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Abstract
We compare the performance of several robust large-scale

minimization algorithms applied for the minimization of the cost
functional in the solution of inverse problems related to
parameter estimation applied to the parabolized Navier-Stokes
equations.

The methods compared consist of Quasi-Newton (BFGS), a
limited memory Quasi-Newton   (L-BFGS) [1], Hessian Free
Newton method [2] and a new hybrid algorithm proposed by
Morales and Nocedal [3].

Introduction
The following specific issues characterize the inverse CFD

problems posed in the variational statement:
•  High CPU time required for the single cost functional

computation
•  The computation of the gradient usually is performed

using the adjoint model, which requires the same
computational effort as the direct model.

•  The instability (due to Ill-posedness) prohibits using
Newton type algorithms without explicit regularization
due to the Hessian being indefinite.

The conjugate gradient method is widely used for inverse
problems [6] because it provides regularization implicitly by
neglecting non-dominant Hessian eigenvectors. The large CPU
time required for the single cost functional computation justifies
the high importance attached to the choice of most efficient
optimization methods. From this perspective we will compare
conjugate gradient method along with several quasi-Newton and
truncated Newton large-scale unconstrained minimization
methods for identification of entrance boundary parameters from
measurements taken in a downstream flow-field sections.

Test problem
We consider the identification of unknown parameters

(f∞(Y)=(ρ(Y), U (Y), V (Y),T (Y))) on the entrance boundary (Fig. 1)



from measurements in a flow-field section ),(exp
mm YXf  as the test for

the inverse computational fluid dynamics (CFD) problem. The
algorithm consists of the flow-field calculation (direct model), the
discrepancy gradient computation using both forward and
adjoint models and an optimization method. The problem has all
the features of ill-posed Inverse CFD problems but can be solved
relatively fast when using the approximation of parabolized
Navier-Stokes equations.

Direct Problem
The two-dimensional parabolized Navier-Stokes equations

are used here in a form similar to that carried out in Refs. [5,6].
The flow (Fig. 1) is laminar and supersonic along the X -
coordinate. These equations describe an under-expanded jet in
the supersonic flow.
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 P= ρRT; e= Cv T= R/(κ-1)T; (X,Y)∈ Ω=(0<X< Xmax; 0<Y<1);
The entrance boundary (A (X=0), Fig. 1) conditions follow:
e(0,Y)=e∞ (Y); ρ(0,Y)=ρ∞ (Y)); U(0,Y)=U∞ (Y); V(0,Y)=V∞ (Y);

( 5 )

The outflow boundary  conditions

∂f/∂Y=0
are used on  B, D (Y=0, Y=1).
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Fig. 1

The flow parameters at some set of flow-field points
fexp(Xm,Ym) are available. The values f∞(Y)=(ρ(Y),U(Y),V(Y),e(Y)) on
the boundary A are unknown and must be determined. For this
purpose, we minimize the discrepancy between computed and
measured values fexp(X,Y) on the set of measurement points.

( ) dXdYYYXXYXfYXfYf mm )()(),(),() )((
2exp −−−= ∫

Ω
∞ δδε (6)

Adjoint problem
A fast calculation of the gradient is crucial for optimizing

methods, tested herein, due to the high CPU time computational
cost of discrepancy calculation as well as the relatively great
number of control variables. The solution of adjoint problem is
the fastest way for calculating the discrepancy gradient when the
number of control parameters is relatively large. The adjoint
problem corresponding  to Eqs. (1-6) is as follows:
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the boundary conditions on C (X=Xmax) are:
;0

max =Ψ
=XX

f

the following condition is used on B,D (Y=0; Y=1):
∂Ψ
∂

f

Y
= 0; (11)

The discrepancy gradient is determined by the flow
parameters and adjoint variables:

