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§0. Introduction

Let Y be the singular locus of a hypersurface X in a smooth variety M , with the
scheme structure defined by the Jacobian ideal of X (we will say then that Y is the
singular scheme of X, to emphasize that the scheme structure of Y is important
for our considerations). In this note we consider a class in the Chow group of Y
which arises naturally in this setup, and which captures much intersection-theoretic
information about the situation. The guiding question we have in mind is: which
schemes Y can arise as singular schemes of hypersurfaces? We will obtain strong
constraints showing for instance that the only hypersurfaces in PN whose singular
schemes are positive dimensional linear subspaces of PN are quadrics, and that no
(reduced) nodal curve can be the singular scheme of a hypersurface in a non-singular
variety. Many more statements of this sort can be found in section 3.

A different type of application is in section 2: we show how our class relates to
other invariants of the singularity of a hypersurface; the class can be used to recover
results of Holme and Parusiǹski on degree and multiplicity of dual varieties, and
leads naturally to a generalization of the notion of ‘ranks’ of a (smooth) projective
variety. Also, we obtain a strengthening of Landman’s parity result, and a new
proof of a result of Zak on the dimension of the dual of a smooth variety. The
duality results follow by applying the framework to hyperplane sections of M : the
singular scheme of a section is supported on the locus of contact of the hyperplane
with M , and the class can be used to measure this contact. For example, the
class measures how ‘general’ a given section is: we show (Corollary 2.6) that if the
contact scheme is a linear subspace Pr−1, then the corresponding hyperplane is a
smooth point of the dual variety of M , and the dual variety has codimension r.

The main general results are in section 1, where we prove (Corollary 1.7) that the
class we introduce depends in fact only on Y and on the line bundle L = O(X)|Y ,
and not on the ambient variety M (provided that Y is the singular scheme of a
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section of L in M). Also, we show that the class is well-behaved with respect to
general sections (Proposition 1.3). The degree of the zero-dimensional component of
the class gives the ordinary Milnor number of the singularity when Y is an isolated
point, and agrees with a generalization (the “µ-number”) of the Milnor number
due to Parusiǹski ([P1]) for positive dimensional Y (§2.1); we call our class the
“µ-class” of Y with respect to L. We prove that the µ-class is intrinsic to Y and
L by showing (Theorem 1.6) that (if Y is the singular scheme of a hypersurface) it
can be computed in terms of L, of the sheaf of differentials of Y , and of Fulton’s
canonical classes of Y ([F], Chapter 4). For example, if Y is itself non-singular, its
µ-class with respect to any line bundle L turns out to be

(*) c(T ∗Y ⊗ L) ∩ [Y ]

(where T ∗Y is the cotangent bundle of Y ). The constraints exploited in §3 typically
follow by computing the µ-class both intrinsically and with respect to a specific
realization of Y as a singular scheme of a section of L in some ambient space.
Formula (*) was inspired by a result of Parusiǹski ([P1], Proposition 1.5); however,
the constraints arise from computing the codimension-1 component in the µ-class,
while Parusiǹski’s results only deal with the 0-dimensional component. It would be
interesting to extend (if possible) other results of Parusiǹski’s to the whole µ-class.

It would also be interesting to find out to what extent a “µ-class” can be defined
when Y is not necessarily the singular scheme of a hypersurface. The intrinsic
expression we obtain (Theorem 1.6) is not necessarily well-defined then (cf. Exam-
ple 3.8); still, it might be possible to define a class for arbitrary schemes Y and
line bundles L, satisfying some functoriality property, and agreeing with the µ-class
when Y is the singular scheme of a hypersurface with line bundle L in a smooth
variety. It doesn’t seem unreasonable to expect that it should be possible to define
a µ-class for the singular scheme of an arbitrary subvariety of a given non-singular
variety. The resulting constraints would then be rather interesting.

The µ-class introduced here is used in [A2] to compare different notions of char-
acteristic classes for a (possibly singular) hypersurface.

Acknowledgements. I was led to consider these classes as I was working on
[A-C] (of which some results are used in §2), and I want to thank F. Cukierman
for collaborating with me on that project. Also, I want to thank P. Pragacz for
pointing out Parusiǹski’s work to me. I had helpful conversations with R. Varley
while writing this note. I thank MSRI for the hospitality while working on this
project, and Florida State University for a Summer Award under which part of
this research was done.

§1. The µ-class of the singularity of a hypersurface.

§1.1. Preliminaries. Throughout this paper we will use without further mention
the following notations. M will denote a smooth n-dimensional algebraic variety
over an algebraically closed field of characteristic 0; L will be a line bundle on M ,
and X will be the zero-scheme of a section of L. Typically, X will be a prime divisor
of M and L = O(X); we will refer to X as a “hypersurface” on M . The singular
scheme of X, SingX, will be the subscheme of M supported on the singular locus
of X, and defined locally by the ideal (F, ∂F∂x1

, . . . , ∂F∂xn ), where x1, . . . , xn are local
parameters for M , and F is the section of L defining X; this structure is clearly
independent of the choice of local parameters.



SINGULAR SCHEMES OF HYPERSURFACES 3

Definition. We say Y is an ‘s.s.h.’ (singular scheme of a hypersurface) with respect
to L = L|Y if Y = SingX for some X as above.

