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Abstract. We propose a variation of the notion of Segre class, by forcing a

naive `inclusion-exclusion' principle to hold. The resulting class is computation-

ally tractable, and is closely related to Chern-Schwartz-MacPherson classes. We

deduce several general properties of the new class from this relation, and obtain an

expression for the Milnor class of an arbitrary scheme in terms of this class.

1. Introduction

Notwithstanding their fundamental rôle in modern intersection theory (cf. [Ful84],
Chapters 4 and 6), Segre classes remain a somewhat esoteric concept: with a few
notable exceptions, they have been used more for foundational purposes than for

actual computations of concrete intersection products. This is due to the e�ective
inaccessibility of Segre classes: essentially no techniques are known to compute the
Segre class s(Z;M) of a scheme Z in a schemeM , other than its raw de�nition; which
is perhaps a little too close to the ideal of Z for comfort, in almost every geometrically

signi�cant problem. The main virtue of the Segre class|that is, its sensitivity to the
�ne structure of Z|turns out to be the main problem in handling it in concrete
situations.
In this article we propose an a variation (sÆ(Z;M), De�nition 2.2) of the notion

of Segre class of a subscheme Z in a nonsingular variety M , by imposing on it an
inclusion-exclusion principle, which makes sÆ(Z;M) well-behaved with respect to
naive set-theoretic operations. The class we de�ne does not work as a Segre class in
a de�nition of an intersection product, but shares with Segre classes several notable
properties: our sÆ(Z;M) agrees with s(Z;M) if Z is nonsingular; and behaves with

respect to di�erent embeddings of Z in nonsingular varieties or to smooth maps in
precisely the same way the ordinary Segre class would.
We collect these and other properties in Theorem 2.3. We �nd these observations

very remarkable. First, it is very puzzling that the de�nition of sÆ(Z;M) makes sense

at all. The de�nition of sÆ(Z;M) is given in terms of any collection of hypersurfaces
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cutting out Z, and consists of a rather complicated combination of conventional Segre
classes. That the end-result should not depend on the choices of the hypersurfaces
must amount to massive cancellations occurring among the Segre classes involved in
the de�nition; to our knowledge, there is no direct explanation for these cancella-

tions. Second, the de�nition turns out to depend only on the support of Z; given the
sensitivity to scheme structure of ordinary Segre classes, we �nd this fact rather as-
tonishing, again amounting to remarkable cancellations which must take into account
and then eliminate the contributions of nilpotents to the class. We illustrate such

`cancellations' with a couple of simple examples; the reader is warmly invited to work
out more complex ones.
Our perspective is that the properties listed in Theorem 2.3 must re
ect some

unknown and powerful features of ordinary Segre classes. We view Theorem 2.3 as

`experimental evidence' for these features, and the main purpose of this article is to
advertise this evidence. With this understood, it is remarkable that Theorem 2.3 can
be proved without uncovering or even being able to state precisely these features.
In fact, the proof of Theorem 2.3 is essentially immediate once it is realized that
sÆ(Z;M) is closely tied to another important class, de�ned for all singular varieties.

This relationship is exposed in Theorem 3.1; Theorem 2.3 follows easily from this.
Unfortunately, being able to prove something is not the same as understanding

it. While we do prove Theorem 2.3, the properties of Segre classes which must be
responsible for it remain just as unknown after the fact. We believe that establishing

these properties would be exceedingly interesting. If Segre classes were computable
objects, then a great many problems in enumerative geometry would become a routine
exercise. Given the (unreasonable?) relevance of enumerative geometry in recent
developments in algebraic geometry, clarifying the notion of Segre class seems a very

worthwhile goal.
This goal seems to us largely unmet|with the exception of the seminal work of

Steven Kleiman and his collaborators, in which Segre classes play an important part
(cf. for example [Kle94] and [KT96]).
This is the �rst article in a series planned to explore `inclusion-exclusion' phenom-

ena in the theory of Segre classes. In [Alu02b] we will propose a di�erent variation
on the theme of Segre classes, also satisfying an inclusion-exclusion principle, and
yielding a simple computation of sÆ(Z;M) in certain cases. The inclusion-exclusion
principle is used in [Alu02a] to obtain an explicit computational tool for characteristic

classes of projective schemes. For example, the algorithm computes the topological
Euler characteristic of a subscheme of PnC from the generators of a de�ning homo-
geneous ideal.