UeUYe Ψ−+Ψ=∂∂ ∞ )1()(/ κε

ρκρε ρ /)1()(/ eUY UΨ−+Ψ=∂∂ ∞

(12)
eUYU eU Ψ−+Ψ+Ψ=∂∂ ∞ )1()(/ κρε ρ

UYV VΨ=∂∂ ∞ )(/ε

The flow-field (forward problem, (1-4)) is computed by a
finite difference method [5,6] marching along the X. The method
is of first order accuracy in X and second order in the Y variable.
The pressure gradient for supersonic flow is computed from the
energy and density. The same algorithm (and the same grid) is



used for the adjoint problem solution, however the integration is
performed in the reverse direction (beginning at the X=Xmax). The
grid consists of 50-100 nodes along the Y direction and 50-200
nodes along the X direction. The flow parameters on the entrance
boundary f∞(Yi)=fi(i=1,...,N) serve as the set of control variables.
The input data fexp(Xm,Yi) (i=1,...,N) are obtained at the outflow
section from a preliminary computation. The flow parameters
are: external flow Mach number M=5 (Mach  number of the jet is
about 3), Reynolds number Re is in the range of 103 -104. Several
tests were performed for an inviscid flow (Re= 108).

Optimization algorithms
The spatial distribution of parameters on the entrance

boundary (A) is determined by applying and comparing the
following large-scale optimization methods:
•  Conjugate gradients
•  Quasi-Newton (BFGS)
•  limited memory Quasi-Newton (L-BFGS), [1]
•  Hessian-free Newton method (HFN), [2,3]
•  A new hybrid algorithm proposed by Morales and Nocedal [4]

that consists of a class of optimization methods that interlace
iterations of the limited memory BFGS method (L-BFGS) and a
Hessian-free Newton method (HFN) in such a way, that the
information collected by one type of iteration improves the
performance of the other.

Numerical Tests
The computations have the following algorithmic structure:

the forward problem (1-5) is solved for parameters f(Y∞) and the
flow-field values of  ρ(X,Y), U(X,Y), V(X,Y), T(X,Y are  stored. The
discrepancy εn(f) is calculated, the adjoint problem (7-10) is solved
and the gradient grad(εn) is calculated from (12). Then, the new
control parameters are calculated using the chosen optimizer.
The optimization termination criterion follows: ( )∞

−<∇ f,1max1 05ε .

Figures 2-6 represent typical results of solution of this
problem by different methods in comparison with the exact data.
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Fig. 2 Inflow temperature calculation

The Fig. 2 presents the result of inflow temperature
estimation from the error-free outflow data (within computer
accuracy). This result may be considered as an illustration of the
problem’s ill posedness. Fig. 3 presents the inflow density
illustrating the development of the instability (exact solution the
constant density being equal to unit). Figs. 4 and 5 provide the
total density distribution in the flow-field for the exact solution
and the result of the calculation.
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Fig. 3 Inflow density calculation
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calls

Fig. 7 presents the Hessian spectrum for this problem in the
vicinity of the exact solution (1) and the spectrum of the uniform



flow (2). Most eigenvalues are very close to zero, prohibiting the
use the standard Newton method for this problem.

Fig. 8 presents comparison of cost function  and the norm of
its gradient (logarithm) evolution versus the number cost
function iterations (flow-field and adjoint field calculations).  The
Hybrid method may be additionally matched to the problem by
selecting a combination of L-BFGS calls (k1) and HFN calls (k2).
HFN and L-BFGS are implemented here in the framework of  the
Hybrid algorithm (k1=0 and k2=0 respectively).

BFGS present best convergence rate at first iterations but
stops quickly. Another problem with this method is the lack of
robustness: very often the suitable initial guess should be chosen
for this method start to operate.

CG results are of intermediate quality.
Figures 9-12 presents results of another test (inviscid flow).

