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Abstract

This paper addresses the anomaly correlations of the 500 hPa geopotential heights

from a suite of global multimodels and from a model-weighted ensemble mean called the

superensemble. This procedure follows a number of current studies on weather and

seasonal climate forecasting that are being pursued. This study includes a slightly

different procedure from that used in our experimental forecasts for other variables. Here

we construct a superensemble for the ∇2 of the geopotential based on the daily forecasts

of the geopotential fields at the 500 hPa level. The geopotential of the superensemble is

recovered from solution of the Poisson equation. This procedure appears to improve the

skill for those scales where the variance of the geopotential is large and contributes to a

marked improvement in the skill of the anomaly correlation. We note especially large

improvements over the Southern Hemisphere. Consistent day-6 forecast skill above 0.80

is achieved on a day-to-day basis. The superensemble skills are higher than those of the

best model and the ensemble mean. For days 1 through 6, the percent improvement in

anomaly correlations of the superensemble over the best model are 0.3, 0.8, 2.3, 4.8, 8.6

and 14.6% respectively for the Northern Hemisphere. The corresponding numbers for

the Southern Hemisphere are 1.1, 1.7, 2.7, 4.5, 7.1 and 12.2% respectively. At forecast

day-5 and day-6, the superensemble realizes major improvement of anomaly correlation

skills. The collective regional strengths of the member models, which reflected in the

proposed superensemble, provide a useful consensus product that may be useful for

future operational guidance.
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1. Introduction

In several operational numerical weather prediction centers, the anomaly

correlation of 500 hPa forecasts has always been used as a measure of the models’ overall

performance. Professor Fred Sanders from MIT was a frequent lecturer at FSU in recent

years. One of his favorite comments was that the 500 hPa anomaly correlation (a

measure of skill of 500 hPa geopotential height forecasts) was not weather. He always

wondered why so much was said on that skill parameter while assessing the relative

performance of models when in fact what mattered was the rain and the severe weather.

The counter argument, he usually received, was that if the troughs and ridges were not

correctly placed, the likelihood of a good weather forecast were slim. For what it may

have been worth, an anomaly correlation index has been used uniformly over several

decades by the weather services of the world to assess the performance of their models.

The motivation for this paper emerged from our recent examination of anomaly

correlations of 500 hPa heights in the context of a multimodel superensemble following

several of our recent studies, Krishnamurti et al. (1999, 2000a, 2000b, and 2001). The

multimodel superensemble is best explained from the schematics of Fig. 1. The word

“superensemble” was used by the first author of this paper in a series of publications,

only to stress the fact that this ensemble does carry the highest skill compared to

participating member models of the ensemble and also carry skills above those of the bias

removed ensemble mean representations. Here the multimodel forecasts are divided into

two categories: i) past medium range forecasts and ii) current real-time medium range

forecasts. The past covers roughly 100 recent past forecasts made by the multimodels.

Given a benchmark analysis for this entire period, it is possible to obtain a model-

weighted bias of forecasts of the multimodels at each geographical location. That is done
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following Krishnamurti et al. (2000a), using a multiple regression of the model forecasts

(applied on individual ensemble members) against a benchmark analysis. In this study,

ECMWF analysis was selected as the benchmark. This superensemble, based on

selective weights assigned to the member models, can be viewed in a probabilistic sense

providing information from a number of models, Stefanova and Krishnamurti (2002). A

list of acronyms is provided in Table 1.

An anomaly correlation of 0.6 is generally regarded as an indication of a useful

forecast. This threshold value came from experience of watching the forecast charts. A

forecast with a skill greater than 0.6 generally implies that troughs and ridges at 500 hPa

are beginning to be properly placed in that forecast.

Reviewing the anomaly correlations of US operational forecasts, Kalnay (1991)

reported the summaries for the decade of the 1980’s. During this decade, the anomaly

correlations for five-day forecasts increased from values such as 0.6 to approximately

0.75 over the Northern Hemisphere and from approximately 0.4 to 0.625 over the

Southern Hemisphere, as seen in Fig. 2a. Here, only the first twelve zonal wave numbers

were included in her analysis. If we take the first twelve wave numbers (from forecasts

and the analysis), the current skill during November 2000 for the best model and the

proposed superensemble are approximately 0.85 and 0.90. This implies that major

improvements for the five-day forecasts are continually being experienced. This progress

of the forecast quality was attributed to factors such as the improved computing power,

improved models, data coverage and assimilation methodologies.

Fig. 2b shows the 500 hPa anomaly correlation skill over the European region for

October through December 1981 carried out with the ECMWF model (Nieminen, 1983).

What is most encouraging here is the steady maintenance of very high skill at day 3
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forecasts where the anomaly correlations are around 0.9 for almost the entire three-month

period. That speaks for the high quality of modeling and data assimilation of the

ECMWF system. Variability in skill from one day to the next increases with skills at day

5 of forecasts ranging from 0.4 to 0.9 and for day 7 of forecasts ranging from –0.4 to 0.7.

This is nearly the current state of these forecasts at 500 hPa from the current best models.

Kalnay (1998) also reported on the anomaly correlation at the 500 hPa level,

covering a more extensive period of nearly 43 years of forecasts. Here, the forecasts were

based on the NCEP reanalysis data sets, described by Kalnay et al. (1996), and the 1998

version of the NCEP forecast model runs at the resolution T62 for day five forecasts.