Note that if Y is non-singular, nothing prevents us from taking Y = X = M ,
with X = zero-scheme of the zero-section of any line bundle L on Y . In particular,
every non-singular variety is an s.s.h. with respect to any line-bundle.

One prototype situation the reader may want to keep in mind (especially for §2) is
the following: M is embedded in PN , L is the hyperplane bundle, X is a hyperplane
section, and Y is the ‘contact locus’ of the section, that is the locus where the
hyperplane is tangent to M ; the locus is given a scheme structure as specified
above, and named the contact scheme. We will at times borrow the terminology
arising from this situation (for example, in §2 we will systematically call ‘dual
variety’ the variety parametrizing singular sections of L); in general, however, we
do not require L to be very ample.

One remark concerning this set-up is in order before we start. We will shortly
introduce a class ‘measuring’ the singularity of X along Y , one essential ingredient
of which will be the Segre class s(Y,M) of Y in M . Now observe that in certain
important cases (e.g., isolated singularities) there is another natural way to define
a scheme structure on Y : we could take the scheme Y ′ defined by the (a priori)
smaller ideal ( ∂F∂x1

, . . . , ∂F∂xn ). In some contexts, this structure may be preferable to
the one we chose; the remark is that this choice is essentially irrelevant:

Lemma 1.1. With the above notations, s(Y,M) = s(Y ′,M).

This statement is an easy consequence of the following general fact about Segre
classes, which seems of independent interest:

Lemma 1.2. (No restriction on the characteristic here.) Let Y, Y ′ be subschemes
of an irreducible scheme V . Suppose that for all maps ϕ : T −→ V of the Spec of a
discrete valuation ring into V , ϕ−1(Y ) = ϕ−1(Y ′). Then s(Y, V ) = s(Y ′, V ).

(Notice that necessarily Yred = Y ′red; the Segre class lives in the Chow group of this
reduced scheme.)

Proof. By [Hu], Lemma (3.4), the hypothesis implies that the ideal sheaves of Y
and Y ′ have the same integral closure in OV . Thus we may assume the ideal sheaf
of Y is the integral closure J of the ideal sheaf I of Y ′. This implies IJ n = J n+1

for sufficiently large n.
Now blow-up V along Y . The inverse image of Y ′ is defined by the ideal ⊕nIJ n,

which by the above defines the same subscheme as ⊕nJ n+1, that is the exceptional
divisor. The equality of Segre classes follows then by the birational invariance of
these (that is, [F], Prop. 4.2). �

Lemma 1.2 implies Lemma 1.1: we just have to observe that, in characteristic 0,
the order of a function at any of its zeros is at least as large as the order of its
derivatives.

§1.2. The µ-class. This paper studies the following class arising in the situation
detailed in §1.1. We will call this class “µ-class” since it generalizes most naturally
Parusiǹski’s “µ-number” (see §2.1).
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Definition. Let Y be the singular scheme of a section of a line bundle L on a
smooth variety M . The µ-class of Y with respect to L is the class

µL(Y ) := c(T ∗M ⊗ L) ∩ s(Y,M)

in the Chow group A∗Y of Y .

Here and in the following, c denotes total Chern class; s is the Segre class (in
the sense of [F]); and pull-back notations are omitted when no ambiguity is feared.
Notice that this definition depends a priori on the choice of M : we will prove in
§1.3, Corollary 1.7, that in fact µL(Y ) is intrinsic to Y and L|Y , in the sense that
if Y is realized in two ways as an s.s.h., say with respect to L1 in M1 and to L2 in
M2, and L1|Y = L2|Y = L, then necessarily

c(T ∗M1 ⊗ L1) ∩ s(Y,M1) = c(T ∗M2 ⊗ L2) ∩ s(Y,M2)

In this paper we are not defining (and we will not use) the notion of µ-class unless
Y is a s.s.h.

One basic fact about the µ-class is that it behaves most naturally with respect
to general sections of L, if there are enough of these:

Proposition 1.3. Suppose L is generated by global sections, and let Xg be a general
section of L. Then

µL(Y ∩Xg) = Xg · µL(Y ) (= c1(L) ∩ µL(Y ))

The proof of this statement hinges on the following Lemma, which also seems of
independent interest. Bertini’s theorem tells us that the singular locus of X ∩Xg

equals set-theoretically the intersection of the singular locus of X with Xg. The
following result shows that in fact the equality holds at the level of Segre classes:

Lemma 1.4. Under the hypotheses of Proposition 1.3:

s(Sing(X ∩Xg), Xg) = s((SingX) ∩Xg, Xg)

Proof. Let F be a local equation for X, in local coordinates x1, . . . , xn in M . For
a given Xg we can choose the coordinates so that x1 is the equation for Xg; then
we have to compare the ideal of (SingX) ∩Xg, that is(

x1, F,
∂F

∂x1
,
∂F

∂x2
, . . . ,

∂F

∂xn

)
and the ideal of Sing(X ∩Xg), that is(

x1, F,
∂F

∂x2
, . . . ,

∂F

∂xn

)
Notice the latter is included in the former; morally, we would like to say that for a
general choice of Xg we can force ∂F

∂x1
to be contained in the second ideal, and the

two would be equal.
The statement we need is however much weaker. Obtain an embedded resolution

of singularities of the (support of)X inM : that is, a sequence of blow-ups at smooth
centers yielding a variety M̃ π−→M such that the inverse image of X in M̃ consists
of the union of (multiples of) smooth divisors with normal crossing.
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Claim. For a general choice of Xg, π−1 (Sing(X ∩Xg)) = π−1 ((SingX) ∩Xg)

For this, we argue by induction on the number r of blow-ups needed in the
desingularization. If r = 0, that is if X consists of the union of divisors with
smooth support and normal crossings, working locally we may assume X is given
by xe22 x

e3
3 · · ·xemm and Xg by x1, in which case the result is clear.

