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Abstract

The standard approach to the solution of the adjoint equations stresses the similarity of direct
and adjoint equations and implies the use of similar methods for their solution. Nevertheless,
the adjoint equations have significant peculiarities in comparison with the direct problem
equations at least for compressible flows. From a numerical viewpoint these features concern
the existence of the conservative form of the equations, linearity and specific boundary
conditions or sources. From the flow field structure viewpoint, there are aso sizable
differences, for example, the compression shock formation in adjoint variables field is
impossible when the rarefaction shock is stable and exists. The latter effect poses some
restrictions on the solution of inverse problems.
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1. Introduction

The discontinuities of gas-dynamic parameters are specific for supersonic flows of
inviscid gas. The influence of discontinuities on the gradients of the variables or cost
functional is of current interest for both the direct and inverse gas-dynamics problems. For
example, Ref. [1] concerns the sensitivity of one-dimensional Euler equations from the
viewpoint of the tangent equations. Ref [2] deals with optimal control of shocked flow
using smooth and nonsmooth optimization algorithms. Ref. [3] concerns the choice of
numerical scheme for the solution of adjoint shallow water equations from viewpoint of

gradient of the cost functional.
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The present paper concerns the discontinuities of adjoint parameters from viewpoint of

the cost functional gradient, which is widely used in the variational statements of inverse
problems. These discontinuities may be engendered by discontinuous structures in the gas
flow. Another discontinuities may be caused by boundary conditions (sources) in the adjoint
problem containing the mismatch between the target and cal culated values.

The different forms of adjoint problem that may be obtained from use of either the
conservative or non-conservative gas dynamic systems are discussed from the standpoint of

discontinuity handling.

2. Model problem statement
We consider the estimation of inlet flow parameters from outflow measurements for
supersonic gas flow as the model problem requiring the calculation of the adjoint parameters

in an inverse problem. The non-divergent direct problem equations are used at  the first step.
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P=pRT, e=C, T= R/(k-1)T.
f0.Y)= fo (Y); fIX,1)= fw (1); f{X.0)= fu(0); The boundary conditions of the undisturbed

external flow are used on boundaries Y=0, Y=1.
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The calculation region sketch is presented in Fig. 1. We are searching to estimate

inflow (X=0) parameters f(Y)=(o(Y), Ui(Y),e(Y)) from outflow data f*?(Y,X,....).

The problem is posed as a variational statement of the problem of minimizing the following

cost functiona
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The gradient of the above cost functional required for its minimization may be

obtained from the adjoint equations as described in [4,5].
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Initial conditions for adjoint problem (X=X,,,.) are:

Xmax

U, +(y-)Wel p=2p7 (Y, 2) - p(¥,Z))) ™ =0,

(W, +W,0+ W, (y=De =AU (¥,2)~U(X,Y,Z))] ™ =

Xmax

oW, —20r=r(Y,zZ)-Vv(,Z2)) =0

v, +r-0w, -2l (v, 2)-e(v,2))) "™ =0,

The boundary (Y=0, Y=1) conditions are:

g
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=0 (w,) =0
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The variation of the cost follows:

Ae(t, (1) =] ((weu F(y-)W, pe. (1)) |, dY +

(W u+(-dWel goo,m) |, dr+

Y

+(wu+ v, +(y-)Welpu, (1) |, _ar + (W07, (1) |, dY

Y Y

(7)

(8)

(9)

(10)

This equation provides the values of the gradient of the cost functional, for example the

energy component assumes the form:
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e (e, () = (W U+ (0w, ) (1)

=0

This gradient provides the key element of the inverse problem solution via
optimization methods.

System (5-7) has a quasi-conservative form in terms of the adjoint variables. It aso
has sources, containing spatial derivatives of the gas-dynamic parameters. The discontinuities
(both in gas-dynamics system and its adjoint variables) are the cause of computational
difficulties when this system is to be solved. The standard ways to handle these difficulties are
based on using the divergent equation form or introducing certain viscosity (natural or
artificial) [6]. Egs. (1-3) may be solved by smoothing the gas-dynamic field. If the field is not
smooth numerical problems are expected in (5-7) due to the discontinuous coefficients and

infinite spatial gradients of the field parameters.