Results for the Southern and Northern Hemispheres (20˚ latitude to 80˚ latitude) are

presented in Fig. 2c. This shows a slow increase of skill over the Northern Hemisphere

with skills reaching around 0.7 and around 0.6 for the Southern Hemisphere. Dashed

lines indicate the recent operational scores (also averaged over yearly periods). They are

based on higher resolution operational models and reveal slightly higher skills.

Brown (1987) has provided a review of the rapid progress in the improvements of

global numerical weather prediction during the 1980s. The anomaly correlation at the

500 hPa was one of the measures historically monitored by the weather services during

that decade. Fig. 2d from the review of Brown shows rapid increase of 500 hPa skill of

the European Centre’s forecasts. Here the length of forecast period (along the ordinate)

for which the forecasts with anomaly correlation greater than 0.6 are reached during

different years (along the abscissa) are shown. As the analysis and forecasting system

has been improved, the useful length of the prediction has increased from 5.5 days in

1980 to 6.5 days in 1985, which is reflected in the 12-month average of the forecast

length where the anomaly correlation of the 500-hPa geopotential height over the
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Northern Hemisphere drops to a value of 0.6. The monthly mean values indicated that

the longer forecast skills are realized in the colder months.

Anomaly correlations of 500 hPa geopotential heights from ensemble forecasts at

various operational centers also have shown major improvements of skill in recent years.

The ECMWF forecasts now show that three-day skills can be close to 0.9. This implies

that on day three these forecasts are placing the troughs, ridges and contours right on top

of the observed fields. This is an extraordinary accomplishment when we compare results

obtained in the 1970’s and 1980’s from single models. Recent skills of NCEP/EPS and

several other models also show similar major improvements in recent years. It is

interesting to note that although there are major differences in the horizontal resolution of

these models, somewhat comparable anomaly correlations are being achieved by these

groups simply from overall model improvements.

2. Superensemble Methodology

A main tool of this study is a multimodel superensemble that was recently

developed at Florida State University, Krishnamurti et al. 1999, 2000 a, 2000 b, and

2001). The superensemble is developed using forecasts from a variety of weather and

climate models. Along with an observed (analysis) field, past forecasts are used to derive

statistics on the past behavior of these models. These statistics, combined with

multimodel forecasts, enable us to construct a superensemble forecast.

Given a set of past multimodel forecasts, we used a multiple regression technique

(for the multimodels), in which the model forecasts were regressed against an observed

(analysis) field. We then used least-squares minimization of the difference between the

anomalies of the model and the analysis fields in order to determine the weights. We

carried out this minimization at all vertical levels, at all geographic locations (the grid
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points of the multimodels), and for all model variables. In all, some six million statistical

coefficients describe the past behavior.

The motivation for this approach came from the construction of a multimodel

superensemble from a low-order spectral model (Lorenz 1963). In this low-order model,

it was shown possible to introduce various (proxy) versions of cumulus parameterization

(or model physics) by simply altering forcing terms (Krishnamurti et al. 1999). Time

integration of this multimodel system showed that the multiple regression coefficients of

these multimodels (regressed against a nature run) carry a marked time invariance. This

time invariance was a key element for the success of the proposed method.

We have used many models at diverse horizontal and vertical resolutions. Model

output was interpolated to a common grid of the lowest resolution multimodel (about

125 km). These global models include several different parameterizations of physical

processes; effects of ocean, snow, and ice cover; and treatment of orography. The

observed (or the analysis) fields are used only during the control period to determine the

weights and the verification of forecasts in the forecast phase of the superensemble. The

training period for global weather comprises about 120 forecast experiments for each of

the multimodels.

The construction of the superensemble is a post-processing of multimodel

forecasts. At least 7 or 8 multimodel forecasts are needed to produce very effective

superensemble forecasts. We are preparing this forecast product experimentally in real

time at the Florida State University using eleven member models. Thus it is a useful

product for people to see and is currently available on a website1 on real-time basis.

We have assessed the quality of superensemble weather and seasonal climate

1 http://lexxy.met.fsu.edu/rtnwp
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forecasts using standard measures of skill such as root mean square (RMS) error,

correlation against observed fields, anomaly correlation, and the so-called Brier skill

score (assessing skills above those of climatology). By construction, the least squares

procedure for computing the superensemble weights minimizes the root mean square

error, but weights that optimize one measure of skill do not in general optimize other

measures of skill. Therefore, if some other measure of skill were important, it would be

desirable to select ensemble weights that optimize that particular measure of skill,

although that may not always be practical in practice.

3. Summary of past results

The following is a summary of computations based on our past publications

(Krishnamurti et al. 1999, 2000a, 2000b and 2001).

It is consistently noted in our past studies that the superensemble forecasts

generally have higher skill compared to all participating multimodels and the ensemble

mean. If N is the number of models, the ensemble mean assigns a weight of 1/N to all

the member models everywhere for all variables. As a result, assigning the same weight

of 1/N to poorer models degrades the skill of the ensemble mean. It is possible to remove

the bias of models individually at all locations and for all variables and to compute the

ensemble mean of the bias-removed models. That too has somewhat lower skill

compared to the superensemble, which carries selective weights distributed in space,

multimodels, and variables. A poorer model does not reach the levels of the best models

after its bias removal.

Training is a major component of this forecast initiative. We have compared

training with the best quality “observed” past data sets versus training deliberately with

poorer data sets. This has shown that forecasts are improved when higher quality training
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data sets are deployed for the evaluation of the multimodel bias statistics. It was felt that

the skill during “forecast phase” could be degraded if the training were executed with

either poorer analysis or poorer forecasts. That was noted in our recent work on

precipitation forecasts where we had shown that the use of poorer rainfall estimates

during the training period affected the superensemble forecasts during the “forecast

phase” (Krishnamurti et al. 2001).