Assume then r > 0, and that the claim is true for r − 1 blow-ups. A general
Xg intersects the center of the first blow-up M1

π1−→ M transversally (by Bertini’s
theorem), so locally we may choose coordinates y1, . . . , yn on M1 in such a way that
π1 is given by 

x1 = y1

x2 = x2(y2, . . . , yn)
. . .

xn = xn(y2, . . . , yn)

Then we have (denoting F = π∗1F for convenience)

∂F

∂y1
= π∗1

∂F

∂x1
,

∂F

∂yi
=

n∑
j=2

(
π∗1
∂F

∂xj

)
∂xj
∂yi

for i > 1 ,

and in particular(
F,

∂F

∂y2
, . . . ,

∂F

∂yn

)
⊂
(
F, π∗1

∂F

∂x2
, . . . , π∗1

∂F

∂xn

)
.

Now pull-back by the composition π̃ : M̃ −→ M1 of the remaining r − 1 blow-ups:
this gives (writing F = π∗F = π̃∗F )

π̃∗
∂F

∂y1
= π∗

∂F

∂x1
,

(
F, π̃∗

∂F

∂y2
, . . . , π̃∗

∂F

∂yn

)
⊂
(
F, π∗

∂F

∂x2
, . . . , π∗

∂F

∂xn

)
;

and observe π̃ is a resolution of the inverse image of π−1
1 (X) requiring r−1 blow-ups,

so that by the induction hypothesis π̃∗ ∂F∂y1
∈
(
F, π̃∗y1, π̃

∗ ∂F
∂y2

, . . . , π̃∗ ∂F∂yn

)
. Hence

this implies that π∗ ∂F∂x1
∈
(
F, π∗x1, π

∗ ∂F
∂x2

, . . . , π∗ ∂F∂xn

)
, which is the claim.

Next observe that π−1Xg = the proper transform X̃g of Xg (since Xg is a
hypersurface and its proper transforms all intersect transversally the centers of the
blow-ups), so π−1Xg = X̃g −→ Xg is birational. By the claim we have

s(π−1Sing(X ∩Xg), X̃g) = s(π−1((SingX) ∩Xg), X̃g) ,

and the Lemma follows by applying π∗ and the birational invariance of Segre
classes. �

Given Lemma 1.4, we can now prove Proposition 1.3:

Proof. Apply Lemma 1.4 with Y = SingX:

µL(Y ∩Xg) = c(T ∗Xg ⊗ L) ∩ s(Sing(X ∩Xg), Xg)

= c(T ∗Xg ⊗ L) ∩ s((SingX) ∩Xg, Xg).



6 PAOLO ALUFFI

Now we use Lemma A.3 in [A1] (with m = 0), and obtain

µL(Y ∩Xg) = c(T ∗Xg ⊗ L) ∩Xg · s(SingX,M)

Next, tensor
0 −→ (NXgM)∗ −→ T ∗M −→ T ∗Xg −→ 0

by L = O(Xg) = NXgM to realize c(T ∗Xg ⊗L) = c((T ∗M ⊗L)|Xg ), and conclude

µL(Y ∩Xg) = Xg · c(T ∗M ⊗ L) ∩ s(SingX,M) = Xg · µL(SingX)

= c1(L) ∩ µL(Y )

as needed. �

§1.3. µL(Y ) is intrinsic to Y and L. Here we show the independence of the
µ-class of Y from the specific ambient variety M (provided that Y can be realized
as an s.s.h. in M): µL(Y ) depends only on the scheme Y and the restriction L of
the line bundle to Y . To prove this, we will obtain (Theorem 1.6) an expression
for µL(Y ) in terms of Fulton’s intrinsic ‘canonical classes’ c∗(Y ) and of the sheaf
of differentials of Y ; this in turn will yield the particularly simple expression for
µL(Y ) when Y is smooth (Corollary 1.8). The more general expression depends on
the choice of a smooth scheme dominating Y ; the upshot will be that this choice
is irrelevant when Y is the singular scheme of a hypersurface. The expression in
Theorem 1.6 is otherwise not necessarily well-defined; we do not know how to define
a ‘µ-class’ of an arbitrary scheme Y with respect to a given line bundle L. It is
tempting to conjecture that there must be a reasonably functorial definition of such
a class.

As a subproduct, we will also get a strong condition (Proposition 1.11) that a
scheme must satisfy to be an s.s.h. In fact we do not know of any scheme satisfying
this condition and which is not the singular scheme of a hypersurface. Question: is
the condition of Proposition 1.11 in fact a criterion?

