discuss some of its preliminary properties in the

limit of weak ows and leave the rheological evaluations to a forthcoming paper.

3 Reduction to the Leslie-Ericksen theory in the weak

ow limit

Owing to historical reasons, one likes to interpret phenomena in liquid crystals using the

language developed in the Leslie-Ericksen theory3. Without being an exception, we would

therefore like to see how this theory relates to the well known LE theory in the limit of weak

ows and weak distortional elasticity. To establish the connection, we need to restrict Q and

M4 to their uniaxial forms in equilibrium,

Q = s(nn� I

3
); M = Q+ I

3
;

M4ijkl = s4ninjnknl +
s�s4
7
(ninjÆkl + nknlÆij + ninkÆjl + njnlÆik+

ninlÆjk + njnkÆil) +
7�10s+3s4

105
(ÆijÆkl + ÆjkÆil + ÆikÆjl);

s = hP2(m � n)i; s4 = hP4(m � n)i;

(52)

where s and s4 are uniaxial order parameters in equilibrium, P2(x) and P4(x) are the Legendre

polynomial of order 2 and 4, respectively, and n is the corresponding, distinguished director

of Q4. Assuming s and s4 constants and n a function of x, inserting (52) to the free energy

given by (18), we have

A[f ] = �kT
R
Ghlnf � 1 + VH + 1

2kT
Veiidx� �NkTL2

32

R
@G [(M4

...rM) � nn � (r �M4)
...Mnn]ds

= �kT
R
Ghlnf � 1 + VH + 1

2
Vmsidx� �NkTL2

32

R
@G [(M4

...rM) � nn � (r �M4)
...Mnn]ds+

R
Gf�NkT

8
s[(L2s+ s�s4

7
L2)krnk2 + 2(s�s4)

7
L2(r � n)2 + 2s+5s4

7
L2kn � rnk2]�

�NkT
32

L2s[49�40s+12s4
21

r � (nr � n) + 49�64s+36s4
21

r � (n � rn)]g

= �kT
R
Ghlnf � 1 + VH + 1

2
Vmsidx� �NkTL2

32

R
@G [(M4

...rM) � nn � (r �M4)
...Mnn]ds+

R
Gf�NkT

8
s[(L2s+ s�s4

7
L2)krnk2 + 2(s�s4)

7
L2(r � n)2 + 2s+5s4

7
L2kn � rnk2]g�

R
@Gf�NkT

32
L2s[49�40s+12s4

21
(nr � n) � nn + 49�64s+36s4

21
(n � rn) � nn]g;

(53)

where kTVms = �3NkT

2
M :mm is the Maier-Saupe intermolecular potential.
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Comparing the bulk distortional free energy (underlined above) with that in the LE theory,

we can identify the three Frank elastic constants as follows:

K1 =
�NkT

8
(L2s2 + 3s(s�s4)

7
L2);

K2 =
�NkT

8
(L2s2 + s(s�s4)

7
L2);

K3 =
�NkT

8
(L2s2 + s(3s+4s4)

7
L2):

(54)

These can be written into self-contained forms for easy calculations following Marrucci and

Greco16

K1 =
�kTNS2

8
[L2 + 3L2�1];

K2 =
�kTNS2

8
[L2 + L2�1];

K3 =
�kTNS2

8
[L2 + L2�2];

(55)

where

�1 =
1

4(G0�3G2)
[G0 � 6G2 + 5G4];

�2 =
3G2�5G4

(G0�3G2)
;

s = 3G2

2G0
� 1

2
;

Gk =
R 1
0 x

kexp(3N=2sx2)dx:

(56)

In the following, we will derive the governing equation for the director n using Kuzuu and

Doi's perturbation scheme14, extended recently by Feng et al.19 to the nonlocal intermolecular

potential to establish a direct link to the LE theory and con�rm the relations between the

elastic moduli and the parameters in the new theory. In this perturbation scheme, we assume

the rotary di�usivity is a constant and formally assume the distortional elasticity and the

ow e�ect are both weak (small) and of the same order of magnitudes, i.e.,

O(k _mk; kRVek) << 1; (57)

where kTVe = Vei�kTVms. We then seek an asymptotic expansion of the probability density

function

f = fms + f1 + f2 + � � � ; (58)

where fms is a function of order O(1) and its material derivative scales with the small velocity

gradient and the bulk distortional free energy, i.e.,

dfms

dt
� O(k _mk; kRVek); (59)

17



f1 is a function of order O(k _mk; kRVek), f2 is a function of higher order, etc.. Substituting

the ansatz (58) into the Smoluchowski equation, we have at leading order (O(1))