3. Discontinuities of the adjoint parameters
The propagation of the small disturbances in the flow-field is described by

characteristics of the tangent linear model [7]. Let us consider the model linear system

U, AU, . .
[[ |42 +a;,— L Waxdy==[ | 4, o, +a, My axay+
y aX y aY y aX y aY J

+[ 4,WUdy + [ a, WU dx

Iy I,
direct problem: A,AE+a.. o, =0;
iax gy (12)
ov o,

adjoint problem: Ay.a—X’#ay_ aY’ =
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The adjoint problem operators are formed by transposition of the direct problem operators.

The characteristics may be determined by the analysis of the propagation of a disturbance of

wx—ky)

the form l,-ei( . The characteristic directions are determined by the equation

‘AA[j —a;

=0; A= C}: [7]. Thus, the characteristics of the direct and adjoint systems coincide

while the adjoint variables evolve along the direct problem characteristics but in the opposite
direction. This feature engenders most of the adjoint field peculiarities.
Let us compare the gas-dynamics and its adjoint variables discontinuities formation for

the simplest transport equation

oU oU o oV
—+U—=0; —+U—=0
ot Ox ot Ox (13)

U(x)

Fig. 2 Fig. 3

Figs. 2 presents the shock wave formation for first equation (13). Formaly, the
rarefaction (expansion) wave (Fig. 3) isits antipode. But the expansion wave is unstable and a
small variation of theinitial shape U (x) transformsit into an expansion (rarefaction) fan (Fig.

4). So, only structures of Fig. 2 and Fig. 4 really appear in gas dynamics.
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Fig. 4

As the characteristics of adjoint problems are the same as of the direct one, although
the evolution occurs in the opposite direction, we have the same characteristic structures in
adjoint variables field (Fig. 2, 4). With the account of reverse evolution, a gas-dynamics
rarefaction fan corresponds to a compression fan in the adjoint field. Thus, the adjoint
parameters may have discontinuity in the single boundary point (point A, Fig. 4). This
discontinuity formation and transfer along the other family characteristics were described in
[8] for 2-D flow.

On the other hand, the adjoint variables field should have a rarefaction shock structure
(Fig. 3) on the gas-dynamics shock due to reverse evolution. In this case, the shock is stable
since the coefficients in adjoint equations are derived from the previousy computed gas-
dynamics field. A single value of adjoint parameter determines in this way atotal segment in
the adjoint field (Fig. 3). So, the adjoint variables (and the cost functional gradient) are
degenerate in this segment, a fact that may cause numerical difficulties in the optimization
process although the adjoint parameters are continuous on this structure. For example, if we

look for an initial distribution U (x) from certain final observation U®?(T,x) the gradient

of the cost functiona may be expressed as He(U (x)) =-W(0,x). The
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abovementioned degeneration causes a constant value of gradient in significant vicinity of the

discontinuity causing the impossibility of exact restoration of theinitial profile U (x) .

For the two dimensional supersonic flow (Fig. 1, equations (1-3)), the direct and the
adjoint field structures are presented in Figs. 5 and 6. Fig. 5 describes the rarefaction fan in
gas-dynamics parameters and the compression fan in the adjoint field (the discontinuity from
boundary point A is transferred into the flow-field along the characteristic C.. Fig. 6 describes

the shock wave in the gas-dynamics variables and the expansion (rarefaction) shock in the

N
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adjoint variablesfield.

Discontinuity

Fig.5 Fig. 6

The adjoint equations in inverse problems are loaded by the mismatch between target
and calculated values, which may occur in the boundary conditions (Egs. 8) or in source terms
in the flow field. Both target and calculated values may have discontinuities. Naturaly, these

discontinuities propagate along characteristics.

