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Abstract

The Doi kinetic theory for 
ows of homogeneous, rodlike liquid crystalline poly-

mers (LCPs) is extended to model 
ows of nonhomogeneous, rodlike LCPs through a

nonlocal (long-range) intermolecular potential. The new theory features (i) a nonlo-

cal, anisotropic, e�ective intermolecular potential in an integral form that is consistent

with the chemical potential, (ii) short-range elasticity as well as long-range isotropic

and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlo-

cal molecular interaction, and (iv) an extra elastic body force exlusively associated with

the integral form intermolecular potential. With the e�ective intermolecular potential,

the theory is proven to be well-posed in that it warrants a positive entropy production

and thereby the second law of thermodynamics. Approximate theories are obtained by

gradient expansions of the number density function in the free energy density.

1 Introduction

Doi developed his well-known kinetic theory for spatially homogeneous 
ows of rodlike

liquid crystalline polymers, in which the excluded volume e�ect is accounted for using either
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the Onsager or Maier-Saupe potential [5]. Later, Doi et al. extended the theory to model


ows of nonhomogeneous LCPs by introducing a long-range intermolecular potential, called

the hard-rod potential, through a mean �eld calculation [6]. With the extended Doi theory,

Shimada et al. [10] analyzed the spinodal decomposition kinetics. Marrucci and Greco [8]

further improved the extended Doi theory by incorporating the molecular anisotropy and

the range of interaction into the theory and approximated the nonlocal potential using a

truncated Taylor series expansion of the probability density function (PDF) to obtain an

approximate potential depending on gradients of the second moments of the PDF. In the

Marrucci-Greco intermolecular potential, both long-range isotropic and anisotropic elastic-

ity are accounted for. Using the approximate theory, Marrucci and Greco [8] derived the

explicit formula for the three distinct Frank elastic constants (elastic moduli) K1; K2; K3

and identi�ed their relative numerical order. Later, Bhave analyzed the spinodal decom-

position kinetics of the approximate Marrucci-Greco theory and compared them with the

results obtained from the extended Doi theory [2]. However, the impact of the intermolecular

potentials with gradients of the PDF function was not fully accounted for in the stress ex-

pression in subsequent use of the theories until Feng et al. [7] showed that the stress should

be augmented by additional elastic stress terms for the one-constant approximation of the

Marrucci-Greco potential recently, which accounts for only the long range isotropic elasticity

in the theory. Recently, Wang [11], extended the theories to model 
ows of spheroidal LCP

molecules with rodlike and disklike LCPs as two extreme limits, in which an e�ective inter-

molecular potential resulted from a gradient expansion of a nonlocal intermolecular potential

is derived and used in the Smoluchowski equation to ensure the second law of thermodynam-

ics, an important thermodynamical property that the Marrucci-Greco theory does not share.

Furthermore, he derived a closed-form expression for the stress tensor extending the work

of Feng et al.'s to include the long-range anisotropic elasticity given in the intermolecular

potential. None of the theories mentioned above addresses the e�ect of the truely nonlocal

intermolecular interaction on the elastic stress and the well-posedness of the hydrodynamic

theory though.

The approximate theories based on the Taylor expansion of the PDF are easier to han-

dle theoretically, especially, for deriving the constitutive equation in di�erential forms for

the orientation tensor since their intermolecular potentials only contain local gradients of
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the PDF. However, it has no advantages for Brownian dynamical simulation on the Smolu-

chowski equation or its equivalent stochastic equations for the dynamical variables because

an ensemble-averaged stress expression would have to be evaluated were the coupled hy-

drodynamic equations solved. Moreover, they are long-wave approximations to the kinetic

theories of nonlocal intermolecular potentials after all. In fact, most are truncated at the

quadratic order.