The key to our main result here is the fact that if Y is an s.s.h. in a variety M ,

then the operator
c(T ∗M ⊗ L)
c(TM)

∩ − on the Chow group A∗Y does not depend on

the choice of M . To show this, we define an operator on A∗(Y ) in the following
manner. Given any α ∈ A∗(Y ), choose a non-singular variety mapping properly to
Y : Z

p−→ Y , together with a class β ∈ A∗(Z) such that p∗(β) = α: for example, we
may choose Z to be a smooth envelope of Y (cf. [F], Example 15.1.6 and Lemma
18.3).

Definition. We put

AL(α) = p∗ (c([p∗(ΩY ⊗ L)]− [Hom(p∗ΩY ,OZ)]) ∩ β) ,

where [F ] denotes the class of F in the Grothendieck group of Z.

Remark. Here we are using the fact that Chern classes can be defined on the group
K0(Z) of coherent sheaves on Z, since Z is non-singular and therefore the group
coincides with the ring K0(Z) of locally free sheaves, cf. for example [H], p. 435.
Note that we cannot a priori apply a ‘projection formula’ and express AL(α) as
the Chern class of a sheaf on Y capped with p∗β = α, since Chern classes are not
defined on K0(Y ). In fact, for arbitrary Y the right-hand-side of the formula in the
statement may change for different choices of Z and β (cf. Example 3.8). However,
we claim that A is well-defined if Y is an s.s.h., and in fact we will show:
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Proposition 1.5. If Y is an s.s.h. with respect to L in M , then

AL =
c(T ∗M ⊗ L)
c(TM)

as operators on A∗(Y ).

We delay the proof of this a moment, and first list a few consequences. Here we
let c∗(Y ) denote Fulton’s intrinsic class of Y ([F], Example 4.2.6): this is a class
defined for any scheme that is embeddable in a non-singular variety, and which
agrees with c(TY ) ∩ [Y ] when Y is itself non-singular.

Theorem 1.6. Let Y be an s.s.h. with respect to L; then with notations as above

µL(Y ) = AL(c∗(Y ))

There is no guarantee that the right-hand-side in this formula is well-defined
unless Y is an s.s.h. It is a consequence of the theorem that the class is well
defined if Y is the singular scheme of a hypersurface: indeed, the left-hand-side
does not depend on the choice of the variety Z and the class β needed to define
AL. Similarly:

Corollary 1.7. Let Y be an s.s.h. with respect to L. Then µL(Y ) only depends on
Y and L.

(That is, the right-hand-side in the definition of the µ-class in section 1 is indepen-
dent of the variety M in which Y is realized as an s.s.h.)

Proof. Indeed, the right-hand-side of the expression in Theorem 1.6 does not depend
on the choice of a variety M in which Y is realized as the singular scheme of a section
of a line bundle restricting to L. �

If ΩY is locally free, we can apply the projection formula in the definition of AL:

Corollary 1.8. If Y is non-singular, then

µL(Y ) = c(T ∗Y ⊗ L) ∩ [Y ] .

Proof. Apply the projection formula; or simply choose Z = Y , β = c∗(Y ) in the
definition of AL and apply Theorem 1.6 to get

µL(Y ) =
c(T ∗Y ⊗ L)
c(TY )

∩ c∗(Y ) = c(T ∗Y ⊗ L) ∩ [Y ]

since c∗(Y ) = c(TY ) ∩ [Y ] when Y is non-singular. �

Remark. Corollary 1.8 can also be deduced directly from the definition of µL once
we have Corollary 1.7: indeed, if Y is non-singular we may then compute µL by
choosing (almost pathologically) M = Y , and X = Y = the zero-locus of the zero-
section of L. Then SingX = Y , and s(Y,M) = s(Y, Y ) = [Y ], so the definition of
µL gives the formula in the statement.

Remark/Example. We stress again that the right-hand-side in the definition of
µL(Y ) in section 1 computes µL(Y ) only if Y can be realized as an s.s.h. in M . It
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is clear that, without this assumption on M , the expression c(T ∗M ⊗L)∩ s(Y,M)
cannot be controlled. For example, consider Y = P

s ⊂ M ′ = P
n and L = O(1):

then µL(Y ) = [Y ] − c1(O(1)) ∩ [Y ] + . . . (for example by Corollary 1.8), while
c(T ∗M ′⊗L)∩ s(Y,M ′) = [Y ]− (n− s+ 1)c1(O(1))∩ [Y ] + . . . does depend on M ′,
and equals µL(Y ) only in the pathological case n = s. However, this just says that
a proper linear subspace cannot be realized as an s.s.h. of a projective space with
respect to O(1).

This may be the simplest possible example of the constraints that will be ex-
ploited in the applications in §2 and §3. Note that Ps can be realized as an s.s.h. with
respect to to O(1) in a ‘non-pathological’ way: for example, if (xi), (yi) are homoge-
nous coordinates in P2,P1 resp., then the singular scheme of x0y0 in M = P

2 × P1

is a P1. This reflects the fact that the dual variety of the Segre embedding of M is
not a hypersurface, cf. Corollary 2.6.