R � [Dr(Rfms + fmsRVms)] = 0: (60)

Clearly, fms at leading order is a steady state solution of the Smoluchowski equation with

the Maier-Saupe intermolecular potential. At the next order, we have

dfms

dt
= R �Dr[Rf1 + f1RVms[fms] + fmsRVms[f1]]�R � [(m� _m�DrRVe[fms])fms]: (61)

We denote

G� = R � (R�+ �RVms[fms] + fmsRVms[�]): (62)

Let  0 be the eigenvector of the Hermitian operator G� corresponding to the zero eigenvalue

of G 14. Then, it follows from (61) that

R
kmk=1  0[

dfms

dt
+R � [(m� _m�DrRVe[fms])fms]]dm =

R
kmk=1 f 0

dfms

dt
�R 0 � [(m� _m�DrRVe[fms])fms]]gdm = 0:

(63)

This is the solvability condition at the second order in the perturbation scheme, which yields

the governing equation for the director n. Kuzuu and Doi found that the left eigenvector

 0 = b � e�g(�) with g(�) the solution of the steady state equation

1

sin �

d

d�
(sin �

dg

d�
)� g

sin2 �
� dVms

d�

dg

d�
= �dVms

d�
(64)

and b an arbitrary constant vector14. Since Vms[fms] = �3Ns
2
(n�m)2+const, fms = fms(n�m).

Using the fact m � Rmfms(n �m) = �n � Rnfms(n �m) and Rfms = �fmsRVms[fms], we

�nd

Z
kmk=1

 0

dfms

dt
dm =

as

�
b � (n� _n); (65)

where

� = 2as(
R
kmk=1 fmsg(�)

dVms

d�
dm)�1 (66)

is the \tumbling parameter"14 (We note that Feng et al. obtained the same result using a

di�erent approach19). Kuzuu and Doi calculated14:

Z
kmk=1

R 0 � (m� _mfms)dm = b � (n� (as(Dn+
1

�

n))): (67)
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We calculate the remaining terms and list them as follows:

R
kmk=1DrR(Ve) � R 0fmsdm = �b � (n� h) D0

r

�kT
; (68)

where h is given by

h = �NkTs

8
[(sL2 + s�s4

7
L2)�n + 2(s�s4)

7
L2r(r � n)+

2s+5s4
7

L2((r � n)n � rn + (n � rn) � rn + nn : rrn� n � rn � rnT )];
(69)

where

(n � rn � rnT )� = ninj;inj;�: (70)

Combining the results of Kuzuu and Doi14, Feng et al.'s19 and (69), we arrive at the

governing equation for the director n:

n� [as
�
�kT
D0
r

N� as�kT
D0
r

D � n� h] = 0; (71)

where

N =
dn

dt
� 
 � n; (72)

and h is the elastic �eld2;14. This is equivalent to

�n +
as

�

�kT

D0
r

N� as
�kT

D0
r

D � n� h = 0; (73)

which is the director �eld equation in the LE theory1 with the Lagrangian multiplier .

Finally, the bulk distortional free energy density in the weak ow limit can be written

into the familiar form:

F = 1
2
[�kTNs

8
(sL2 + 3L2

7
(s� s4))(r � n)2 + �kTNs

8
(sL2 + L2

7
(s� s4))(n � r � n)2+

�kTNs

8
(sL2 + L2

7
(3s+ 4s4))kn�r� nk2]:

(74)

We note that we have employed the following identity throughout our derivations:

n � rn = 0: (75)

From (55), we observe that all the elastic moduli contain the equilibrium order parameter

s as a factor. Recall the equilibrium phase diagram of the Doi model with Maier-Saupe

potential27, reproduced in Figure 5., we note that the isotropic phase s = 0 is the unique

phase in the range of N < Nb � 4:49; two additional nematic ones emerge in the range

of N > Nb, one is a highly aligned prolate one, which is linear stable, and the other is an
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unstable prolate equilibrium at N < Nc and oblate one at N > Nc, where Nc = 5 is the phase

transition concentration. At the isotropic phase, all the elastic moduli vanish according to

(55). At the highly aligned prolate equilibrium for rodlike molecules, Marrucci and Greco

showed that above the phase transition concentration16

K2 < K1 < K3: (76)

In our calculations, we con�rm Marrucci and Greco's results with our potential for LCPs of

prolate spheroidal con�gurations (a > 0). In addition, if we let L = 0 in the intermolecular

potential, we observe that K1=K2 ! 3 as the aspect ratio r !128.

