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Abstract. Complex algebraic genus one curves can be uniformized
by elliptic integrals. This is both classical and explicit. For any
genus one curve C defined by an equation y2 = x(x−1)(x−λ) one
can explicitly form a lattice L = 〈z 7→ z+ω1, z 7→ z+ω2〉 such that
C = C/L. One can, furthermore, find the uniformizing projection
C → C ([2]). In this note that fact is used to find Teichmüller
mappings between two given genus one algebraic curves. In fact,
for any two elliptic curves given by their defining polynomials it is
possible to find all the Teichmüller mappings between them. One
can, furthermore, compute the Teichmüller distance between given
elliptic curves (in the moduli space).

1. Normal forms for genus one algebraic curves

An algebraic curve of genus one can always be represented as

(1) Cλ = {(x, y) | y2 = P (x)},
where

(2) P (x) = x(x− 1)(x− λ).

Observe that such a presentation can be algorithmically found for
any genus one curve ([3]). Hence we may, without loss of generality,
restrict our considerations to curves given by an equation of the form
(1).

Genus one curves Cλ of the form (1) depend on a complex parameter
λ, λ 6= 0, 1. The curves Cλ1 and Cλ2 are isomorphic if and only if there
is a Möbius transformation carrying the unordered set {0, 1,∞, λ1}
onto the set {0, 1,∞, λ2}. This observation yields the following char-
acterization of isomorphic curves Cλ1 and Cλ2 .

Let Γ be the group of order 6 generated by the Möbius transforma-
tions

γ1(z) =
1

z
, and γ2(z) = 1− z.

Then the curves Cλ1 and Cλ2 are isomorphic if and only if there is
an element γ ∈ Γ such that γ(λ1) = λ2.
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Figure 1. Graph of the Teichmüller distance function
between the fixed torus y2 = x(x − 1/2)(x − 1) and a
variable torus y2 = x(x− 1)(x− λ).

All this is classical. A fundamental domain for the action of the
group Γ is those x′s satisfying Im λ ≥ 0, |λ| ≤ 1 and Re λ ≤ 1

2
. Our

graphs are over these domains.

2. Uniformization of elliptic curves

Without loss of generality we may restrict our consideration to el-
liptic curves of the type (1) with the parameter λ in the fundamental
domain illustrated by Figure (1). Then the elliptic integrals

ω1 =

∫ λ

0

1√
P (x)

dx

and

ω2 =

∫ λ

1

1√
P (x)

dx

define the lattice Λ = 〈z → z + 1, z → z + τ〉, τ = ω2/ω1 for which

C = C/Λ.

This is classical ([2, Theorem 1, p. 42]).
The Weierstrass P function provides a way to compute a defining

equation for a torus C/Λ ([2, 1.11]). That brings us back from the
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Figure 2. Graph of the Teichmüller distance function
between the fixed torus y2 = x(x − 1)(x + 1/2) and a
variable torus y2 = x(x− 1)(x− λ).

category of Riemann surfaces to that of algebraic curves, and gives a
way to check the accuracy of the computations. The method of uni-
formization of elliptic curves by elliptic integrals is extremely accurate.

Observe that the correspondence between the lattice parameter τ
and the parameter λ in the defining equation (1) of the corresponding
algebraic curve of genus one is the classical λ function (see [1, 7.3.5]).

3. Quasiconformal mappings between algebraic curves of
genus one

Let

Cλj
= {(x, y) | y2 = x(x− 1)(x− λj)}, j = 1, 2,

be two elliptic curves. Consider the problem of finding explicit quasi-
conformal mappings between the curves Cλ1 and Cλ2 . This can rather
easily be solved using the above uniformization of the curves Cλj

.
Let

ωj
1 =

∫ λj

0

1√
x(x− 1)(x− λj)

dx
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Figure 3. Graph of the Teichmüller distance function
between the fixed torus y2 = x(x − 1)(x − (1/4 + i/2))
and a variable torus.

and

ωj
2 =

∫ λj

1

1√
x(x− 1)(x− λj)

dx, j = 1, 2,

denote corresponding elliptic integrals, and let

Λj = 〈z → z + 1, z → z + τj〉, τj =
ωj

2

ωj
1

,

be the corresponding lattices.
The problem of finding quasiconformal mappings between the alge-

braic curves C1 and C2 becomes simply the problem of finding quasi-
conformal mappings F which map a fundamental parallelogram of the
lattice Λ1 onto that of the lattice Λ2. Best such mappings are affine
stretchings.

The fundamental parallelograms for the lattices Λj can be readily
obtained from the bases used for the lattices. Affine stretchings, map-
ping one such fundamental parallelogram onto another one, have the
smallest maximal dilatation in their homotopy classes. Replacing this
fundamental parallelogram with another one changes the homotopy
class of the corresponding stretching.
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To find quasiconformal mappings with the smallest maximal dilata-
tion (among all qc mappings between the tori), one has to use a stan-
dard basis as described below.