Proposition 1.5 will be deduced from the following fact. Suppose E is a vector
bundle on a scheme Y , and that for a line bundle L on Y we have a symmetric map

E ⊗ E ϕ−→ L

This induces a vector bundle map E φ−→ F = Hom(E ,L), and the induced diagram

(*)

Hom(F ,L)
φT−−−−→ Hom(E ,L)∥∥∥ ∥∥∥

E φ−−−−→ F
commutes by the symmetry of ϕ.

Proposition 1.9. Then for any sheafM of OY -modules there is an exact sequence

0 −→ Hom(Cokerφ,L⊗OY M) −→ E ⊗OY M−→ F ⊗OY M−→ Cokerφ⊗OY M−→ 0

Proof. Consider the exact sequence

E −→ F −→ Cokerφ −→ 0 ;

applying Hom(−,L ⊗OY M) and −⊗OY M gives the two exact sequences

0 −→ Hom(Cokerφ,L ⊗OY M) −→ Hom(F ,L ⊗OY M) −→ Hom(E ,L ⊗OY M)
E ⊗OY M−→ F ⊗OY M−→ Cokerφ⊗OY M−→ 0

Now tensor diagram (*) by M, obtaining the commutative diagram

Hom(F ,L)⊗OY M
φT⊗1−−−−→ Hom(E ,L)⊗OY M∥∥∥ ∥∥∥

E ⊗OY M
φ⊗1−−−−→ F ⊗OY M

;

since E , F are locally free, the top row can be replaced with

Hom(F ,L ⊗OY M) −→ Hom(E ,L ⊗OY M)

and it is then clear that the two exact sequences link into the one given in the
statement. �

If Y is an s.s.h. in M , we apply the above to the Hessian (TM ⊗ TM)|Y −→ L
of the section F of which Y is a singular scheme:
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Corollary 1.10. If Y is an s.s.h. in M , then for every sheaf M of OY -modules
there is an exact sequence

0 −→ Hom(ΩY ,M) −→ TM ⊗M −→ T ∗M ⊗ L⊗M −→ ΩY ⊗ L⊗M −→ 0

Proof. Working in local coordinates, the induced symmetric morphism

TM |Y
φ−→ T ∗M ⊗ L|Y

sends
∂

∂xi
to
∑ ∂2F

∂xi∂xj
dxj = d

(
∂F

∂xi

)
: since the

(
∂F

∂xi

)
are precisely local

equations for Y , we see that the image of φ (up to tensoring by L) is nothing but
the image of d in the ‘second exact sequence’ of differentials (cf. for example [H],

p. 173; notice that dF =
∑ ∂F

∂xj
dxj = 0 over Y )

I
I2
⊗ L d−→ T ∗M ⊗ L −→ ΩY ⊗ L −→ 0

where I is the ideal of Y in M . That is, Cokerφ = ΩY ⊗ L; Proposition 1.9 then
gives the statement, since Hom(ΩY ⊗ L,M⊗L) = Hom(ΩY ,M). �

Corollary 1.10 implies Proposition 1.5: choose a Z as in the definition of AL,
and write the sequence with M = OZ :

0 −→ Hom(p∗ΩY ,OZ) −→ p∗TM −→ p∗T ∗M ⊗ L −→ p∗ΩY ⊗ L −→ 0

is exact. That is,

[p∗T ∗M ⊗ L]− [p∗TM ] = [p∗ΩY ⊗ L]− [Hom(p∗ΩY ,OZ)]

in the Grothendieck group of Z; Proposition 1.5 follows by taking Chern classes
and applying the projection formula to the left-hand-side. �

To get Theorem 1.6, just apply the operator in Proposition 1.5 to c∗(Y ):

µL(Y ) = c(T ∗M ⊗ L) ∩ s(Y,M)

=
c(T ∗M ⊗ L)
c(TM)

∩ (c(TM) ∩ s(Y,M))

=
c(T ∗M ⊗ L)
c(TM)

∩ c∗(Y )

= AL(c∗(Y ))

by Proposition 1.5. Theorem 1.6 is then established. �
Corollary 1.10 can also be used to obtain a strong constraint forced upon a

scheme Y when this can be realized as the singular scheme of a hypersurface:
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Proposition 1.11. Let Y be the singular scheme of a section of a line bundle L
on a non-singular variety. Then for every sheaf M of OY -modules and all i ≥ 1

T orOYi (Ω∗Y ,M) ∼= T orOYi+2(ΩY ⊗ L,M)

where Ω∗Y = Hom(ΩY ,OY ).

Proof. Apply Corollary 1.10 with with M = OY : the sequence

0 −→ Ω∗Y −→ TM −→ T ∗M ⊗ L −→ ΩY ⊗ L −→ 0

is exact. Hence if . . . −→ E1 −→ E0 −→ Ω∗Y −→ 0 is a locally free resolution of Ω∗Y ,
. . . −→ E1 −→ E0 −→ TM −→ T ∗M⊗L −→ ΩY ⊗L −→ 0 will be a locally free resolution
of ΩY ⊗ L, and the result follows by tensoring with M and taking homology. �

Remark. Let Z
p−→ Y be as in the definition of AL. The exact sequence in the

proof of Proposition 1.11 and easy T or manipulations show that (with the above
notations)
AL(α) = p∗(c([p

∗ΩY ⊗ L]− [T orOY1 (ΩY ⊗ L,OZ)] + [T orOY2 (ΩY ⊗ L,OZ)]− [p∗Ω∗Y ]) ∩ β)

Now if p were a finite-T or morphism, then we could define as customary p!([M]) =∑
i(−1)i[T orOYi (M,OZ)] for any coherent sheafM on Y , and get the reasonable–

looking
AL(α) = p∗(c(p![ΩY ⊗ L]− p![Ω∗Y ]) ∩ β) ,

as all but the first few T ors match and cancel by Proposition 1.11. This expression
does not make sense in our set-up, since typically p will not have finite T or; in a
sense, all we are doing in this section is to make sense of this expression nevertheless.