4. Numerical Tests
The formation of the shock waves (even from an initially gently sloping shape) is the

feature of the considered equations. This process should cause the loss of information
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regarding initial parameter distribution when the inverse problem is solved. In the adjoint

problem this appears in the solution, which is degenerate in the hatched sector (Fig. 3). So,
when the inverse problem is solved, numerical difficulties (instability or lack of convergence,
for example) appear. The information losses in such structure should increase as the shock
intensity increases. This aspect was verified by carrying out some numerical tests.

For the flow-field calculation we used a nondivergent finite-difference approximation

of the parabolized Navier-Stokes equations [3,4]. The main deviation from the system (1-3)

2rri
consists in the viscous terms L a—Uz d,, (Re=10% used to smooth the shocks.
Rep dX;

Fig. 7 presents the isolines of the adjoint density caused by the jump in the target

parameters on the outflow boundary. Both the contact line discontinuities and discontinuities

moving along the sound characteristics are visible.

100

Fig. 7

Fig. 8 provides the density isolines for the expansion fan. Fig. 9 demonstrates the
corresponding adjoint density field. The high gradients zone (smeared adjoint density

discontinuity) appears in the expansion fan focus and spreads further along the characteristics.
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As previously mentioned, the shock formation causes an irreversible loss of
information regarding the initial parameters. The impact of the shock on the quality of the
inverse problem solution is estimated from this viewpoint. The gradient was obtained from the
adjoint field while the optimization was performed using the L-BGGS limited-memory quasi-
Newton method [9].

Numerical tests demonstrate that the quality of the solution deteriorates as the shock
intensity increases. This process is similar to information 1osses in viscous processes. A
comparison of inverse problem solution quality dependence on nonlinearity (shock intensity),
Fig. 10, and viscosity (Reynolds number), Fig. 11, may be investigated. Fig. 10 presents the
quality of inflow temperature profile restoration dependence on the ratio of jet temperature
(pressure) to the ambient temperature (pressure) in an under-expanded jet (inviscid flow) on
the shock intensity. Fig. 11 presents the quality of inflow temperature profile restoration
depending on the Reynolds number. We can see that increasing the shock intensity is

analogous to increasing the viscosity (i.e. decreasing of Reynolds number).
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Quality of result in dependence on the magnitude of disturbance

NI= 1+ (T-T0)/ Tj
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The quality of temperature estimation in dependence on Re number
1+ (T-T0)/ Tj
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5. Adjoint problem corresponding to the divergent form of the direct problem

Depending on the form of the direct problem (divergent or non-divergent) the form of
the adjoint problem changes. For the non-divergent direct problem

U, U,
+a, ) =0
oxX oY

4,0)
(14)

the adjoint problem has a quasi-conservative ([7]) form

L04,O)%) | 0a;(OW)
axX oY

_F:jl_pl :0
(15)
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where the source terms £, =( ] in general contain the space derivatives

of the gas-dynamic parameters. If the direct problem is smeared (i.e. has no discontinuities)
the adjoint equations do not contain any singularities.

For the direct problem conservative form,

a(By(U)U,)+0(By(U)Uf):0
ox oY

(16)

the adjoint problem has a nondivergent form containing no space derivatives of the gas-

dynamic parameters.

o o,
L+ (b (U)+ M. .
[%'¢ b, @)+ M,) aY

(17)

(Bg,' (U) + Gg,‘) =0

where G, :LB"/’(U)U T M :ab"f(U)U,.

ou, " eu,

The adjoint variables should be smeared for the shock-capturing calculations.

Thus, in inverse problems the shock-capturing means smoothing either the direct
problem variables or the adjoint variables. From this viewpoint, the use of automatic
differentiation for compressible inviscid flows requires the exercise of some caution. We may
have no difficulties with discontinuities in the divergent direct problem but the corresponding
adjoint problem should use additional means to handle discontinuities.