Acknowledgments. I thank the Max-Planck-Institut f�ur Mathematik in Bonn,
Germany, for the hospitality and support. Thanks are also due to the referee, who

spotted several inaccuracies in a preliminary version of this paper.
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2. SM-Segre classes

Throughout this section, M denotes a nonsingular variety (over an algebraically
closed �eld of characteristic 0, although this does not seem to be essential).

We will consider a proper subscheme Z of M , and a �nite family fXigi=1;:::;r of
hypersurfaces cutting out Z in M :

Z = X1 \ � � � \Xr ;

note that we are putting no restriction on r, and no other restrictions on the hyper-

surfaces (they may be nonreduced, there may be repetitions in the list, etc.). In fact,
the requirement on the hypersurfaces will be further relaxed later on, cf. Remark 2.4.
For a hypersurface X, we de�ne its SM-Segre class as follows1. Let Y be the

singularity subscheme of X, that is, the subscheme locally de�ned by the partial

derivatives of a local generator for the ideal of X.

De�nition 2.1. The SM-Segre class of X in M is the class

sÆ(X;M) = s(X;M) + c(O(X))�1 \ (s(Y;M)_ 
M O(X)) :

This de�nition uses notations|e.g., for the tensor of a rational equivalence class

by a line bundle|introduced in [Alu94], Def. 2; in more conventional (but less man-
ageable) terms, the component of dimension m in sÆ(X;M) is

s(X;M)m + (�1)n�m
n�mX
j=0

�
n�m

j

�
Xj � s(Y;M)m+j

where n = dimM ; a formula that is reminiscent of classical residual intersection
formulas (cf. [Ful84], Prop. 9.2). In [Alu94] and [Alu99] the class sÆ(X;M) is denoted
s(X n Y;M); no analogs for schemes other than hypersurfaces were considered there.
As given in De�nition 2.1, the SM-Segre class of a hypersurface X lives naturally

in the Chow group A�X of X. In view of the upgrade to arbitrary subschemes Z
of M that follows, however, it will be more natural to view it for the moment as an
element of the Chow group A�M of the ambient nonsingular variety. We will omit
such evident push-forwards from our notations, as well as evident pull-backs.

De�nition 2.2. Let Z be a proper subscheme of M , and let X1; : : : ; Xr be hyper-
surfaces cutting out Z:

Z = X1 \ � � � \Xr :(1)

Then the SM-Segre class of Z in M is obtained by applying inclusion-exclusion to
the SM-Segre classes of the hypersurfaces Xi. Explicitly, we set

sÆ(Z;M) =

rX
s=1

(�1)s�1
X

i1<���<is

sÆ(Xi1 [ � � � [Xis ;M) 2 A�M :

1SM is supposed both to evoke the connection with Schwartz-MacPherson classes, which is the

key to the main properties of the class, and the fact that we view this notion as a `smoothing' of

the notion of conventional Segre class
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Here Xi1 [ � � � [Xis is the hypersurface whose ideal is the product of the ideals of
Xi1 ; : : : ; Xis (so X [X 6= X!); but see Remark 2.4 below. Also, while we are de�ning
the class in A�M at this stage, Theorem 3.1 will imply that it is the image of class
naturally de�ned on Z itself; also cf. Remark 2.6.

The terminology inclusion-exclusion is adapted from the similar-looking formula
for the number of elements in the intersection Z of r �nite sets X1; : : : ; Xr:

#Z =

rX
s=1

(�1)s�1
X

i1<���<is

#(Xi1 [ � � � [Xis) ;

this is immediately proved by induction on r.
Concerning De�nition 2.2, the reader should now expect a proof that sÆ(Z;M) does

not depend on the speci�c choice of hypersurfaces cutting out Z. We isolate this and

other properties of the de�nition in the following statement.

Theorem 2.3. 1. The de�nition of sÆ(Z;M) is independent of the choices.

2. If Zred is the support of Z, then sÆ(Z;M) = sÆ(Zred;M).

3. If Z is nonsingular, then sÆ(Z;M) = s(Z;M) = c(NZM)�1 \ [Z].
4. If Z � M � M 0, where M 0 is a nonsingular variety and M � M 0 is a closed

embedding, then

sÆ(Z;M 0) = c(NMM
0)�1 \ sÆ(Z;M) :

5. If Z � U � M , where U
j
! M is an open embedding, then sÆ(Z; U) =

j�sÆ(Z;M).