Examples of applications of the above results will be given in sections 2 and 3.
Corollary 1.8 above suffices for many applications when Y is non-singular. The
following stronger statement also follows from Corollary 1.10 and is useful when Y
is singular but has a non-singular component.

Corollary 1.12. Suppose Y is an s.s.h. in a non-singular variety M , and Z
i
↪→ Y

is a non-singular variety such that the inclusion i restricts to an isomorphism on a
dense open subset of Z. Then

[N∗ZM ⊗ L] = [NZM ] + [T ⊗ L]

in the Grothendieck group of Z, where T is the torsion sheaf of ΩY ⊗OY OZ and
NZM is the normal bundle of Z in M .

Proof. By Corollary 1.10 with M = OZ we know

[T ∗M ⊗ L]− [TM ] = [i∗ΩY ⊗ L]− [Hom(ΩY ,OZ)]

Now take Hom(−,OZ) of the first exact sequence of differentials for Z ⊂ Y :

0 −→ Ω∗Z −→ Hom(ΩY ,OZ) −→ Hom(J /J 2,OZ) ;

since the inclusion Z ⊂ Y is an isomorphism on a dense open set of Z, J /J 2 is
torsion and the last term of the sequence vanishes. Therefore [Hom(ΩY ,OZ)] =
[TZ]. Next, T is the kernel of the natural homomorphism

ΩY ⊗OZ −→ Hom(Hom(ΩY ⊗OZ ,OZ),OZ) = Hom(Ω∗Z ,OZ) = ΩZ
by the above; this is an epimorphism, so [i∗ΩY ⊗ OZ ] = [T ∗Z] + [T ]. Putting all
together,

[T ∗M ⊗ L]− [TM ] = [T ∗Z ⊗ L] + [T ⊗ L]− [TZ]

and the statement follows. �
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§2. Relations with other invariants, and applications to duality

Maintain the notations and definition of §1.

§2.1. Milnor numbers and generalizations. If Y is supported on a point P ,
then µL(Y ) = m[P ], where m is the Milnor number of X at P : indeed, in this case
µL(Y ) = s(Y,M), so m is the coefficient of [P ] in s(Y,M), which agrees with the
definition of Milnor number (cf. for example [F], Example 14.1.5 (d)).

Even if dimY > 0, let |Y | be the support of Y , and assume Y is proper; over C,
Parusiǹski ([P1]) has introduced in the above situation an invariant, the ‘µ-number’
of X at |Y |, agreeing with the ordinary Milnor number in case Y is a point.

Proposition 2.1. Over C and with the above notations, Parusiǹski’s µ-number of
X at |Y | equals the degree of the zero-dimensional component of µL(Y ).

Proof. The differential of the local equations of X in M determines a section of
(T ∗M⊗L)|X ; over C, this can be extended to a holomorphic section sX of T ∗M⊗L
over the whole of M . Parusiǹski’s µ-number is defined as the contribution of |Y |
to the intersection number of sX with the zero-section of T ∗M ⊗ L. Now in a
neighborhood of |Y | we have the fiber diagram

Y −−−−→ My ysX
M

s0−−−−→ T ∗M ⊗ L

(that is, in this set-up Y is the scheme-theoretic intersection of the two sections),
so the contribution of |Y | to the intersection number of the sections is ([F], Chapter
6 and 19) the degree of the zero-dimensional component of

c(T ∗M ⊗ L) ∩ s(Y,M) ,

which is the claim. �

The degree of the zero-dimensional component of µL(Y ) generalizes slightly
Parusiǹski’s µ-number in the sense that it defines it over any alg. closed field of
characteristic 0. Maybe more importantly, our class can be defined even if Y is
not proper: in fact, for many of our applications the relevant piece of µL(Y ) is the
codimension-1 component, which may well carry useful information when Y is not
proper.

Notice that in view of Propositions 1.3 and 2.1, the ‘numerical’ information car-
ried by the µ-class of Y (when Y is proper) is essentially equivalent to Parusiǹski’s
µ-number of |Y | and of its general sections |Y ∩Xg1 |, |Y ∩Xg1 ∩Xg2 |, etc.

Also, taking the degree of the zero-dimensional component in Corollary 1.8 gives
a computation of Parusiǹski’s Milnor number recovering a special case of [P1],
Prop. 1.5. Parusiǹski also studies the behavior of the number under blow-ups; it
would be very interesting to extend his results to the whole µ-class (or at least to
the component of codimension 1).