The purpose of this note is to provide a general framework for the systematic development

of the Smoluchowski equation with a nonlocal intermolecular potential and the derivation of

the stress expression, which gives the critical coupling between the macroscopic momentum

transport and the microscopic molecular orientation, and to explore the well-posedness of

the hydrodynamic theory in terms of energy dissipation. The development begins with

generalizing the free energy given in the Doi kinetic theory for homogeneous LCPs to account

for nonlocal interactions and the LCP molecular anisotropy following Marrucci and Greco

[8]'s approach but in a more general formalism. We adopt a number density function (NDF)

in place of the PDF for the potentially spatial variation of the orientational distribution of

the LCP molecules in the presence of translational di�usion. We then identify an e�ective

intermolecular potential in accordance with the variational principle in the de�nition of the

chemical potential. The chemical potential comprised of the e�ective intermolecular potential

is then used to yield the Smoluchowski or kinetic equation. With the kinetic equation, we

set out to derive the elastic stress in closed-form. Due to the nonlocality in the chemical

potential, however, an extra elastic body force in addition to the elastic stress emerges, which

would vanish otherwise. We then show that the theory developed warrants a positive entropy

production thereby the second law of thermodynamics. Finally, we outline the procedure

for the derivation of an approximate theory via gradient expansions of the NDF and refer

readers to [11] for details.

2 Intermolecular Potential

We model the molecules of the liquid crystalline polymer (LCP) as rigid rods (cylinders

of uniform circular cross-sections whose height is considerably larger than its cross-sectional

diameter) of equal size. Let 
 be a material volume in which the solution of LCPs resides
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and f(m;x; t) the number density function (NDF) of liquid crystalline polymers parallel to

direction m at material point x and time t. For the LCP system, we extend the free energy

in the doi kinetic theory [5] to include a nonlocal intermolecular potential as follows:

A[f ] = kT

Z



Z
kmk=1

[f(m;x; t)lnf(m;x; t)� f(m;x; t) +
1

2
U(m;x; t)f(m;x; t)]dmdx; (1)

where k is the Boltzmann constant and T the absolute temperature; the intermolecular

potential U(x;m; t) is de�ned by

U(m;x; t) =
Z
km0k=1

Z



Z


B(m;m0;x0 � x)H(m0;x00 � x0)f(m0;x00; t)dx00dx0dm0: (2)

Here

B(m;m0;x) =

8><
>:

N

vol(B(0;R))
km�m0k; x 2 B(0; R);

0; otherwise;

(3)

de�nes the range of intermolecular interaction and the size of the excluded volume. It is

symmetric with respect to m and m0. (Here we choose the range of the interaction as a

spherical ball B(0; R) 2 R3, a more general domain can be chosen in other applications.) N

measures the strength of the intermolecular potential.

H(m;x) =

8><
>:

1
vol(S(0))

x 2 S(0);

0 Otherwise,

(4)

is the normalized characteristic function for the domain occupied by the LCP molecule,

called the shape function, S(0) is the domain occupied by the molecule with its center of

mass at the origin, and vol(S(0)) is the volume of the domain occupied by the molecule. This

intermolecular potential is quite general in that it can be used to account for a variety of

molecular geometries of revolutionary con�gurations by specifying the shape function H and

the excluded volume formula in B. For non-cylindrical shapes, the excluded volume formula

would have to be modi�ed accordingly. The intermolecular potential used by Marrucci and

Greco [8] and Wang [11] are two special cases. Since we are interested in the rodlike LCP

here, H is chosen as a normalized characteristic function of a cylinder, representing the

rodlike molecular con�guration. We remark that both B(m;m0;x) and H(m;x) can be

chosen to be a smooth function with compact support to facilitate numerical computations
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and mathematical analyses if it is necessary. By de�nition, the number density of the LCP

at material point x is given by

Z
kmk=1

f(m;x; t)dm: (5)

The intermolecular potential is essentially an averaged excluded volume with respect to

the NDF over the domain occupied by the single LCP molecule and the range of molecular

interaction whose size is to be determined by experiments. This choice of intermolecular

potential takes into account the anisotropy of each individual molecule (via H) as well as

the anisotropy in their ensemble at the material point x (via BH and f). It thus exerts an

anisotropic mean �eld of both isotropic and anisotropic elasticity to the LCP molecule, an

attribute of anisotropic microstructure materials like LCPs.