To find a Teichmüller mapping, i.e., a mapping induced by affine
stretching as described above, between two given tori Cλ1 and Cλ2

observe that, without loss of generality, we may assume that

Im
ωj

2

ωj
1

= Im τj > 0, j = 1, 2,

when considering the lattices

Λj = 〈z → z + 1, z → z + τj〉, j = 1, 2.

The affine mapping F (z) = Az + Bz̄, with

(3) A =
τ2 − τ̄1

τ1 − τ̄1

and B =
τ1 − τ2

τ1 − τ̄1

takes Λ1 to Λ2. Moreover the quasiconformal mapping F has the mini-
mal dilatation among all quasiconformal mappings that take the lattice
points of Λ1 to those of Λ2. The complex dilatation of F is

(4) µ =
∂F/∂z̄

∂F/∂z
=

B

A
=

τ1 − τ2

τ2 − τ̄1

.

The dilatation of the quasiconformal mapping F is then

(5) K =
1 + |µ|
1− |µ|

and the Teichmüller distance between the two complex structures is

(6) T (τ1, τ2) =
1

2
log K.

Hence we can explicitly write down Teichmüller mappings between any
given genus one curves. In the above construction, the integration
paths for the elliptic integrals ωj

k can be chosen in many ways. Different
choices lead to different bases for the lattices. Suitable normalization
will ensure that the mapping constructed above is the best possible
quasiconformal mapping between the curves.

4. Maple code for computing Teichmüller mappings and
distances between elliptic curves

4.1. Computation of the lattice.
Input: parameter λ defining the genus one algebraic curve C given by
the equation (2).
Output: Standardized number τ such that Imτ > 0 and C = C/〈z 7→
z + 1, z 7→ z + τ〉.
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We describe the algorithms that appear in the pseudocode below.
Given λ from (1) the EllipticK program in MAPLE calculates a cor-
responding basis for the lattice. After dividing by a basis element we
obtain an equivalent basis of the form (1, τ). In the event that Imτ < 0
we replace τ with −τ .

Next τ is adjusted so that |τ | ≥ 1 and 1
2
≤ Reτ ≤ 1

2
. The tau’s in

this region correspond to elliptic curves except for identification of the
boundary under the map z 7→ −z̄. We first adjust the Reτ , effectively

by applying a power of the matrix

(
1 1
0 1

)
∈ SL2(Z) to the basis, so

that |Reτ | ≤ 1
2
. If |τ | ≥ 1, then the algorithm stops. Otherwise, τ is

replaced by − 1
τ

(the matrix (0,−1, 1, 0) ∈ SL2(Z)) and looped back so

that |Reτ | ≤ 1
2
. This repeats until convergence.

Pseudocode for the program. The following code uses Maple’s
built-in special function EllipticK.

ω1 ←
(
λ → 4EllipticK(1/

√
λ)/

√
λ
)

ω2 ←
(
λ → 4EllipticK(

√
λ)/

√
λ
)

G ← ω1(λ)
H ← ω2(λ)
τ ← G/H
if Im(τ) < 0 then

τ ← −τ
end if
while 1

2
< Re(τ) or Re(τ) < −1

2
or Re(τ)2 + Im(τ)2 < 1 do

M ← Re(τ)
if 1

2
< |M | then

M ← M − bRe(τ) + 1
2
c

end if
τ ← M +

√−1Im(τ)
if Re(τ)2 + Im(τ)2 < 1 then

τ ← −1/τ
end if

end do
output τ

The above program computes first elliptic integrals defining a basis
for the lattice corresponding to the genus one curve C given by the
parameter λ.

Next the program standardizes this lattice.
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4.2. Computation of the Teichmüller distance. The pseudohy-
perbolic distance ρ(z1, z2) between the points z1 and z2 in the unit disk
is given by the formula

(7) ρ(z1, z2) =

∣∣∣∣
z1 − z2

z1 − z2

∣∣∣∣ .

In the following code we use that formula to compute the Teichmüller
distance between tori. Here the inputs are complex numbers τ1 and τ2

with |τi| ≥ 1 and −1
2
≤ Re τi ≤ 1

2
, i = 1, 2. These are obtained as

outputs from the previous program. the code calculates the pseudohy-
perbolic distance between t hese points and nearby equivalent points
and chooses the minimum.
Input: Complex numbers τ1 and τ2, Im(τj) > 0, defining tori Tj =
C/〈z 7→ z + 1, z 7→ z + τj〉, j = 1, 2.
Output: The Teichmüller distance between the tori Tj in the moduli
space of genus one algebraic curves.

M ← Re(τ1)− Re(τ2)
if 1

2
< M then

τ2 ← τ2 + 1
end if
if M < −1

2
then

τ2 ← τ2 − 1
end if

ρ ←
(
(z1, z2) 7→

∣∣∣ z1−z2

z1−z2

∣∣∣
)

k1 ← ρ(τ1, τ2)
k2 ← ρ(τ1,−1/τ2)
k ← min(k1, k2)
output 1

2
log 1+k

1−k
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