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1 Introduction

In this note we describe how to generalize the standard t-statistic test for for
equality of the means when the assumption of a common variance no longer
holds. We then discuss an application to financial risk factor modelling.

First we describe the standard t-statistic. Suppose we have a sequence of
independent samples from a normal distribution with mean µX and variance
σ2. Denote the sample values by X1, X2, . . . , Xn. We use the notation Xi ∼
N(µX , σ

2), whereN(a, b) denotes the probability density function of a normal
distribution with mean a and variance b.

The best (minimum variance) linear unbiased estimator of the mean µ is
the sample mean

X̄ =
1

n

n∑
i=1

Xi.

If Y1, Y2, . . . , Ym is another group of independent samples with Yi ∼
N(µY , σ

2), we could ask whether or not µX = µY . We take the null hy-
pothesis to be the statement that this equality is true.

Given our sample data, we cannot determine the truth or falsity of the null
hypothesis, but we can determine the likelihood of the realized sample values
assuming the null hypothesis. If this likelihood is small, we are justified in
rejecting the null hypothesis.
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To accomplish this, we may use the standard (Student’s) t-statistic for
equality of the mean:

T =
X̄ − Ȳ√

nS2
X+mS2

Y

n+m−2
( 1
n

+ 1
m

)

(1)

where

S2
X =

1

n

n∑
i=1

(Xi − X̄)2

is the sample variance of X, and similarly for Y .
The random variable T has a t-distribution with n + m − 2 degrees of

freedom. Therefore we can determine the probability that T is equal to or
greater than the realized value given µX = µY . Typically if this probability
is below 5% or 1%, the null hypothesis is rejected.

In this paper we generalize the discussion to the case where the samples
are drawn from distributions with a common mean but variances allowed to
change from sample to sample:

Xi ∼ N(µX , σ
2
i ).

In this case, the best linear unbiased estimate of the mean µX is the
weighted average

X̄ =
n∑
i=1

wiXi,(2)

where

wi =
1/σ2

i∑n
j=1(1/σ2

j )
.

Conversely, given positive weights wi, i = 1, . . . , n so that
∑n
i=1 wi = 1,

then the quantity in equation 2 is the best linear unbiased estimate of the
mean provided that the samples are distributed as

Xi ∼ N(µX , αX/wi)

for some constant αX > 0.
In either case, if

SX =
n∑
i=1

wi(Xi − X̄)2
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is the weighted sample variance, and if we use similar notation for Yi (with dif-
ferent weights w′i allowed), then the corresponding formula for the t-statistic
for equality of the weighted mean is

T =
X̄ − Ȳ√

SX/αX+SY /αY
n+m−2

√
αX + αY

.(3)

Setting wi = 1/n, w′i = 1/m, and αY = (n/m)αX reduces this expression
to equation 1.

Note: T is independent of the scale of the pair (αX , αY ): if (αX , αY ) is
replaced by (kαX , kαY ) for some k > 0, the value of T is unchanged.

2 The Weighted Mean as a Minimum Vari-

ance Estimator

If X1, X2, . . . , Xn is a random sample such that Xi ∼ N(µ, σ2
i ), what is the

minimum variance unbiased estimator of the mean? It is a weighted sum
where greater weight is given to values coming from narrower distributions.

Let Xi = µ+ ei where ei has mean µ and variance σ2
i . If

X̄ =
n∑
i=1

wiXi

is to be the minimum variance unbiased estimator of the mean µ, then we
must solve for the weights wi minimizing the variance of X̄, subject to the
constraint ∑

wi = 1(4)

Since we are assuming the variables ei are independent, we have

E[(X̄ − µ)2] = E[(
∑

wiei)
2]

=
∑

E[w2
i e

2
i ]

=
∑

w2
i σ

2
i

The method of Lagrange multipliers to minimize this function subject to
the constraint in equation 4 yields
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wi =
1/σ2

i∑n
j=1(1/σ2

j )
.

We obtain this weight if we set

σ2
i = α/wi,

where α is any positive constant. This proves

Proposition 1 Let α be a positive constant. Suppose w1, . . . , wn are positive
numbers satisfying

∑
wi = 1, and, for each i, Xi is a random variable with

mean µ and variance α/wi.
Then the minimum variance unbiased estimator of the mean µ is

X̄ =
n∑
i=1

wiXi.

3 Establishing the Weighted t-Statistic

Recall that if a random variable V is the sum of the squares of r > 0 in-
dependent standard normal variables, then V is said to have a chi-squared
distribution with r degrees of freedom.

The t-distribution with r degrees of freedom may be defined as the distri-
bution of the random variable

T =
W√
V/r

,

where W is a standard normal random variable, V has a chi-squared distri-
bution with r degrees of freedom, and W and V are independent.

We need to show that the statistic defined in equation 3 has a t-distribution
with n + m − 2 degrees of freedom. We accomplish this with a sequence of
lemmas in this section.

Standing assumptions: Let αX and αY be fixed positive numbers. For
i = 1, . . . , n, and j = 1, . . . ,m, let wi and w′j be positive numbers and Xi, Yj
independent random variables such that

• ∑n
i=1 wi = 1 and

∑m
j=1 w

′
j = 1, and
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• for each i, j, Xi ∼ N(µ, αX/wi) and Yj ∼ N(µ, αY /w
′
j).