In medium-range real-time global weather forecasts, the largest skill improvement

is seen for precipitation forecasts both regionally and globally. The overall skill of the

superensemble is 40% to 120% higher than the precipitation forecast skills of the best

global models. The RMS error and the equitable threat scores were the skill parameter

used in that study. The training data sets for precipitation came from the daily TSDIS

operational files of TRMM microwave radiometer based rainfall estimates. These were

augmented from the use of the US Air Force polar orbiting DMSP satellites that provided

SSM/I data from a number of current satellites (F11, F13, F14, and F15) in order to

extend the global coverage. An application of these precipitation forecasts included the

forecast guidance for some recent flood episodes.

In real-time global weather forecasts the superensemble exhibited major

improvements in skill for the divergent part of the wind and the temperature distributions.

Tropical latitudes show major improvements for the superensemble for daily weather

forecasts. For most variables, we have used the operational ECMWF analysis at 0.5°

latitude/ longitude for the training phase in these previous studies.

Real-time hurricane track and intensity forecasts is another major component of

superensemble modeling. This approach of carrying out a training phase followed by

real-time forecasts has shown improved forecasts for the tracks and intensity (up to 5
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days) for the Atlantic hurricanes. Improvements in track forecasts were 25% to 35%

better than those of the participating member models. The intensity forecasts for

hurricanes have been only marginally better than the best models. In some recent real-

time tests during 1999, marked skills in the forecasts of difficult storms such as Floyd and

Lennie were noted where the performance of the superensemble was considerably better

than that of the member models.

The area of seasonal climate simulations has only been addressed recently in the

context of atmospheric climate models where the sea surface temperatures and sea ice

were prescribed, such as the AMIP data sets. In this context, given a training period of

some 8 years and a training data base from the ECMWF the results exhibited improved

skill compared to the member models and the ensemble mean. Those were based on

seasonal and multiseasonal forecasts of monthly mean precipitation, temperatures, winds,

and sea level pressure distributions. Further extension of this work is currently being

pursued in the area of improved multimodel seasonal forecasts using coupled climate

models.

4. Computational Methodology

A main tool for this study is a multimodel superensemble that was recently

developed at Florida State University, Krishnamurti et al. (1999, 2000 a, 2000 b, and

2001). The proposed superensemble is defined by:

S =
__

O + ∑
−

N

ii

ai( F i –
__

F i) (1)

Where, S = superensemble prediction,
__

O = time mean of “observed” state, ai is the

weight for model i, where ‘i’ being the model index, N is the number of models,
__

F i is the
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time mean of prediction by model i, F i is the prediction by model i. Here the coefficient

ai is determined from the use of the least square minimization procedure. The weights

“ai” are computed at each grid point by minimizing the following function:

G = ∑
−

=

traint

0t

(St – Ot)
2 (2)

O = Observed state, t = time, t-train = Length of training period (100 days in present case

for NWP prediction)

The variance of the final geopotential field was obtained using two different

methods, i) the use of height field Z to construct the superensemble, and ii) the use of the

Z2∇ field to construct the superensemble - here instead of constructing a superensemble

of the geopotential height Z at the 500hPa level; we have first constructed the

superensemble of the 2∇ Z field. The reason behind that was to extract some extra skill

from the geopotential gradients and its laplacian. The geopotential is thereafter recovered

from a solution of the Poisson equation using the spectral transform.

( ) ( ) m
n

m
n

m

n YZnnZ 12 +−=∇ (3)

Where m is the zonal wave number, and n is the index of the Associate Legendre

Function (denotes the degree of its polynomial). As one proceeds to smaller and smaller

scales, n becomes larger and we note then ∇2Z is directly proportional to n2, where as Z

is inversely proportional to n2, thus this property would be reflected in the two

dimensional spectral distribution of ∇2Z and Z.

This method appears to improve the superensemble solution for the geopotential

compared to a direct construction of the superensemble of Z. We are furthermore able to
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assess the scales where this method appears to contribute to the improvement of

forecasts.

We have also carried out a comparison of the classical bias versus that of the

proposed superensemble for the forecasts. A simple way of finding the bias for the NWP

of a specific model is to take a daily string of NWP forecasts, obtain a monthly average

of these, and compare those with the analysis (or observed) mean for that month. This

procedure has been used by most weather services to assess whether the model has a

cold, warm, moist or dry bias, etc., e.g. Heckley (1985), Sumi and Kanamitsu (1984),

Kanamitsu (1985). This is the classical bias of a forecast. The proposed superensemble

does not do quite the same thing. The multiple regression based least square minimization

of errors is different from the simple bias correlation in the following manner.

The simple classical bias is given by:

CB (Classical Bias) = ( ) ( ){ } N/,Z,Z onFn φλ−φλ (4)

Here the nth day forecast bias for a total number of N days are considered. FnZ is the

average forecasted geopotential height value at 500 hPa for a period of N days while

OnZ is the averaged of the observed (analyzed) geopotential height for that period.

The Superensemble based bias, following equation 1, is given by:

( )FMiFii

QPNt

t
onsn ZZZZBiasbleSuperensemSB −=−= ∑∑

×=

=

a)(
11

(6)

Here SnZ is the average geopotential height obtained from superensemble forecasts for the

period of N days, ais are the coefficients (weights) for individual member models, FiZ is

the forecast from model ‘i’ and FMiZ is the simple forecast mean of geopotential height

from the ith member model. The summation is done both on spatial (P x Q grid points
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(lat/lon)) and temporal (days) scales for all member models. If the ai were all set equal to

1/N, then the classical bias and the superensemble based bias are very close to each other.