It should be mentioned that when the adjoint problem is obtained from the divergent
direct one, the sources (at the boundary or within the flow field) are engendered only by the
discrepancy between calculation and target a fact that may be turn to be very useful during

debugging.
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Ref. [3] discusses the choice of numerical schemes for the solution of adjoint shallow water

equations. The adjoint equations corresponding to the conservative form of direct equations
are not conservative. The special finite volume method was successfully used for
approximation of the adjoint equations. Ref [11] deals with optimal boundary control of
aeroacoustic noise governed by the two-dimensiona unsteady compressible Euler equations.
We have above considered the couple of non-divergent direct problem (1-3) and quasi-
conservative adjoint problem (5-7) for gas flow. Let us now compare the couple of divergent
direct problem (18-20) and non-divergent adjoint one (23-25). The system (18-20) provides

for the calculation of discontinuities without smearing.

a(pU ") _
ax* (18)
v +Ps,) o
ax* (19)
a(pU "ho) 0.
ox* ' (20)

Here h(,o,P):ylp is gas specific enthalpy, hy=h+U’+V*)/2 - tota enthalpy,
y-1ip

P=pRT, P=p(v-1)/Who-(U*+V°)/2), e=R/(y1)T, h=)e.
In astandard way, we form Lagrangian L(f.(Y)) from the cost functional and the weak

statement of (18-20).

L(f. (V)= e(f ) + | (a((;;(U)jth.Q

Q

(21)

The Lagrangian is transformed by the integration by parts

X e
szoda-k

oW
L ()= () - | (Mf; jpu 40 [ w0
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X
*_Oda

—j (gwk (pU*U" + PO, ))dQ+J' W (pU U+ PJ,)

(22)

(pUh)dQ'*‘ X —Oda

K

Thisform isvery useful for finding the variation of the Lagrangian for acomparison starting
from the nondivergent flow equations. The adjoint parameters (¥, %, ¥, ¥,) provide

conditions for Lagrangian variation to depend on control parameters in the form

AL=Ag= j grad(&L.(Y)dY. The adjoint variables should satisfy the following system
Y. Z

_ 23
vt UU’?){?“V 1?;;(ho—UnUn/2) M 0 =3
y
- M, , W, y-10¥ oV (24)
U’ U’ + L5 pU, + phy 2 =0
PY o T PY i 'Oo"X" y X" nPULT Pllo gk

ollJ,; +y—1powk -0 (25)
17,4 y X

Initial conditions for the adjoint problem are posed on outflow boundary (X=X,,..).

Xmax
WU +wuu Yy (ho—U,,Un/2)+w,,UXho—2(p(Y)—p”P(Y»% =0
14

X _y_l — i IV - = =
[p.IJ,D ix +p.|JnUn5ix +p~HU 7p+,x(]1 +LIJhd105ix Z(U(Y) Uexp(Y))J _Q l ];2 (26)

Xmax

(y_llixp+ W oU" —Z(ho(Y)‘hoexP (Y))] =0

4
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The boundary conditionsat (Y=0;1) are:

(W, +wu +nWw,) =0 (v,) =0

Y=0 =

(27)
The cost functional variationis:
Ae(f (Y,Z)) = j((tva" +WUU +V;1pr (h,-UU,12)+ LPhU“‘hojpr (Y)] | Y+
Q )4 -
+ J((p‘“pol +pPU"S, + pPPU" -yy_lp‘PxU[ +W, ohyd, —2(U'(Y) -Uéxp(Y))]AU"w(Y)] | odY +
)V w prw, o Iy || ay
Q * ! x=0 (28)

The present expression yields the gradient of the cost functional.

The divergent form of direct problem provides for feasibility of shock-capturing
calculation. Similarly, the adjoint problem obtained from the divergent form avoids
difficulties connected with unbounded spatial derivatives of gas-dynamic parameters that arise
in non-divergent form [4,5]. Nevertheless, the adjoint parameters may have their own
discontinuities and system (23-25) cannot be computed without additional smoothing or using
specia numerical schemes [3]. In [3] the smoothing is performed on the direct problem
solving for the strong shock and is mentioned there as the reason for convergence rate
deterioration. It may be that the real reason for the poorer convergence was the loss of the
information in the shock as described above.