§2.2. Multiplicities of discriminants. View X as a point of the discriminant
D ⊂ PH0(M,L) of L over M , parametrizing the singular sections of L. For ex-
ample, if L is very ample then D is the dual variety of M with respect to the
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embedding of M in PN = PH0(M,L)∗. We will use the term ‘dual variety’ for
the discriminant in the (slightly weaker) hypothesis that the map M −→ P

N is un-
ramified (note that this hypothesis is not required in the set-up of §1); also, the
linear system giving this map need not be complete. In this situation, the multi-
plicity of D at X was investigated in [A-C] under the further hypothesis that D is
a hypersurface in (PN )∗. Now we are able to remove this hypothesis, and in fact
to measure the codimension of D in terms of the µ-class of the singularities of X
(provided of course that SingX be proper, which we will tacitly assume whenever

we compute a
∫

):

Proposition 2.2. Let X be any singular hyperplane section of M . Then the codi-
mension of the dual variety D of M in PN ∗ is the smallest integer r ≥ 1 such
that ∫

c1(L)r−1 c(L) ∩ µL(SingX) 6= 0 ;

and for r = codimPN∗D this number equals the multiplicity of D at X.

Proof. Induction on r: for r = 1, the statement follows from [A-C], Proposition 1.3
and Theorem in §1. Indeed,

c(L) ∩ µL(SingX) = c(L)c(T ∗M ⊗ L) ∩ s(SingX,M)

= c((T ∗M ⊕O)⊗ L) ∩ s(SingX,M)

is the class used in [A-C] to compute the multiplicity of the ‘first’ discriminant.
For r > 1, [A-C] shows that

∫
c(L) ∩ µL(SingX) = 0; next, the key observation

(which we borrow from [Ho], p. 153) is that if the dual variety D of M is not a
hypersurface, then the dual variety D1 of a general hyperplane section M ∩ H of
M is the cone over D (with the point of (PN )∗ corresponding to H as vertex). The
multiplicity of D at X then evidently equals the multiplicity of D1 at X ∩H; but
D1 has codimension codimD − 1, so the statement follows by induction because

c1(L)r−1 c(L) ∩ µL(SingX) = c1(L)r−2 c(L) ∩ (c1(L) ∩ µL(SingX))

= c1(L)r−2 c(L) ∩ µL(SingX ∩H)

(where we used Proposition 1.3 in the last equality). �

Remark. Proposition 2.2 says that the dual variety has codimension ≥ r if and only
if the components of dimension i, 0 ≤ i < r− 1 of c(L)∩ µL(SingX) vanish, for all
sections X. That is, if the dual variety has codimension ≥ r then for all sections X

c(L) ∩ µL(SingX) = Adim SingX + · · ·+Ar +Ar−1

with Aj a class in dimension j, j = r − 1, . . . ,dim SingX (depending on X).
With this in mind, we can use Proposition 2.2 to recover and ‘algebraize’ an

expression of Parusiński’s for the multiplicity of the dual variety (Formula 2 in
[P2]):
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Corollary 2.3. If the dual variety D has codimension r, then its multiplicity at X
is ∫

(−1)r−1µL(SingX) + c1(L)r ∩ µL(SingX)

Proof. By the remark,

µL(SingX) = c(L)−1 ∩ (Adim SingX + · · ·+Ar−1)

(with Ar−1 6= 0), and therefore

∫
(−1)r−1µL(SingX) =

dim SingX∑
i=r−1

(−1)i−r+1c1(L)i ∩Ai

while∫
c1(L)rc(L)−1 ∩ (Adim SingX + · · ·+Ar−1) =

dim SingX∑
i=r

(−1)i−rc1(L)i ∩Ai .

Hence ∫
(−1)r−1µL(SingX) + c(L)r ∩ µL(SingX) =

∫
c1(L)r−1 ∩Ar−1 ,

which equals the multiplicity of the dual variety at X by Proposition 2.2. �

To see that this implies Parusiński’s formula, use Proposition 1.3 to write the
second summand as the µ-class of the intersection of X with r general sections,
then apply Proposition 2.1.

§2.3. Ranks and Holme’s Theorem. Proposition 2.2 was stated with an eye
to the notion of ranks (see for example [K], §4). In [Ho], A. Holme extended to the
case of arbitrary codimension of D the well-known expression for the degree of the
dual variety in terms of the degrees of the Chern classes of M . Holme defines

δs =
n∑
i=s

(
i+ 1
s+ 1

)
en−i

where ej denotes the degree of cj(T ∗M) with respect to the embedding determined
by L. The number δi is the ‘i-th rank’ of M .

Claim. The i-th rank is given by

δi =
∫
c1(L)i−1 c(L) ∩ µL(M)

Indeed, µL(M) = c(T ∗M ⊗ L) ∩ [M ] since M is non-singular (Corollary 1.8); the
claim follows then from a standard Chern class computation, which we leave to the
reader.

Holme’s result (Theorem 1.7 in [Ho]) can then be derived as a particular case of
Proposition 2.2:
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Corollary 2.4. The codimension of the dual variety is the smallest integer r ≥ 1
such that δr 6= 0, and for r = codimPN∗D this number equals the degree of D.