The weights take into account the local relative error characteristics of each model in the

formulation of the superensemble.

The anomaly correlation coefficient is computed for individual model forecasts

and the ensemble based on the method suggested by Brankovic et al. (1990). Anomaly

correlation for forecast variables is defined as the correlation between the predicted and

analyzed anomalies of the variables. Here anomalies are deviations from the mean

climatological values. The following expression is used for computing the anomaly

correlation of geopotential height at 500 hPa.

( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ] ( ) ( )[ ]∑ ∑

∑

−−−−−−

−−−−−−
=

2
CVCV

2

CFCF

CVCVCFCF

ZZZZZZZZ

ZZZZZZZZ
ACC (7)

Here suffix F denotes forecast, suffix C denotes climatology and suffix V stands for

verifying analysis. Over bar is the area mean and Z is the geopotential height at 500 hPa.

5. Data Sets:

The data sets used in this study are identical to those used in a recent study on

precipitation forecasts (Krishnamurti et al. 2001). The daily global analysis and forecasts

from the following prediction centers were used: NCEP (Washington), RPN (Canada),

NOGAPS (NRL, Monterey), BMRC (Australia), UKMET (Reading, UK) and JMA

(Japan). In addition to these, we used six daily forecasts from the FSU global spectral

model that utilizes different initial analyses. The differences in the initial analysis are

obtained through the physical initialization of observed rain rates (Krishnamurti et al.

1991) using different rain rate algorithms (Krishnamurti et al. 2001). All of these

forecasts commenced at 1200 UTC and in most cases six-day forecast data sets were
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available for extended periods. In addition to these, we had access to the initial

assimilated data sets from the European Center for Medium Range Weather Forecasting

for the extended periods. It should be noted that in this study we have used ECMWF data

sets in the following context: i) For the training phase and forecast verification we have

used the analyzed fields from ECMWF. ii) We have not used ECMWF forecast data sets

in the training phase and iii) We had access to the daily anomaly correlation of

geopotential height at 500 hPa of ECMWF forecasts from a web site provided by the

NCEP. These are included in our tabulations of anomaly correlation skills but those were

not a part of the superensemble.

The formal computation of anomaly correlation for most of these models was

possible on a daily basis. Table (2) provides an outline of all the models used in this

study. These models deploy different horizontal and vertical resolutions, topography,

physical parameterizations and modes of dynamic computations. The superensemble was

constructed at an interpolated horizontal resolution of T126 (Triangular truncation at 126

waves around the globe) at the 500 hPa surface for this study.

The Environmental Modeling Center of the U.S. National Weather Service

maintains daily records of the 500 hPa anomaly correlation. Some of these data sets for

the diverse models were extracted from their web site and used in this study. In the

computation of anomaly correlation, it should be noted that the anomaly correlation do

depend on the choice of the source of climatology and also the verifying analysis. In this

study, both ECMWF and the NCEP analyses were separately used for the training and

forecast validation and in the evaluation of anomaly correlation skills. The results from

the use of these different analyses for training were quite similar; hence those based on

the use of ECMWF only are shown here.
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Since we carry a daily inventory of rms errors of forecasts during the training

phase, it was possible to identify days where the forecasts skills were low. We arbitrarily

removed those dates where the rms errors of the training superensemble were greater than

120 meters for the 500 hPa geopotential heights. Using 100 days of ‘higher skill’ training

days, we noted that the skill of the superensemble was much improved. Fig. 3 shows the

results of computations of anomaly correlations with and without this optimization of the

training phase respectively. It is clear that some further improvement of the skill of the

superensemble is achievable from this procedure.

6. Results of Computations:

In this section we present some of our results on the multimodel forecasts

covering several months of forecasts. This is an ongoing effort, which is being carried

out in real time with the data sets from the models described in section 5. Unless stated

otherwise, most computations and results presented here are based on a training period

covering 20 March to 15 July 2000 and the forecasts covered the period from 16 July to

17 September 2000. This period includes some missing days where data were not

available.

6.1 Optimizing the number of training days

We had noted that the forecast skill degrades somewhat having either too few or

too many training days for the construction of the superensemble. Thus it was felt that a

certain optimal number of days could be determined in order to obtain the best statistics

for the training phase, this in turn could provide the highest forecast skill. In order to

determine that, we worked separately at each grid point and assessed the optimal number

of days that provided the highest skill for the superensemble. Fig. 4a shows the

distribution of the optimal number of days for the best anomaly correlations of
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geopotential height at the 500 hPa level for day 6 of forecasts over the North American

region. The forecasts here were carried out for the entire month of August 2000; the

optimal training days preceded that. It is interesting to note that a large-scale distribution

of the optimal number of days is present in this analysis. That number around North

America shows large-scale variation from oceans to mountains to the Great Plains. This

behavior reflects the possible effects of bias errors of the member models over these

different geographical regions. We have not addressed the issues of seasonality with

respect to the optimal number of training days; this may need to be addressed for

practical applications.

6.2 The distribution of weights�

The essence of the proposed superensemble lies with the distribution of multiple

regression weights for the member models. The training phase provides these weights.