By de�nition, the chemical potential is the variation of the free energy with respect to

the NDF:

� =
ÆA

Æf
: (6)

A simple calculation aided by changing the order of integration leads to

� = kT [lnf +
1

2
(U + U2)]; (7)

where

U2(m;x; t) =
R
km0k=1

R

2 B(m0;m;x00 � x0)H(m;x0 � x)f(m0;x00; t)dx00dx0dm0: (8)

We identify the second part of the chemical potential

Ue =
1

2
(U + U2) (9)

as the e�ective intermolecular potential since the total bulk free energy is unchanged if the

intermolecular potential is replaced by the e�ective intermolecular potential and it is clearly

the variation of the free energy corresponding to the molecular interaction:

Ue =
Æ

Æf
[
1

2

Z



Z
kmk=1

U(m;x; t)f(m;x; t)dmdx]: (10)

The choice of the e�ective intermolecular potential is then required by the variational princi-

ple. Mathematically, this is equivalent to a symmetrization of the intermolecular potential.
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Although the e�ective intermolecular potential and U contribute equally to the free energy,

they are di�erent as functions of m and x in that the mean �elds corresponding to the two

potentials di�er slightly. Furthermore, the kernel function

Z



Z
km0k=1

1

2
[B(m;m0;x0 � x)H(m0;x00 � x0) +B(m0;m;x0 � x00)H(m;x� x0)]dm0dx0 (11)

in the free energy with the e�ective potential is independent of the pair of double (m;x) and

(m0;x00), namely, it is indi�erence to the choice of the test molecule and its location, making

the e�ective potential an ideal choice for the intermolecular potential. This latter property

is trivially satis�ed in the Doi kinetic theory by the way; it becomes a nontrivial issue in

the kinetic theories with nonlocal intermolecular potentials however. The use of the e�ective

intermolecular potential seems straightforward, but is was overlooked by many before. In

fact, it is crucial for the development of a well-posed hydrodynamic theory since it warrants

the positive entropy production and thereby the second law of the thermodynamics as we

will show next.

3 Smoluchowski Equation

Having decided upon the intermolecular potential, we next derive the Smoluchowski

(kinetic) equation for the NDF. We treat the LCP material system as incompressible and

adopt the e�ective intermolecular potential (7). Accounting for both the translational and

rotational di�usion as well as convection and following the derivation given in [5, 11], we

present the Smoluchowski equation for the LCP system as follows:

df

dt
= 1

kT
r � [(Djjmm+D?(I�mm)) � (r�)f ] + 1

kT
R � [Dr(m)fR�]�R � [m� _mf ];

_m = Km�K :mmm;

(12)

where Djj � 0 and D? � 0 are the translational di�usion coeÆcients parallel and normal to

the orientation of the LCP molecule, respectively, Dr(m) � 0 is the rotary di�usivity [5], r

is the gradient operator with respect to the spatial variable x, rm is the gradient operator

with respect to the rotational variablem, R =m�rm the rotational gradient operator [3],

K = rv is the velocity gradient tensor and d

dt
the material derivative @

@t
+ v � r.

This equation, also known as the kinetic equation, governs the time evolution of the

number density function f(m;x; t). Since � depends on f nonlocally, the kinetic equation is
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in fact an integral-di�erential equation. With the time evolutionary equation for the NDF,

we next derive an expression for the stress tensor from a virtual work principle to couple the

orientational dynamics of LCPs to the momentum transport process.

4 Constitutive Equation for the Stress Tensor

In the LCP system, the extra stress is given by two parts, the viscous stress �s and the

elastic stress �e:

� = �s + �e; (13)

For solutions of LCPs, the viscous stress comes from two sources, one from the solvent and

the other from the solvent-LCP interaction derived in [5]

�s = 2�sD+ 2kT�D : hmmmmi; (14)

where D = 1
2
(rv +rvT ) is the strain rate tensor, �s is the solvent viscosity, � is a friction

coeÆcient, both of which are positive, and

h(�)i =
Z
kmk=1

(�)f(m;x; t)dm (15)

is an ensemble average with respect to the NDF f(m;x; t).