The comparison of direct and adjoint forms of equationsis presented in the Table 1.

Tablel
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Direct problem (D1) Adjoint problem (A1)
ank cpt 9P ow,ut) . aut -1 e 0" W, 1 aeely- 1))qJ o
ox* ox* ax* an" - “p p2 ax*
i k ' k aq_}
;iU (r=Dape) _, | 0U :P,)_OU' g+ pp)_wpap_agwe+(y_])a(we¢)zo
OX" o o0X' ax ax’ ax’ ax’ ax’ ax’
e oU* U, ¥, oU 0 (W
k - = e (B T () k=
U ot +(y 1)ean 0 ox, (v )an c AW,

Spatial derivatives of discontinuous field parameters :)? are available. Discontinuous coefficientsin

. aUutw : o :
expressions (an) are compensated by discontinuities in adjoint parameters and the spatia

derivatives do not engender the singularities.

Direct problem (D2) Adjoint problem (A2)
k M
aleUt) vt e syhyt A YLV GGy )t S =0
ox* ox ox y oX oxX
kyri _
a(IO[J(J:-Pdik):O Uz olp Uiolpk__l_dpp_l_y 101”1 ' k+hoolphzo
)¢ ox* ax' ox* y ox" " ax*
olpU'hy) _ gt M Ly 1M,
axk 'y oK

. o . . - ov
Spatial derivatives of discontinuous adjoint parameter aX;‘

At first glance the direct and adjoint problems appear to be inseparably linked.
Nevertheless, if we have fixed (codes, for example) adjoint system (Al or A2) we may use
any (most suitable) direct problem since the gas-dynamics parameters (from D1 and D2) are
easily converted. Conversion of adjoint parameters is barely feasible, hence if the direct

problem is fixed, there is no choice in adjoint problem.
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CONCLUSION

The computation of the adjoint variables for supersonic inviscid equations is
complicated by the existence of discontinuities both in the gas-dynamic field and in the
adjoint field. The discontinuities of the adjoint variables are of the following kinds:

1. Discontinuities moving along streamline and discontinuities, moving along sonic lines
from the breaks of the target functions (on boundary or within flow-field).

2. A discontinuity, arising on the boundary at the focus of the expansion fan and
transferred within the flow field along the characteristics of another family.

These discontinuities pose significant numerical difficulties for the calculation of the
adjoint field parameters. Different forms of the adjoint problem exist, which are not
equivalent from the numerical viewpoint:

1. Direct problem divergent form (Egs. 21-23) engenders non-divergent adjoint equations,
which should have computational problem with the discontinuities of adjoint parameters. On
the other hand, this form does not contain space derivatives of gasdynamic parameters and is
thus tolerant to flow discontinuity. Special numerical schemes are efficient for this form of
equations[3].

2. The non-divergent form of the direct problem yields quasi-conservative form of the adjoint
problem, which has no problem with the adjoint parameter discontinuity, but is having sources
containing gas-dynamic parameters spatial derivatives, which are unbounded on the
discontinuities.

In both events special means to handle the discontinuities must be used. Specia
attention should be paid to the implementation of automatic differentiation tools for the
compressible flows described by the divergent equations. In this event, the corresponding
adjoint problem is not divergent and has numerical difficulties related to the adjoint

parameters' discontinuities.
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The shock formation causes an irreversible loss of information. This phenomenon is

similar to the information loss in the dissipation. For the adjoint problem calculation this
effect arises as the degeneration of the adjoint parameters within an expansion wave and
causes the deterioration of the quality of inverse problem solution.

Use of nonsmooth optimization algorithm asin [2] or in [10] can serve as a useful tool

to handle discontinuities and to avoid use of smoothing.
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