These weights exhibit a distribution of positive and negative fractional values. Fig. 5 (a

and b) illustrates some of these distributions based on the training period covering the

months April to July for the year 2000. We have arbitrarily selected four of the member

models, whose weights for the Northern and Southern Hemisphere are displayed in Fig.

5a and 5b respectively. These weights display positive and negative fractional

distributions. The scales of centers of maxima and minima of these weights appear to be

smaller over the Northern Hemisphere compared to those of the Southern Hemisphere.

Some interesting features seen here are, for instance, the weights for model 1 over North

America show positive fractional weights over the Western U.S. and negative fractional

weights over the Eastern U.S. Over the South Pacific and Australia, the weights for

model 2 are predominantly positive whereas they are negative for model 3. Collectively,

positive or negative signs are contributed by the different models.
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If one were to contrast these with the ensemble mean, then all these distributions

would bear the same constant value 1/N (where N denotes the number of ensemble

models). This is the major difference between a superensemble and a member mean. The

past history of performance of the member models makes the superensemble superior in

skill that is reflected by the geographical distribution of the statistical weights. This

exercise of determining the weights is based on training of the ∇2 Z fields and not the

geopotential Z.

6.3 On the number of models

We noted that differences in the design on the models arise from the choice of

physics, resolution, air-sea interaction and the definition of orography. Thus the question

of the optimal minimum number of models is important in the construction of the

superensemble. If more than two of the models are included, the errors of the ensemble

mean start to increase, see Krishnamurti et al. (2000a). That growth of error arises from

assigning an equal weight of 1.0 to all models including the models with relatively lower

performance levels. However, the error of the superensemble decreases as these

additional models are included, since all models seem to have something to contribute

over different regions. The error growth rate starts to decrease as these models are

included, and beyond the inclusion of six top models, the error reduction almost stops.

The reduction of error from six models is substantial and much higher in comparison to

the ensemble mean. The reason for this behavior of the superensemble arises from its

selective use of fractional and negative weights for the member models of the

superensemble. Thus, we feel that improved 500 hPa anomaly correlations require
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minimally six models. These results are quite similar to what had already been noted

from the data sets of 1998, Krishnamurti et al. (2000a).

6.4 Predicted Maps on day 6 of forecasts

Figs. 6, 7 and 8 illustrate a typical 6-day forecast. In Fig. 6 (a, b, c and d) we

show a forecast over the northern hemisphere for day-6 of forecast from the

superensemble (panel b), the best model (panel c) and a model with the lowest anomaly

correlation skill (panel d). These are to be compared to the analysis valid on that date

(i.e., September 4, 2000, 1200 UTC). The anomaly correlation for these three respective

forecast categories were 0.75, 0.69 and 0.44. We can see a slight improvement in the

forecast features over the best model and a considerable improvement with respect to the

model with the lowest skill. A similar example of the day-6 forecast for the southern

hemisphere is shown in Fig. 7 (a, b, c and d). The skill of the superensemble was

generally quite high over the southern hemisphere. The respective anomaly correlations

for the superensemble, best and the lowest skill models for this day-6 forecast were 0.81,

0.71 and 0.32.

Given that roughly 10 – 15% improvement in anomaly correlation skill is possible

from the superensemble over the best model, does it convey any useful synoptic

information. Inspecting numerous 500 hPa forecasts from the best model and from the

superensemble, we find that there is generally some more information content in the

superensemble forecasts. The superensemble places the trough along 120˚W more

accurately, as compared to the best model, which moves it somewhat farther east in six

days. The ridge over North America west of Lake Michigan shows a short wave trough

(riding the ridge) that is captured by the superensemble; the best model fails to capture

that very short wave feature. In general, the model with the lowest skill has much lower
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heights over the entire United States. The trough along 120˚E in the analysis is placed too

far east near 140˚E by the best model and near 125˚E by the superensemble. In the

highest latitudes, north of 50˚N, the difference between the forecasts of the

superensemble and the best model does not appear to be large.

The above features are more clearly seen from the differences between the

forecasts and the analysis fields. Those fields for the northern and southern hemispheres

are shown in Fig. 8 (a, b, c, d and e). The preponderance of dark blue and dark brown

coloring shows the large forecast errors for the model with the lowest skill. That coloring

diminishes somewhat as we proceed to the best model and the least errors are seen for the

superensemble. This was an example that was selected randomly. There are several other

instances where the forecast skills on day-6 were strikingly larger for the superensemble

compared to the best model where these differences are even sharper than what are

shown in Fig.8.

6.5 Anomaly Correlations at 500 hPa

Fig. 9 (a, b and c) illustrates the anomaly correlation of the geopotential height at

500 hPa for the member models (blue) and for the superensemble (red) for a recent 20-

day period (this includes a 100 days of training and 20 days of forecast). These results

include those models that directly participated in providing daily data sets, apart from

those models whose anomaly correlations were available on the NCEP web site.

Although the member models exhibit considerable variation in their anomaly correlation

varying from 0.1 to 0.8 for these forecasts, we note more consistent results for the

superensemble. The ∇2Z - based superensemble does show higher skill on almost all

occasions for days 1, 2, 3, 4, 5 and 6 of forecasts. Panel ‘a’ shows the results over the

southern hemisphere, panels ‘b’ and ‘c’ show the results for the northern hemisphere and
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the whole globe respectively. Through day three of forecasts, the anomaly correlation

skill for superensemble is consistently higher than 0.9. This shows the major

improvement in the state of numerical weather prediction from some of the member

models and from the superensemble. Overall the results for the superensemble are quite

impressive. A noteworthy feature of these forecasts is the consistent higher skills over

the southern hemisphere that is well above those of the last two decades shown earlier.