The elastic stress is derived through a generalized virtual work principle [5, 7]. Con-

sider an in�nitesimal displacement given by Æu = vÆt, corresponding to a deformation rate

Æ� = KÆt. The variation of the free energy over the control volume 
 in response to the

in�nitesimal deformation and displacement can be identi�ed through the work done by the

elastic body force along the displacement and the elastic stress with respect to the deforma-

tion rate. It then follows that

ÆA =
Z


(Æ� : �e � Æu � Fe)dx; (16)

where Fe is the body force induced by the long range (i.e., nonlocal) molecular interaction

given by

= �kT
4
hh
R

2 f(m;x; t)r[ 1

f
(B(m;m0;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))]dx0dx00ii:

(17)
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The elastic stress is identi�ed as

�e = �hm�R�mi: (18)

The details of the derivation are given in the Appendix.

From (??) and the derivation presented in the Appendix, we conclude that the extra

elastic body force is the direct consequence of the nonlocality in the e�ective intermolecular

potential. (??) shows explicit dependence on the spatial inhomogeneity of the NDF as well as

the spatial variation of the interaction intensity quanti�ed by BH. We note that the speci�c

expression of the extra elastic body force depends strongly on the form of the nonlocal

intermolecular potential.

The elastic stress yields a torque to the macroscopic motion given by the ensemble-

averaged molecular torque:

��ij�ijk = hR�ik; (19)

where �ijk is the permutation symbol [3]. An additional torque comes from the extra elastic

body force. The total torque on the control volume is then given by

Z


(��ij�ijk + xiFej�ijk)dx =

Z


(
Z
kmk=1

(R�)kf(m;x; t)dm+ xiFej�ijk)dx: (20)

The Smoluchowski equation, the constitutive equation of stress and the extra body force

along with the continuity equation and balance of linear momentum constitute the governing

system of equations for the solution of rodlike LCPs.

Continuity equation

_� = 0: (21)

where � is the mass density of the LCP solution.

Balance of linear momentum

� _v = r � (�pI + �) + Fe + �g; (22)

where p is the static pressure and g is the external force per unit mass.

Given the hydrodynamic theory, we next examine the time evolution of the total energy

in the system.
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5 Entropy production and energy dissipation

Let S be the entropy of the LCP system in 
. When the external force is neglected, the

entropy production of an isothermal system can be calculated as [4]

T _S = � d

dt
[
R

 (

1
2
�v � v)dx+ A[f ]] = �

R

 �

dv

dt
� vdx

�kT
R



R
kmk=1

d

dt
[f(m;x; t)lnf(m;x; t)� f(m;x; t) + 1

2
Ue(m;x; t)f(m;x; t)]dmdx

= �
R

 (r � (�pI+ �s + �e) + Fe) � vdx

�kT
R



R
kmk=1

d
dt
[f(m;x; t)lnf(m;x; t)� f(m;x; t) + 1

2
Ue(m;x; t)f(m;x; t)]dmdx

=
R

 ((�pI+ �s + �e) : rv � Fe � v)dx

�kT
R



R
kmk=1

d

dt
[f(m;x; t)lnf(m;x; t)� f(m;x; t) + 1

2
Ue(m;x; t)f(m;x; t)]dmdx

=
R

 �s : rvdx�

R



R
kmk=1 �

d�

dt
f(m;x; t)dmdx =

R

 [2�sD : D+ 2kT�h(mm : D)2i]dx+

1
kT

R

 hr(�) � (Djjmm+D?(I�mm)) � r�+R� �DrR�idx;

(23)

where

d�

dt
=

1

kT
r � ((Djjmm+D?(I�mm)) � (r�)f) +

1

kT
R � (Dr(m)fR�): (24)

This is nonnegative de�nite provided

�s � 0; � � 0;

Djjmm+D?(I�mm) � 0;

Dr(m) � 0:

(25)