We also evaluate the three elastic moduli along the second nematic equilibrium as shown

in Figure 5. Their magnitudes depends strongly on the dimensionless concentration N .

Speci�cally,
8>>>>>><
>>>>>>:

K2 < K1 < K3; 4:49 < N < Nc = 5;

K2 < K3 < K1; Nc < N < Nd;

K3 < K2 < K1; N > Nd;

(77)

where Nd is a second critical concentration related to the molecular shape parameter a. The

variation of the three elastic moduli with respect to the dimensionless concentration N for

a = 0:8 is depicted in Figure 6, where the critical concentration value Nd � 10:29.

When a < 0, the spheroidal molecule exhibits an oblate symmetry so that the parameter

L2 < 0, nevertheless, L2 > jL2j and all elastic moduli are nonnegative. However, the ordering

of their magnitudes are in complete reversal of the case for a > 0; namely,

K3 < K1 < K2 (78)

for all N > 4:49 along the highly aligned prolate equilibrium; for the second nematic phase,
8>>>>>><
>>>>>>:

K3 < K1 < K2; 4:49 < N < Nc = 5;

K1 < K3 < K2; Nc < N < Nd;

K1 < K2 < K3; Nd < N;

(79)

where Nd is a critical concentration value related to the molecular shape. Figure 7 depicts

the three elastic moduli as functions of concentration N for a = �0:8, in which Nd � 10:49.

Reducing the extra stress tensor expression using (52), we obtain the antisymmetric part

of the stress tensor

�a = �1

2
(nh� hn) + extra gradient terms ; (80)
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where the \extra gradient terms" are associated with the torque exerted on the material point

due to the spatial convection given in (44). Inserting (71) via (80) into the stress expression

(39) and comparing the \viscous" stress in the limit, we obtain

�1 = (3�kT�2 � a2�kT
D0
r

)s4;

�2 = �a�kT

2D0
r

s(1 + 1
�
);

�3 = �a�kT

2D0
r

s(1� 1
�
);

�4 = 2�s + 2(1� s)�kT�1 + �kT�2
14�20s+6s4

35
+ a2�kT

D0
r

7�10s+3s4
35

;

�5 = 3�kT�1s+
6
7
(s� s4)�kT�2 +

a�kT
2D0

r

(a
7
(3s+ 4s4) + s);

�6 = 3�kT�1s+
6
7
(s� s4)�kT�2 +

a�kT
2D0

r

(a
7
(3s+ 4s4)� s):

(81)

These coeÆcients reduce to those obtained by Kuzuu and Doi14 while �s, �1 and �2 are

assigned zero.

In addition to all the stress terms in the LE theory, the stress expression (39) in the weak

ow limit also contains a number of \excessive" gradient terms, some of which are surface

terms while others are not. So, they are indeed excessive relative to the LE theory. Thereby,

the extra stress expression in our theory does not reduce to that of the LE theory exactly.

It does include the LE stress tensor however. Since the terms are tediously long and not

illuminating, we will not list them here. The \excessive" terms in our stress expression are

due to the second order derivative terms in the intermolecular in the stress expression while

LE theory only contains �rst order derivative terms. The LE theory is therefore a lower order

truncated theory for small deformations.

Examining the Leslie viscosity �2 and �3, we notice that �2 < 0 as a > 0 while �3 > 0

as 1 � 1
�
< 0 and �3 < 0 otherwise along the stable, prolate nematic equilibrium. When

a < 0, however, �3 > 0, but �2 > 0 provided 1 + 1
�
> 0 and �2 < 0 otherwise. It is known

that the tumbling regime of the LCP is quanti�ed by j�j < 1 in the LE theory; the ow

aligning regime is characterized by j�j > 1. Applying this to �2 (�3), we conclude that the

positive value of �2 (�3) can only be reached when the oblate (prolate) spheroidal LCP is in

the ow-aligning (tumbling) regime. This is consistent with the observation of Carlsson and

his coworkers' on discotic LCs using the LE theory8;29.

Finally, we point out that the Parodi relation30

�2 + �3 = �6 � �5 (82)

is satis�ed by the Leslie viscosity coeÆcients given in (81).
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4 Conclusion

We have developed a hydrodynamic theory for nonhomogeneous liquid crystalline poly-

mers of spheroidal con�gurations generalizing the kinetic theory of Kuzuu and Doi for ho-

mogeneous liquid crystal polymers. The theory is applicable to ows of rodlike liquid crystal

polymers at the large aspect ratios and to those of discotic liquid crystal polymers at small

aspect ratios. It also accounts for the molecular con�gurational e�ect in the viscous stress

due to polymer-solvent interaction. The theory is shown to satisfy the second law of thermo-

dynamics and thereby warrants a positive entropy production. Therefore, it is a well-posed

kinetic theory for ows of lcps.