Although we present a sample of results here, we have noted a major uniformity of these

results in our continued computation of this algorithm on a real time basis.

Table 3 (a, b, c and d) provides a summary of these results for the southern

hemisphere, northern hemisphere and the global belt. Here the entries for the anomaly

correlation skills covering a forecast period from August 20th to September 17th 2000 are

presented. Results for the member models, the ensemble mean and the superensemble

are included here. Results for days 1 through 6 of forecasts are provided in these tables.

The wintertime skills of the anomaly correlation are generally higher than those

for the summer season. The overall member model skills over the Southern Hemisphere

are quite high. Over the Northern Hemisphere during this period, the best model’s skill

at days 1 and 6 were 0.992 and 0.653 respectively. The corresponding numbers for the

superensemble were 0.995 and 0.748 for days 1 and 6 respectively. This shows roughly a

14 percent improvement on day 6 of forecasts. The corresponding figures for the

Southern Hemisphere are an improvement for days 1 and 6 from 0.979 and 0.715 (for the

best model) to 0.990 to 0.802 (for the superensemble, i.e. roughly a 13 percent

improvement on day 6). Also shown in this table are the entrees for the ensemble mean,

which lie roughly halfway in between the best model and the superensemble. Thus it

appears that a substantial improvement in skill is possible from the use of the proposed
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superensemble. The global results presented in Table 3 basically confirm these same

findings. The fall of skill from the best to the poor model on day 6 of forecasts for the

Northern Hemisphere can be seen ranging from 0.65 to 0.45 and for the Southern

Hemisphere from 0.71 to 0.53. We have noted a consistent high skill for the

superensemble around 0.75 to 0.8 for day 6 in our experimental runs.

Table 3d describes the global results for the case where two of the member

models exhibiting the highest anomaly correlation skills are entirely excluded. The

entries in this table are to be compared with the entries in Table 3c where these high-skill

member models are included. It appears as though the addition of the best models

contributes to roughly 1 to 2 percent improvement for the superensemble, the overall

improvement of the superensemble over the best (available) model is around 10 percent.

This improvement of superensemble is a result of the selective weighting of the available

models during the training phase.

6.6 Reduction of systematic errors

In Fig. 10, we show the systematic errors (predicted minus observed mean) for

day-6 of forecasts for entire month of August 2000. Here the results for a member model

with the least systematic error are compared with those of the superensemble for the

northern and southern hemisphere. In this illustration, the distribution of colors from

blue to red displays the negative to positive spread of systematic errors. A preponderance

of dark blue color over the southern hemisphere reflects large positive systematic errors

in excess of 40 meters for the best model. It can be clearly seen that the systematic error

of the model with the lowest skill is quite large (as seen by the coloring). Even the best

model has rather large systematic errors. The superensemble is not free of these errors;

however, the error is small compared to that of the member models. Over the northern
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hemisphere the preponderance of white, yellow and light brown colors for the

superensemble clearly reflect a large reduction of the systematic error. These same

features have been monitored on a real-time basis for the last two years. It is also clear

from these computations that the superensemble does not simply remove the classical

bias (i.e., forecast mean minus observed mean equal to zero). The proposed

superensemble, although not systematic error free, is able to reduce the forecast error

with obvious practical advantages but that kind of an artificial bias removal is not

possible in a truly predictive sense. The bias correction is an after-the-fact correction and

cannot be implemented for forecasts of any practical utility.

6.7 Percent improvement in rms errors from superensemble forecasts

Fig. 11 shows the percent improvements from the superensemble forecasts

compared to those of the ensemble mean over the best model. These are for 2 and 5-day

forecasts of the global geopotential heights at 500 hPa. These improvements are related

to the respective rms errors. It is clear that the improvements for the superensemble are

quite large at day 2 of the forecasts, approaching about 40 percent, whereas the

corresponding improvement for the ensemble mean is around 28 percent. At day 5, the

improvements appear significant and larger - here the corresponding numbers are 52 and

46 percent for the superensemble and the best model respectively. The mean rms errors

at 48 and 120 hours of forecast for several of the member models and for the ensemble

mean and superensemble are shown in Fig. 11b. These are results over the tropical belt

30o S to 30o N. The period covered for the results shown in Fig. 11 (a and b) includes 92

days starting from June 1 through August 31, 2000 (averaged). It is clear that the errors

of the superensemble are smaller than the other representations shown here.
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6.8 Improvements in the planetary and synoptic scales

When we examine the zonal harmonics of the geopotential at 500 hPa level (Fig.

12), we note that the superensemble (based on the use of ∇2Z) carries larger portion of

variance compared to the individual models (assessed in terms of their respective

anomaly correlation) for the first 7 zonal wave numbers. These are the scales where the

zonal harmonics of the 500 hPa geopotential carries the largest proportion of the total

variance. The predicted geopotential field for the worst model is quite flat by day-6 of

forecasts than its variance field, shown in Fig. 12, and appears that the long waves are

somewhat misrepresented. The best model exhibits some improvement for the zonal

percent variances while the superensemble, holding the highest anomaly correlation skill,

exhibits a robust structure for the planetary and synoptic scale waves.