Thus, the total energy is dissipative and the second law of thermodynamics is veri�ed under

the isothermal condition since (23) are all positive by assumption. We remark that the second

law of thermodynamics is warranted because of the choice of the e�ective intermolecular

potential. Were the original intermolecular potential U(m;x; t) used in the Smoluchowski

equation, the above inequality could not be established.
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6 Approximate theories based on gradient expansions

of NDF

An approximate, \localized" theory of anintermolecular potential in di�erential forms

can be obtained if we expand the NDF in Taylor series in the free energy density (1). An

approximate theory with a quadratic expansion has been derived for 
ows of nonhomoge-

neous LCPs of spheroidal con�gurations in [11], where an e�ective intermolecular potential

is devised at the level of second and fourth order moments of NDF. Higher order truncation

may also be attempted through straightforward, but laborious calculations if one would like

to pursue higher order of accuracy in the appximation to the integral form of intermolecular

potential.

As illustrated in [11], the derivation of the approximate theories should share the same

procedures as we outlined above, i.e., an e�ective intermolecular potential must be used in

the Smoluchowski equation to be consistence with the chemical potential and to warrant the

positive entropy production in the total energy. Moreover, special cares must be exercised

in the derivation of the elastic stress when appliying the generalized virtual work principle

[7]. In the approximate theories, the extra elastic body force reduces to a divergence of a

second order tensor so that it can be combined completely with the elastic stress given by

(??) to give the total elastic stress tensor. For details, please refer to [11].

7 Conclusion

We have outlined a systematic extension of the Doi kinetic theory to a kinetic theory of

nonlocal intermolecular potential of an integral form for solutions of nonhomogeneous, rod-

like liquid crystalline polymers, in which both short-range elasticity and long-range isotropic

as well as anisotropic elasticity are included. In this development, we have identi�ed the

need for an e�ective intermolecular potential to be consistent with the chemical potential

and to ensure the second law of thermodynamics. In the presence of the nonlocal intermolec-

ular potential of the integral form, we discover an extra elastic body force which exerts an

additional elastic body torque at each material point besides the ensemble-averaged molec-

ular torque. The existence of the extra elastic body force is due to the nonlocality in the

intermolecular potential involving the �nite range of molecular interaction and the spatial
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variation of the NDF.

This theory generalizes all existing kinetic-based hydrodynamic theories for solutions of

LCPs and has the potential to accommodate an extended class of molecular con�gurations,

for example, the LCP molecules of revolutionary symmetry, although we present it here

only for rodlike LCPs. It provides the critical coupling between the macroscopic momentum

transport and the mesoscopic material structure through the closed-form stress and extra

elastic body force formula. The positive entropy production clearly establishes the dissi-

pative nature of the theory under the isothermal condition. It is therefore proven to be a

hydrodynamically well-posed theory for studying 
ow behavior of nonhomogeneous rodlike

LCPs. The stress and the extra elastic body force formula will also be useful if the hydrody-

namic simulation is carried out with the equivalent stochastic di�erential equations instead

of the Smoluchowski equation.

Approximate theories can be obtained by gradient expansions of the NDF in the free

energy density. The resultant has a chemical potential that depends on derivatives of the

�rst a few moments of the NDF. A symmetrized e�ective intermolcular potential must be

devised in consistent with the chemical potential to ensure the second law of thermodynam-

ics. Di�erent from the nonlocal theory though, it yields a stress expression whose divergence

provides all the elastic forces.
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We derive the induced elastic stress and the extra elastic body force using the virtual

work principle [5], which is also equivalent to the least action principle [1]. We begin with

an in�nitesimal deformation given by � = KÆt. The corresponding variation of the pdf f is

given by the change of f along the material point path given by [5]

Æf =
df

dt
Æt = �R � (m�Kmf)Æt: (26)

The virtual work principle states that the change of the free energy is equal to the virtual

work done by the elastic stress � with respect to the in�nitesimal deformation and the extra

elastic body force Fe along the in�nitesimal displacement Æu = vÆt:

ÆA =
Z


[�e : K � Fe � v]dxÆt: (27)