6. More generally: if p : M 0 ! M is a smooth morphism, Z � M a subscheme,

and Z 0 = p�1(Z) its inverse image, then sÆ(Z 0;M 0) = p�sÆ(Z;M).
7. The class sÆ(Z;M) satis�es a full inclusion-exclusion principle, in the sense that

if Z1; : : : ; Zr are subschemes of M such that Z = Z1 \ � � � \ Zr, then

sÆ(Z;M) =

rX
s=1

(�1)s�1
X

i1<���<is

sÆ(Zi1 [ � � � [ Zis;M) ;

where Zi1 [ � � � [ Zis is the subscheme of M whose ideal is the product of the

ideals of Zi1; : : : ; Zis.

We are separating these statements from their Ursprung, which is Theorem 3.1
below, in the attempt to highlight them independently of our technical bias. Theo-

rem 2.3 will follow from Theorem 3.1, but we strongly feel that these statements are of
substantial independent interest, and call for a straightforward intersection-theoretic
proof; with the exclusion of parts 5.-7., which are formal exercises (left to the reader),
we do not know such a proof.

We delay the (rather anticlimatic) proof of Theorem 2.3 until the next section.
The rest of this section is taken by several comments meant to further highlight the
content of the theorem.

Remark 2.4. By part 2., the equality (1) in De�nition 2.2 need only hold set-theo-
retically. By the same token, we can in fact replace the unions Xi1 [ � � � [Xis in that
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de�nition, or the union Zi1 [ � � � [ Zis in part 7., by any other schemes supported on
such unions (for example, we could take the ideals de�ned by the intersection of the
ideals, rather than their product, or take radicals throughout).

Remark 2.5. In view of parts 3. and 4, it is consistent to de�ne sÆ(M;M) = [M ].

Remark 2.6. The formulas in part 4. and 5., ruling the behavior of the SM-Segre class
under di�erent embeddings of Z, hold in precisely the same terms for the ordinary

Segre class (this follows from [Ful84], Example 4.2.6(a)). In fact, part 4 suggests that
sÆ(Z;M) should be, up to a correction factor c(TM), a class intrinsic to Z (and living
in A�Z). This is precisely the case, as will follow from Theorem 3.1.

Remark 2.7. By part 3. and 5., if Z is reduced then the di�erence between sÆ(Z;M)

and s(Z;M) is supported within the singular locus Zs of Z. Indeed, letting U =
M nZs, the classes s

Æ(Z;M) and s(Z;M) restrict (by part 5.) to the same (by part 3.)
class in A�U , so the di�erence comes from A�Zs by [Ful84], Proposition 1.8.

Remark 2.8. The behavior of sÆ under smooth morphisms, prescribed by part 6., also

matches the behavior of conventional Segre classes. In fact, for Segre classes the same
behavior extends to the more general case of 
at maps, by [Ful84], Proposition 4.2(b);
this is not so for SM-Segre classes. Another key property of Segre classes, that is,
birational invariance (cf. Proposition 4.2(a) in [Ful84]) also does not hold for SM-Segre

classes.
On the other hand, by part 2. of Theorem 2.3, the stated equality for SM-Segre

classes under smooth morphisms holds as soon as Z 0 equals p�1(Z) set-theoretically;
for the ordinary Segre class, this equality has to hold scheme-theoretically.

To give a sense of what might go into a `direct argument' as envisioned above, here
is a direct proof of a very particular case of the innocuous-looking part 3.

Proof. We will prove part 3. in the particular case in which Z is the complete intersec-
tion of two transversal nonsingular hypersurfaces X1, X2. In this case, De�nition 2.1
gives

sÆ(X1;M) =
[X1]

1 +X1

; sÆ(X2;M) =
[X2]

1 +X2

(where we employ the convenient shorthand
[X]

1+X
= [X]�[X2]+[X3]�� � � = s(X;M)).