Figure 9 represent different variants of Hybrid method: HFN
(k1=0), Hybrid (k1=5, k2=5), Hybrid (k1=5, k2=20), L-BFGS (k2=0).
The Hybrid method (k1=5, k2=20) provides the best results from
the viewpoint of quality and speed although HFN gives the
smallest value of the target functional.
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Figs. 10-11 present the comparison of results for considered
methods
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Fig 12 provides comparison of BFGS, HFN (Nash method), L-
BFGS and Hybrid algorithms. HFN (Nash method) and L-BFGS
are implemented as the separate subroutines for this problem.
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Fig. 12. The comparison of HFN, BFGS, L-BFGS and Hybrid (k1=5,
k2=20)

Discussion
The Newton method is expected to be largely unstable due to

large number of Hessian eigenvalues that are close to zero, (See
Fig. 7. )

The steepest descent and conjugate gradients methods are
known to possess regularization properties [6]. These properties
are connected with the search in the subspace of the dominant
Hessian eigenvectors (corresponding to maximal eigenvalues).
The discrepancy gradient may be presented as the action of the
Hessian by the distance to the exact solution.

∇ε (xn) =-H ∆xn (13
)



Thus the search along the gradient (or some combination of
gradients under different iterations) means the search is
conducted in the subspace of the Hessian dominant eigenvectors.
The subspace of eigenvectors with the small eigenvalues is
implicitly neglected, thus providing for the regularization. In
practice, the convergence is fast during first iterations and then
rapidly drops after a relatively small number of iterations, whose
number is possibly close to the number of Hessian dominant
eigenvectors.
It is interesting to note that all discussed methods employed
display the same property: they rapidly decelerate at a certain
mismatch level thus providing the applicability of the iterative
regularization. For the present problem the methods under the
consideration are found to provide a much faster convergence
rate in comparison with the conjugate gradient method and a
similar stability. So, the methods considered in this research
display the applicability for the inverse problem solution using
the iteration regularization. Thus, instabilities caused by the ill-
posedness of the considered problem may be successfully handled
by using the “discrepancy” principle (stopping at a discrepancy
magnitude whose value is close to that of the data error) for
moderate data error in the present class of methods. For the
typical inverse problem considered herein the abovementioned
methods provided for fast convergence and relatively small
instability. In most cases the self-regularization occurs due to the
viscous properties of direct and adjoint solvers.

The BFGS method provides the smallest number of
discrepancy+gradient calculations at the initial stage of
optimization but later stops convergence and has not enough
robustness for considered problems (successful start depends on
the lucky choice of the initial guess).

For the problem under the consideration the minimal value
of the discrepancy gradient that is achieved in computations
depends on Reynolds number and nonlinearity of problem (the
inflow disturbance amplitude) and the length of evolution. It is
connected with the irreversible losses of information in
dissipation and "gradient catastrophe", see Fig. 13 for example.



Quality of result in dependence on the magnitude of disturbance
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magnitude (inviscid flow)

According to the theory of ill-posed problems, this processes
should engender the instability. Some oscillations are indeed
detectable in the numerical calculations (Fig. 3,13). Nevertheless,
they are much less then expected. The possible reason may lie in
the numerical viscosity of the forward and adjoint solvers. As a
result, the approximation of the highly oscillating gradient is
violated and the optimization breaks.

Conclusion
The robust minimization methods considered (HFN, L-BFGS,

Hybrid) are applicable for the inverse problem solution using
either the natural regularization or the iteration regularization.
From this viewpoint these methods exhibit a similarity to the
method of conjugate gradients but demonstrate a best
performance.

The BFGS method may be effectively used if small depth of
convergence is needed.

The L-BFGS method provides the fast convergence and a
good quality of result.

Hessian-free Newton methods provide the best final quality
of optimization but the slow rate of convergence.



The numerical results obtained demonstrated that the
Hybrid method (enriched method [4]) should be considered as a
serious competitor both to the Hessian-free Newton methods and
to L-BFGS, especially since it is known (see e.g. [8]) that Newton-
type methods are more effective than L-BFGS on ill-conditioned
problems.
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