Here,

ÆA = kT
R



R
kmk=1 Æ[flnf � f + 1

2
(Ue)f ]dmdx

= kT
R



R
kmk=1 [[flnf + Ue]Æf + (1

2
Æ(Ue)f �

1
2
(Ue)Æf)]dmdx

= kT
R



R
kmk=1 [[flnf + Ue]

df

dt
Æt + (1

2
Æ(Ue)f �

1
2
(Ue)

df

dt
Æt)]dmdx

= kT
R



R
kmk=1 [�

df

dt
Æt+ (1

2
ÆUef �

1
2
Ue

df

dt
Æt)]dmdx;

(28)

where the incompressibility condition is used in moving the derivative into the integral. The

�rst term on the right hand side can be rewritten as

Z



Z
kmk=1

�Æfdmdx (29)

=
Z



Z
kmk=1

�(�R � (m�Kmf))dmdxÆt

=
Z



Z
kmk=1

R�(m�Km)fdmdxÆt

= �

Z



Z
kmk=1

(m�R�)m : KfdmdxÆt:

The elastic stress can then be identi�ed as

�e = �hm�R�mi: (30)
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The second part of the right hand side reads:

kT
R



R
kmk=1 (

1
2
ÆUef �

1
2
Ue

df

dt
Æt)dmdx = kT

R



R
kmk=1 (

1
2
dUe

dt
f � 1

2
Ue

df

dt
)dmdxÆt =

kT

4
[
R

3 dx

R
kmk=1 dmf(m;x; t)

R
km0k=1 dm

0 d
dt
[(B(m;m0;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))f(m0;x00; t)]dx00dx0 �
R



R
kmk=1 Ue

df

dt
dmdx]Æt

= kT

4
[
R

3 dx

R
kmk=1 dmf(m;x; t)

R
km0k=1 dm

0(v(x; t) � rx(B(m;m0;x0 � x)

H(m0;x00 � x0) +B(m0;m;x0 � x00)H(m;x� x0))f(m0;x00; t)dx00dx0+

(B(m;m0;x0 � x)H(m0;x00 � x0) +B(m0;m;x0 � x00)H(m;x� x0))) @
@t
f(m0;x00; t))�

R



R
kmk=1 Ue

df

dt
dmdx]Æt

= I + II;

(31)

where

I = kT

4

R

3

R
kmk=1

R
km0k=1 v(x; t) � r(B(m;m0;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))f(m;x; t)f(m0;x00; t)dx00dx0dm0dmdxÆt

= kT

4

R

 v(x; t) � hh

R

2 r(B(m;m0;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))dx00dx0iidxÆt

(32)

and

II = kT

4
[
R

3 dx

R
kmk=1 dmdx0dx00dx

R
km0k=1 dm

0f(m;x; t)(B(m;m0;x0 � x)

H(m0;x0 � x) +B(m0;m;x0 � x00)H(m;x� x0))

( d

dt
f(m0;x00; t)� v(x00; t) � rx

00f(m0;x00; t))Æt�
R



R
kmk=1 Ue

df

dt
dmdx]Æt:

(33)

Exchanging the order of integration, we notice that the �rst and the third term cancel each

other. In the end, we have

II = �kT

4

R

3

R
kmk=1

R
km0k=1 v(x; t) � rf(m;x; t)(B(m0;m;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))f(m0;x00; t)f(m;x; t)dx00dx0dm0dmdxÆt =

�kT

4

R

 v(x; t) � hh

R

2 r(lnf(m;x; t))(B(m0;m;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))dx00dx0iidxÆt:

(34)
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Combining I and II, we identify the extra elastic body force as

Fe = �kT

4
[hh
R

2 r(B(m;m0;x0 � x)H(m0;x00 � x0) +B(m0;m;x0 � x00)H(m;x� x0))dx0dx00ii

�hh
R

2 r(ln f)(B(m;m0;x0 � x)H(m0;x00 � x0) +B(m0;m;x0 � x00)H(m;x� x0))dx0dx00ii]

= �kT

4
hh
R

2 f(m;x; t)r[ 1

f
(B(m;m0;x0 � x)H(m0;x00 � x0)+

B(m0;m;x0 � x00)H(m;x� x0))]dx0dx00ii:

(35)

In the derivation, we notice that the existence of the extra elastic body force is related

to the kernel functions BH, which are the sources of the nonlocal (long-range) molecular

interaction.
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