In the asymptotic limit of weak ows and weak elasticity, it recovers the director equation

of the Leslie-Ericksen theory and predicts that the magnitudes of the three elastic moduli

obey the following order K3 < K1 < K2 in the stable nematic phase for discotic lcps and

the reversed ordering for rodlike liquid crystals. The Leslie viscosity coeÆcient �2 (�3) in

the asymptotic limit is positive in the ow-aligning (tumbling) regime for discotic (rodlike)

LCPs. However, the stress in the asymptotic limit does not reduce to that in the LE theory

due to the presence of higher order derivatives in the e�ective intermolecular potential.

Further rheological evaluations of the new theory for discotic liquid crystals in simple ows

as well as orientational structures emerged due to ow orientation coupling will be reported

in a forthcoming paper.
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Appendix

A.Energy dissipation
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Here we �rst examine the dissipation caused by the viscous stress due to polymer-solvent

interaction and viscous solvent. The dissipation is given by

Dvdisp = 2�D : D+ 3�kT (�3D+ �1(M �D+D �M) + �2D : hmmmmi) : D: (83)

(83) can be rewritten as

Dvdisp = 2�D : D+ 3�kT h[�3D : D+ 2�1m �D �D �m+ �2(m �D �m)2]i: (84)

When all �i > 0, this is certainly positive.

While �1 < 0, we have to rewrite the expression using the identities:

m �D2 �m = kP �D �mk2 + (m �D �m)2;

kDk2 = kD0k2 + 3
2
(m �D �m)2 + 2kP �D �mk2;

(85)

where

P = I�mm;

D0 = D� 1
2
(m �D �m)I�mP �D �m�P �D �mm� 3

2
(m �D �m)mm:

(86)

With these, we reduce (84) to

Dvdisp = 2�D : D+ 3�kT h[2(�3 + �1)kP �D �mk2+

(�2 +
3
2
�3 + 2�1)(m �D �m)2 + �3D0 : D0]i:

(87)

Notice that

�1 + �3 =
1
I3
;

2�1 + �2 +
3
2
�3 =

J1
I1J3

+ 1
2I1
;

(88)

and both are positive. So, Dvdisp � 0 even though �1 < 0 for a < 0. This demonstrates

that the viscous stress derived in the theory due to polymer-solvent interaction and viscous

solvent is dissipative for all aspect ratios.

We then show that the total energy is dissipative in the theory in isothermal ows. In

the isothermal state, the entropy production is de�ned as follows2

T _S = � d

dt
[
Z
G
(
1

2
�v � v)dx+ A[f ]]: (89)
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Applying the kinetic equation and integration by part, we deduce that

d
dt
[
R
G (

1
2
�v � v)dx+ A[f ]] =

R
Gf�K : � + �kT

R
kmk=1[(lnf +

1
kT
V ) d

dt
f + 1

2kT
(f d

dt
V � V d

dt
f)]dmgdx =

R
Gf�K : � v + �kT

R
kmk=1[(lnf +

1
kT
V )(R �Dr(Rf + f

kT
RV )+

r � (Dk(a)mm+D?(a)(I�mm)) � (rf + f

kT
rV )) + 1

2kT
(f d�

dt
V � V d�

dt
f)]dmgdx =

� RGfDvdisp + �kT [hR(lnf + 1
kT
V ) �DrR(lnf + 1

kT
V )i+

hr(lnf + 1
kT
V ) � (Dk(a)mm+D?(a)(I�mm)) � r(lnf + 1

kT
V )i]gdx+

R
@G surface termsds;

(90)

where

d�

dt
= R �Dr(Rf +

f

kT
RV ) +r � (Dk(a)mm+D?(a)(I�mm)) � (rf + f

kT
rV ); (91)

representing the rotary and translational di�usion in the kinetic equation. Assuming the

derivatives of f and its moments are all zero on the boundary @G, we arrive at

T _S =
R
GfDvdisp + �kT [hR(lnf + 1

kT
V ) �DrR(lnf + 1

kT
V )i+

hr(lnf + 1
kT
V ) � (Dk(a)mm+D?(a)(I�mm)) � r(lnf + 1

kT
V )i]gdx:

(92)

The entropy production is positive provided

Dr > 0 and (Dk(a)mm+D?(a)(I�mm)) > 0: (93)

So the energy is dissipative, consistent with the second law of thermodynamics.