As for X1 [X2, it is easily veri�ed that Z is itself the singularity subscheme of this
hypersurface; hence

sÆ(X1 [X2;M) =
[X1 +X2]

1 +X1 +X2
+

1

1 +X1 +X2

�
s(Z;M)_ 
O(X1 +X2)

�

=
[X1 +X2]

1 +X1 +X2
+

1

1 +X1 +X2

�
[X1X2]

(1�X1)(1�X2)

O(X1 +X2)

�

=
[X1 +X2]

1 +X1 +X2
+

1

1 +X1 +X2

[X1X2]

(1 +X2)(1 +X1)
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where we have used Proposition 1 in [Alu94]. Thus, according to De�nition 2.2:

sÆ(Z;M) =
[X1]

1 +X1
+

[X2]

1 +X2
�

�
[X1 +X2]

1 +X1 +X2
+

1

1 +X1 +X2

[X1X2]

(1 +X2)(1 +X1)

�

=
[X1X2]

(1 +X1)(1 +X2)

by trivial formal manipulations. Since Z is the complete intersection of X1 and X2,
the right-hand-side is s(Z;M), as prescribed by part 3 of Theorem 2.3.

The whole of Theorem 2.3, especially the crucial parts 1. and 2., ought to have a
similarly direct explanation, but none is available to us at this time. For Theorem 2.3

to hold, drastic cancellations (of which the simpli�cations occurring in the proof
presented a moment ago must be the simplest instance) must be at work behind the
scenes. This can be also be observed in any concrete computation of SM-Segre classes;
we give two simple examples for illustration purposes.

Example 2.9. The curve C consisting of two lines meeting at a point in P
3 can be re-

alized as the intersection of a nonsingular quadric Q and a tangent planeH. Applying
the de�nition of SM-Segre classes (noting that Y = ; for a nonsingular hypersurface)
gives

sÆ(H;P3) = s(H;P3) = [P2]� [P1] + [P0]

sÆ(Q;P3) = s(Q;P3) = 2[P2]� 4[P1] + 8[P0] :

The singularity subscheme Y of H [ Q consists of the two lines, with an embedded
point at the intersection point. A blow-up computation gives

s(Y;P3) = 2[P1]� 5[P0]

yielding, according to De�nition 2.1,

sÆ(H [Q;P3) = 3[P]2 � 7[P]1 + 14[P0] :

Thus (De�nition 2.2):

sÆ(C;P3) = ([P2]� [P1] + [P0]) + (2[P2]� 4[P1] + 8[P0])� (3[P]2 � 7[P]1 + 14[P0])

= 2[P1]� 5[P1] :

On the other hand, C is itself a hypersurface, inM 0 = P
2, with singularity subscheme

a point. By De�nition 2.1,

sÆ(C;P2) =
[C]

1 + C
+ [P0] = 2[P1]� 3[P0] :

As prescribed by part 4. of Theorem 2.3,

sÆ(C;P3) = c(NP2P
3)�1 \ sÆ(C;P2) :

Example 2.10. Now let C be the subscheme de�ned by the homogeneous ideal (xy; x2)
in P

2; that is, a line with an embedded point. Thus, C is the intersection of X1 and

X2, where X1 is a union of two lines, and X2 is the double line with ideal (x2). By
Example 2.9 we have

sÆ(X1;P
2) = 2[P1]� 3[P0] :
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The singularity subscheme of X2 consists of a (single) line, so De�nition 2.1 gives

sÆ(X2;P
2) =

[X2]

1 +X2

+
1

1 +X2

�
(s(P1;P2)_ 
P2 O(X2)

�
= 2[P1]� 4[P0]� ([P1]� 3[P0]) = [P1]� [P0] :

Next, X1 [ X2 has ideal (x3y), hence its singularity subscheme has ideal (x2y; x3).
Computing (conventional) Segre classes and using again De�nition 2.1 gives

sÆ(X1 [X2;P
2) = 2[P1]� 3[P0] :

Thus

sÆ(C;P2) = (2[P1]� 3[P0]) + ([P1]� [P0])� (2[P1]� 3[P0]) = [P1]� [P0] :

This is in agreement with parts 2. and 3. of Theorem 2.3: the support of C is P1,

hence

sÆ(C;P2) = sÆ(P1;P2) = s(P1;P2) = [P1]� [P0]

as obtained `by hand'.