These same features can be viewed using two-dimensional variances in the

triangular truncation space. In Fig. 13 we show these variances as a function of the east-

west and north-south wave numbers ‘m’ and ‘n’. Here again we note a very robust

structure for the variances centered around zonal wave numbers 2 to 5 and meridional

wave numbers 4 through 12. The variances for the best and the worst models are much

lower in comparison. When we first started on this exercise we felt that the construction

of the superensemble would enhance the structure of the smaller scales (wave numbers

greater than 10) since the ∇2Z field exhibits many smaller scales compared to the Z-field.

This exercise revealed that large geopotential gradients on the planetary and synoptic

scales were much improved from the construction of the superensemble of the ∇2Z field.

7. Future Outlook

The results on Anomaly Correlation at the 500 hPa level are a part of an ongoing

real-time Numerical Weather Prediction Exercise that is being pursued at Florida State
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University. The total problem includes eleven different models where all the variables at

12 vertical levels are being subjected to the construction of the superensemble. For these

weather models, some 107 statistical weights, which are being used, carry the past

behavior. The reason for this large volume of statistics has to do with the model’s

performance. Some models appear to handle local water bodies better; others have

greater skill over orographic regions while others seem to describe the oceanic

convection and rainfall better. The systematic errors, in detail, vary from one region to

another for these diverse models. Results for all of the variables, including daily

precipitation, Krishnamurti et al. (2001), show a rather similar behavior, i.e. the

superensemble generally exhibits a much higher skill compared to the ensemble mean

and the member models.

The emphasis on the 500 hPa geopotential is based on historical and practical

reasons. Noting that it is now possible to construct a superensemble of the geopotential

heights at 500 hPa with an accuracy of 0.95 to 0.80 between days 1 to 6 of forecasts,

implies that troughs and ridges are very nearly accurately placed close to their correct

locations for the medium range forecasts. Achieving these skills in a consistent manner

appears to be an accomplishment of current NWP systems combined with the

superensemble post-processing method. This may be one of the reasons why operational

forecasters should consider the implementation of this simple procedure of construction

of superensemble forecasts. The data sets provided by the superensemble contain the

weighted averages that are carried out independently at each grid point of the domain of

calculation for each day of forecast separately. The issue of dynamical consistency of

this data set has been raised following our first study, Krishnamurti et. al. (2000a), where

we have examined the quasi static and quasi geostrophic (over middle latitudes) of this
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data and noted that the balance is quite acceptable. It should be noted in this context that

the construction of superensemble is based on equation (1) where the regression

coefficients are based on anomalies with respect to a time mean and not from a direct use

of the full geopotential fields. It should also be noted that the individual models have

indeed improved considerably over the last three decades. Further improvement, no

doubt, will occur as the models improve their data assimilation, resolution, dynamical

representations and physical parameterizations. From what we have seen in our recent

work it would seem that further improvements of the superensemble forecast would also

follow.

An area of future work would be to explore the usefulness of Singular Value

Decomposition (SVD) method to address the removal of cases of possible ill conditioned

matrices in the current superensemble. The current multiple regression procedure in the

training phase involves the solution of matrices at each location and uses the Gauss-

Jordan method. We have essentially bypassed the difficulty at a few hundred of grid

points using the ensemble mean wherever ill conditioning was encountered. The SVD

method, as well as several other methods that invoke Empirical Orthogonal Functions

(EOFs), Z-transforms, Kalman Filter and cyclostationary EOFs can also be used to

remove the degeneracy. An example of anomaly correlation improvement from the SVD

method is shown in Table 4. These are the results for the same period as those presented

earlier in Table 3. We notice that an improvement of over 5% from the use of SVD over

the southern and northern hemispheres and the global belt. On day-6 of forecasts, an

increase of anomaly correlation from 0.799 to 0.845 can be seen over the global belt;

while it increased from 0.748 to 0.801 and 0.802 to 0.849 over the Northern and Southern

hemispheres respectively using the SVD method. We propose to incorporate these
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refinements in our future studies and hopefully would also be useful for operational

forecasts.

It is worth noting that the anomaly correlation skills over the Southern

Hemisphere are beginning to exceed those of the Northern Hemisphere. At first we

thought that this might have been peculiar for the period we had investigated, but it

appears that as the member models are improving, the Southern Hemisphere forecast

skills have indeed been going up in recent years.

Currently the multimodel data sets have only been available to us through day 6

of forecasts. It should be possible to obtain these data sets through day 10 of the

forecasts. It may also be possible to receive the data sets as ensemble forecasts for the

modeling groups. Given such data sets we expect further improvements in the forecasts

of the 500 hPa anomaly correlations. Having such a forecast on the operational suite of

products can provide a useful guidance for the weather especially over the tropics and

mid-latitudes.
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Figure Captions

Fig. 1 A schematic diagram that illustrates the division of the time line; prior to day

zero is the training phase that includes 120 experiments from the multimodels

whose daily results are regressed against an observed “analysis” benchmark. To

the right of the zero line is the future forecasts phase that make use of the statistics

from the training phase.

Fig 2 Historical progress on Anomaly Correlations of the 500hPa level.

Panel a) 5-day forecast 500 hPa height anomaly correlation (seasonally

averaged), including zonal wave numbers 0 to 12 for both Northern and Southern

Hemispheres. (Kalnay et al. 1991).

Panel b) Daily variation of the anomaly correlation of error of the 500 hPa height

for forecast days 1, 3, 5 and 7 from 1 October to 31 December 1981 in Europe.

(Nieminen 1983).

Panel c) Comparison of operational and reanalysis 5-day forecast anomaly

correlations for NH and SH. (Kalnay et al. 1998)

Panel d) ECMWF operational forecast skill since 1980 as represented by the

forecast day on which the 500 hPa geopotential height anomaly over the Northern

Hemisphere has dropped to 0.6. Heavy line is the 12-month average of the

monthly mean values. (Brown 1987).