Notation:

• X̄ =
∑
wiXi and Ȳ =

∑
w′jYj

• SX =
∑
wi(Xi − X̄)2 and SY =

∑
w′j(Yj − Ȳ )2

Lemma 1 X̄ ∼ N(µ, αX) and Ȳ ∼ N(µ, αY ).

Proof. A straightforward computation using the fact that a sum of indepen-
dent normals is normal and variances add.

Lemma 2 X̄, Ȳ , SX , and SY are mutually independent.

Proof. Clearly X̄ and Ȳ are independent, and similarly for SX and SY . We
show that X̄ is independent of SX , and the same argument works for Y .
The argument is a direct generalization of the proof for the equal weighted
case found, e.g., in Hogg and Craig [1, ch. 4], which we include here for the
reader’s convenience.

Write α = αX and denote the variance of Xi by σ2
i ( = α/wi). The joint

pdf of X1, X2, . . . , Xn is

f(x1, . . . , xn) =
1

(
∏n
i=1

√
2πσi)

exp[−
n∑
i=1

(xi − µ)2

2σ2
i

]

Our strategy is to change variables in such a way that the independence of
X̄ and SX will be evident. Letting x̄ =

∑
wixi, straightforward computation

verifies that

α =
1∑n

i=1 1/σ2
i

and
n∑
i=1

(xi − µ)2

σ2
i

=
n∑
i=1

(xi − x̄)2

σ2
i

+ (x̄− µ)/α(5)

Hence

f(x1, . . . , xn) =
1

(
∏n
i=1

√
2πσi)

exp[−
n∑
i=1

(xi − x̄)2

2σ2
i

− (x̄− µ)2

2α
](6)

Consider the linear transformation (u1, . . . , un) = L(x1, . . . , xn) defined
by u1 = x̄, u2 = x2 − x̄, . . . , un = xn − x̄, with inverse transformation
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x1 = u1 − (
σ2

1

σ2
2

)u2 − (
σ2

1

σ2
3

)u3 − . . .− (
σ2

1

σ2
n

)un,

x2 = u1 + u2,

...

xn = u1 + un

Likewise define new random variables U1 = X̄, U2 = X2 − X̄, . . . , Un =
Xn − X̄.

If J denotes the Jacobian of L, then the joint pdf of U1, . . . , Un is

J

(
∏n
i=1

√
2πσi)

exp[−
(−(

σ2
1

σ2
2
)u2 − (

σ2
1

σ2
3
)u3 − . . .− (

σ2
1

σ2
n
)un)2

2σ2
1

−
n∑
i=2

u2
i

2σ2
i

−(u1 − µ)2

2α
]

This now factors as a product of the pdf of U1 and the joint pdf of
U2, . . . , Un. Hence U1 = X̄ is independent of U2, . . . , Un, and hence also
independent of

α[(−(
σ2

1

σ2
2

)U2 − (
σ2

1

σ2
3

)U3 − . . .− (
σ2

1

σ2
n

)Un)2 +
n∑
i=2

U2
i

σ2
i

]

= α
n∑
i=1

(Xi − X̄)2

σ2
i

= SX

Lemma 3 SX/αX ∼ χ2(n−1) and SY /αY ∼ χ2(m−1), where χ2(k) denotes
the chi-squared distribution with k degrees of freedom.

Proof. The proofs for X and Y are similar. Let

A =
n∑
1

(Xi − µX)2

σ2
i

,

B =
n∑
1

(Xi − X̄)2

σ2
i

,

and

C =
(X̄ − µX)2

αX
.

Then by equation 5, A = B + C. Since Xi ∼ N(µX , σ
2
i ), A ∼ χ2(n).

Similarly C ∼ χ2(1). This implies that B = SX/αX ∼ χ2(n − 1) provided
that B and C are independent, which follows from the proof of lemma 2.
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Proposition 2

T =
X̄ − Ȳ√

SX/αX+SY /αY
n+m−2

√
αX + αY

is a t-statistic with n+m− 2 degrees of freedom.

Proof. Let

W =
X̄ − Ȳ√
αX + αY

and
V = SX/αX + SY /αY .

By Lemma 2, W and V are independent. From lemma 1, W is a standard
normal random variable. From lemma 3, V ∼ χ2(n+m− 2). Hence

T =
W√

V/(n+m− 2)

has the required property.

4 Application to Risk Modelling

For certain financial risk factor models, the return to a given factor is com-
puted as the weighted average of returns to the individual securities exposed
to that factor. For example, a model for bond credit risk may have a Fi-
nancial AA factor to which all financial bonds rated AA are exposed. If the
return to this factor is defined to be the duration-weighted average of the
option adjusted spread (OAS) returns Xi, we would take weights

wi =
Di∑n
i=1 Di

where Di is the duration of the ith bond. The factor return is then the
weighted average

X̄ =
n∑
i=1

wiXi.

We may interpret this factor return as the best linear unbiased estimator
of the common mean of a set of independent normal distributions from which
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the individual bond OAS returns are sampled; the distributions are those of
Proposition 1.

If, in the course of building the model, the question arises whether two
groups of bond OAS returnsX1, X2, . . . , Xn and Y1, Y2, . . . , Ym share the same
mean and therefore should be exposed to the same risk factor, we may use
the t-statistic of equation 3 to examine the question. A large value of this
statistic is evidence that the two groups of bonds have different means and
therefore should be exposed to separate risk factors.
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