3. The proof, and comments about Milnor classes

Theorem 2.3 can be proved rather indirectly, by applying one previous result and

a piece of a well-established theory. Once more, our goal in this article is really to
suggest that Theorem 2.3 ought to have a direct proof in terms of the theory of Segre
classes, and that �nding this argument would tell us something very interesting about
Segre classes. Our proof does not shed much light in this direction.

We denote by cSM the Chern-Schwartz-MacPherson class, cf. [Mac74] (and [Ken90]
for a treatment over an arbitrary algebraically closed �eld of characteristic 0).

Theorem 3.1. Let Z be a subscheme of a nonsingular variety M . Then

cSM(Zred) = c(TM) \ sÆ(Z;M) :

Proof. The Chern-Schwartz-MacPherson class satis�es inclusion-exclusion. Indeed, if

Z = X1 [ � � � [Xn ;

then one easily checks that

11Z =

rX
s=1

(�1)s�1
X

i1<���<is

11Xi1
[���[Xis

;

where 11X denotes the constructible function which is 1 at points of X, and 0 outside
of X; and note 11X = 11Xred

trivially. Applying MacPherson's natural transformation
gives then

cSM(Zred) =

rX
s=1

(�1)s�1
X

i1<���<is

cSM((Xi1 [ � � � [Xis)red)

in A�M . This observation reduces the statement of the theorem to the case in which

Z is a hypersurface in a nonsingular variety, which is shown in [Alu99] (Theorem I.1
and Corollary II.2).



8 PAOLO ALUFFI

Theorem 2.3 follows immediately as a corollary; the details are left to the reader.
We also note that since sÆ(Z;M) = c(TM)�1\cSM(Zred), it follows that s

Æ(Z;M) is
naturally the image of a class inA�Z, although this is far from clear from De�nition 2.2
(cf. Remark 2.6).

We end with comments regarding the so-called Milnor class of a scheme.
Theorem 3.1 writes the Chern-Schwartz-MacPherson class in a way that the in-

formed reader will recognize immediately as a companion to the de�nition of an
intrinsic class given by William Fulton (cf. [Ful84], 4.2.6 for the de�nition of this
class and of a kindred notion, the Fulton-Johnson class): if Z is a subscheme of a

nonsingular variety M , Fulton's class is de�ned by

cF (Z) = c(TM) \ s(Z;M) :

According to several authors, but with slightly di�erent conventions of sign and con-
text, the Milnor class measures the di�erence between the Chern-Schwartz-MacPher-

son class of a variety and other classes such as Fulton's or Fulton-Johnson's. Deter-
mining this discrepancy has been identi�ed as a Verdier-Riemann-Roch type problem,
cf. [Yok99]. The hypersurface case is rather well understood, cf. [PP01]; complete in-
tersections are treated in [BLSS99] and in the recent [Sch].

Our viewpoint on the problem is perhaps a little di�erent from the one taken by
these authors. For us, the Milnor class of Z should be measured by a Segre-class
type of invariant de�ned on the singularity subscheme of Z; in fact our motivation in
pursuing any such formula is precisely to learn something new about Segre classes.
In this sense, the problem seems wide open for anything but hypersurfaces.

In the context of the present article, the relevant remark is the following con-
sequence of Theorem 3.1: the Milnor class of a reduced scheme Z embedded in a
nonsingular variety M is (up to sign)

c(TM) \m(Z;M) ;

where

m(Z;M) := sÆ(Z;M)� s(Z;M) :

Note that the class m(Z;M) is localized on the singularities of Z (see Remark 2.7).
From our perspective, the main problem in the study of Milnor classes is the explicit

determination of m(Z;M) in terms of conventional intersection-theoretic operations.

Example 3.2. If X is a hypersurface, with singularity subscheme Y , then

m(X;M) = c(O(X))�1 \ (s(Y;M)_ 
M O(X)) :

This formula, now incorporated in the de�nition of sÆ, is the main result of [Alu94]
and [Alu99]. Similarly explicit formulas for m(Z;M) for more general Z, in terms of
Chern/Segre-class type invariants of the singularity subscheme of Z, would be highly
desirable. To our knowledge, it is not even known whether m(Z;M)|and hence the

Milnor class of Z|is determined by the singularity subscheme of Z, even when Z is

a complete intersection of codimension 2.
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