B. Derivation of the elastic stress tensor using virtual work principles

We calculate the variation of the free energy A[f ] with respect to the variation of the

probability density function de�ned by

Æf =
df

dt
Æt = �R � (m� _mf)Æt: (94)

This indicates that not only the rotational con�guration of the spheroidal molecule, but also

its mass of center are perturbed along the moving trajectory of the material point x. Then,

ÆA[f ] = �kT

Z
G

Z
kmk=1

[(lnf � 1 +
V

kT
)Æf +

1

2kT
(fÆV � V Æf)]dmdx: (95)
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Assuming the deformation tensor KÆt and its derivatives vanish at @G and applying integra-

tion by part, we have

R
G

R
kmk=1[(lnf � 1 + V

kT
)Æf ]dmdx =

R
GK��Æt : f3a(M� I

3
)� a

2
[h(m�RV )mi+ hm(m�RV )i]�

1
2
[h(m�RV )mi � hm(m�RV )i]g��dx;

(96)

and

R
G

R
kmk=1[

1
2kT

(fÆV � V Æf)]dmdx = � RGfK��Æt : (
NL2

32
)[r�Mijr�Mij�

r�r�MijMij] +K��Æt : (
NL2

64
)[r�M4ij��r�Mij�

M4ij��r�r�Mij +r�Mijr�M4��ij �Mijr�r�M4��ij]gdx

= � RGfK��Æt : (
NL2

32
)[r�Mijr�Mij �r�r�MijMij]�

K��Æt : (
NL2

32
)[M4ij��r�r�Mij +Mijr�r�M4��ij]gdx:

(97)

In arriving at the above expression, we have used the following identities

r � v = 0;

rirj(v�r�) = v�r�rjri +ri(K�jr�) +K�ir�rj:

(98)

The extra terms given by (97) are resulted from the interaction of the long range elastic poten-

tial and the spatial convection, which contributes additional elastic torque to the macroscopic

motion of the material.
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Figure Captions

Figure 1. Comparison between the excluded volume and its approximate form at r = 3,

where Bq = 1
2�bc2

(B� 2v) and q = cos 6 mn. The solid curve represents the excluded volume

de�ned in (4) less 2v, normalized by 1
2�bc2

, and the dotted curve does its corresponding Leg-

endre polynomial approximation up to the second order.

Figure 2. Nn =
N(a)

8�bc2�
as a function of the shape parameter a. limjaj!1� Nn(a) =1.

Figure 3. (a). L1=bc and L2=bc as functions of a. The dotted curve represents L2=bc and the

solid one L1=bc. (b). L
2=bc as a function of a.

Figure 4. (a). �i(a)

�0
; i = 1; 2; 3 as functions of a. The solid curve represents �2(a)

�0
, the dashed

one �1(a)

�0
, and the dotted one �3(a)

�0
. �1(1) = 0 and lima!1� �2(a) = +1. (b). j �i(a)

�0
j; i = 1; 2; 3

as functions of a. �1 and �2 are comparable in magnitudes in the range of a < 0 while �3 is

slightly larger than both.

Figure 5. The bifurcation diagram of the homogeneous equilibria with the Maier-Saupe po-

tential. The solid curves denote the stable equilibria and the dotted ones the unstable ones.

The critical concentration where the two nematic phases are �rst born is Nb � 4:49 and the

second critical concentration is Nc = 5 beyond which the isotropic phase loses stability.

Figure 6. The elastic moduli Ki for rodlike liquid crystals (prolate spheroidal LCs, a > 0),

with K 0
i =

8
�kTs2N

Ki; i = 1; 2; 3; as functions of the dimensionless concentration N along the

highly aligned, stable, prolate equilibrium ((a) and (b)) and along the unstable less aligned

nematic equilibrium ((c) and (d)), respectively. The solid curve denotes K1, the thin dotted

one K2 and the thick dotted one K3. The parameter values used are a = 0:8; l = 1; c =

0:15; b = cr. We remark that the magnitudes of l and c do not alter the order of the elastic

moduli.

Figure 7. The elastic moduliKi for discotic liquic crystals (oblate spheroidal LCs, a < 0), with

K 0
i =

8
�kTs2N

Ki; i = 1; 2; 3; as functions of the dimensionless concentration N along the highly

aligned, stable, prolate equilibrium ((a) and (b)) and along the unstable less aligned nematic

equilibrium ((c) and (d)), respectively. The solid curve denotes K1, the thin dotted one K2

and the thick dotted one K3. The parameter values used are a = �0:8; l = 1; c = 0:45; b = cr.

We remark that the magnitudes of l and c do not alter the order of the elastic moduli.
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