Fig 3 Two graphs of anomaly correlation skill are being compared here; i) optimized

training, ii) non-optimized training. The ordinate denotes anomaly correlation

and the abscissa denotes forecast days. The dashed vertical line separates the

training and forecast phase of the superensemble.
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Fig 4 Distribution of optimal number of days for the training phase that provides the

highest anomaly correlations at the 500 hPa surface over the North American

Region for day-6 forecast.

Fig 5 Geopgraphical distribution of statistical weights for different member models.

(a) For Northern Hemisphere

(b) For Southern Hemisphere

Coloring interval of the fractional weights is shown at the bottom.

Fig 6 A typical example of forecast on day 6 over the Northern Hemisphere valid on

September 4, 2000.

Top left: Analysis Bottom left: the best model

Top right: Superensemble Bottom right: the model with the lowest skill

Contour interval 100 meters

Fig 7 Same as Fig 6 but for the Southern Hemisphere

Fig 8 Differences between forecast and analysis from figures 6 and 7

Top: For superensemble forecasts

Middle: For the forecast from the best model

Bottom: For the forecast from the model with the lowest skill

Units: meters, coloring interval in meters shown at the bottom

Fig 9 Anomaly correlation as a function of forecast days:

Blue lines show results for member models

Red lines show results for the superensemble

The different panels show forecasts for days 1 trough 6

Fig 10 Systematic errors: forecast minus analysis over 120 days over the 500 hPa level

Top left: Northern Hemisphere superensemble
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Bottom left: Northern Hemisphere best model

Top right: Southern Hemisphere superensemble

Bottom left: Southern Hemisphere best model

Units: meters; coloring interval in meters shown at the bottom

Fig 11a Percent reduction of mean rms errors at the 500hPa surface over the best model

by the superensemble and by the ensemble mean for July 2000 over the global

tropical belt 30S to 30N. Left panel shows results at 48 hours forecast, the right

panel shows the results at 120 hours.

Fig 11b Mean rms errors of the respective member models, the ensemble mean and the

Superensemble at hours 48 and 120 of forecasts over the tropical belt 30S to 30N

Fig 12 Meridionally averaged percent variance of the geopotential heights as a function

of zonal wave number.

Fig 13 Geopotential variance in the two-dimensional triangular truncation space. The

ordinate denotes a meridional wave number n and the abscissa denotes the zonal

wave number m. Top diagram shows results for the superensemble. The bottom

left diagram shows the variances for the best model and the bottom right

illustrates those for the model with the lowest skill.
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List of Tables:

Table 1: List of Acronyms

Table 2: Details of the multimodels used in this study

Table 3: a) 500 hPa geopotential height anomaly correlation values from the

Superensemble, Ensemble mean and the multimodels averaged for the period 20

August to 17 September, 2000 for Northern Hemisphere for forecasts from day 1

through day 6.

b) Same as Table 3a except for Southern Hemisphere

c) Same as Table 3a except for total Globe

d) Same as Table 3c except that two best models are excluded from the

superensemble suite.

Table 4: 500 hPa geopotential anomaly correlation averaged for the period from 20

August to 17 September, 2000 for Global, Northern Hemisphere and Southern

Hemisphere for forecasts from day 1 through day 6. Here the results from two

different methods, the conventional superensemble (SENS) and the SVD based

superensemble (SE_SVD) , are presented.
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Figure 5a
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Figure 5b
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Figure 6 (a,b,c and d)
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Figure 7 (a,b,c and d)
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Figure 10
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Table 1: List of Acronyms

Acronym Full Form

BMRC Bureau of Meteorology Research Center

DMSP Defense Meteorological Satellite Program

ECMWF European Centre for Medium-Range Weather Forecasts

EMC Environmental Modeling Center

EPS Ensemble Prediction System

FSU Florida State University

hPa hectopascals

JMA Japan Meteorological Agency

MIT Massachusetts Institute of Technology

NCEP National Centers for Environmental Prediction

NOGAPS Navy Operational Global Atmospheric Prediction System

NWP Numerical Weather Prediction

RMSE Root Mean Square Error

RPN Recherché en Prévision Numérique

SSM/I Special Sensor Microwave Imager

TRMM Tropical Rainfall Measuring Mission

TSDIS TRMM Science Data and Information System

UTC Coordinated Universal Time
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Table 2: Outline of Multimodels used in this study

Model Vertical Levels Horizontal Resolution

ECMWF 31 T213

UKMET 30 0.8333 Lon x 0.5555 Lat

BMRC 29 T239

JMA 40 T213

FSU 14 T126

NCEP 42 T170

NRL 24 T159

RPN 28 0.9 Lon x 0.9 Lat
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Table 3 (a, b)
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Table 3 (c, d)
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Table 4

500 hPa Geopotential Height Anomaly Correlation: 20 Aug-17 Sep 2000

Global NH SH

SENS SE_SVD SENS SE_SVD SENS SE_SVD

Day-1 0.992 0.994 0.995 0.996 0.990 0.993

Day-2 0.979 0.983 0.981 0.983 0.978 0.982

Day-3 0.958 0.960 0.956 0.959 0.956 0.961

Day-4 0.928 0.952 0.905 0.948 0.933 0.953

Day-5 0.881 0.911 0.843 0.869 0.889 0.921

Day-6 0.799 0.845 0.748 0.801 0.802 0.849