Proof. By Proposition 2.2, this is computing the multiplicity of the dual variety at
the zero-section; which amounts to computing the multiplicity at the origin of the
cone in AN+1∗ over D ⊂ PN ∗; that is, to computing the degree of D (cf. Corol-
lary 1.1 in [A-C]). �

In view of this observation, the numbers∫
c1(L)i−1 c(L) ∩ µL(SingX)

should be seen as an extension to arbitrary sections of L of the notion of ranks, to
which they specialize for the zero-section.

§2.4. Landman-Ein parity Theorem. A remarkable result of Landman states
that if M is not a linear subspace of PN , and the dual of M is not a hypersurface,
then the codimension of the dual variety of M is congruent to dimM + 1 mod 2:
in other words, if the dual is not a hypersurface then the contact locus of a gen-
eral hyperplane must have even codimension in M . Landman’s approach was via
Picard-Lefschetz theory; later this was recovered among a wealth of beautiful re-
sults in Ein’s papers on small duals ([E]). Assume M is embedded in PN , L = O(1),
and Y is the contact locus of a general tangent hyperplane H with M ; then it is
easily seen that Y is a linear subspace of PN , and Ein proves ([E] I, Theorem 2.2)

NYM ∼= Hom(NYM,O(1)) (= N∗YM ⊗O(1)) , implying

c(NYM) = c(N∗YM ⊗O(1)) ;

and this Chern class equality implies easily Landman’s parity result. In Ein’s set-up
this is significant when the dual variety is not a hypersurface (else Y is a point!).

Our observation now is that Corollary 1.12 gives a generalization of the Chern
class equality, and from this we ought to derive a strengthening of Landman’s result.
The upshot is that one does not need to assume the section to be general, or the
contact locus to be a linear subspace, or the dual variety to be small, or indeed
even that L be necessarily very ample. The precise statement is

Proposition 2.5. Let Y be a s.s.h. with respect to L in a smooth variety M .
Assume that Y is pure-dimensional and contains a complete curve C such that

(i) Y is non-singular in a neighborhood of C and
(ii) the L-degree of C is odd.
Then dimY ≡ dimM mod 2.

Proof. We can apply Corollary 1.12 to the non-singular neighborhood Z of C, then
restrict to C and compare c1’s: C avoids the torsion of ΩY , so Corollary 1.12 gives

c1(NZM) ∩ [C] = (−c1(NZM) + (codimYM) c1(L)) ∩ [C]

from which

(codimYM) ·
(∫

c1(L) ∩ [C]
)

= 2
∫
c1(NZM) ∩ [C] ,
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hence (codimYM) · (
∫
c1(L) ∩ [C]) is even, hence codimYM is even. �

This implies Landman’s result: say M ⊂ P
N and L = O(1), and consider a

general hyperplane section; the contact locus (that is, Y ) is then a linear subspace
P
k. If the dual of M is not a hypersurface then k > 0, and we are in the hypotheses

of Proposition 2.5 (with C = a line): the codimension of the contact locus must be
even.

Proposition 2.5 says that this holds for any hyperplane and regardless of the di-
mension of the dual (so the result is significant even when the dual variety is a hy-
persurface), so long as the contact scheme has positive dimension and is non-singular
for example in the neighborhood of a line. To see that hypothesis (ii) is necessary,
consider the Veronese surface in P5: hyperplane sections correspond to conics in
P

2; a hyperplane corresponding to a ‘double line’ is tangent to the surface along a
conic in P5, which is codimension 1 in the surface (and violates (ii)). This example
is somewhat typical: a quadric in Pn may be singular in any codimension—that
is, there is no restriction on the codimension of the singular locus of hyperplane
sections of a 2-Veronese embedding. Proposition 2.5 shows that the situation is
much more constrained for e.g., the codimension of the singular locus of odd-degree
hypersurfaces of Pn: if the singular scheme Y of an odd-degree hypersurface of Pn

is non-singular in the neighborhood of a curve of odd degree, then Y must have
even codimension in Pn. For example, it follows that no hypersurface of odd degree
in P2k may have singularity of ‘transverse type A1’ along a non-singular curve of
odd degree.

Another curious remark concerning the codimension of the dual variety is the
following: as noted above, it is well known that the contact locus of a general
hyperplane with a variety is a linear subspace Pr−1, where r = codimD (cf. for
example [K], p.340) . Corollary 1.8 yields a ‘converse’ to this:

Corollary 2.6. Suppose the contact scheme Y of a hyperplane H with M is a
linear space Pr−1; then the dual variety of M has codimension r, and is smooth
at H.

(Recall that by contact scheme we mean the contact locus endowed of the scheme
structure that naturally makes it an s.s.h.: that is, Y is the singular scheme of
H ∩M in M)

The surprising element in Corollary 2.6 is that we are not assuming the hyper-
plane to be general. The dimension of the contact scheme of a hyperplane need
not be equal to the dimension of the contact locus of a general hyperplane; the
claim here is that if the contact scheme is a linear space, then its dimension must
equal the dimension of the general contact. For example, if the general contact is a
simple point (that is, the dual is a hypersurface) then no hyperplane can touch M
(‘scheme-theoretically’) along a linear subspace of positive dimension.

Proof. If Y ∼= P
r−1 and L = O(1), then by Corollary 1.8

c(L) ∩ µL(Y ) = c(O(1))c(T ∗Pr−1 ⊗O(1)) ∩ [Pr−1] = [Pr−1] ,

and the result follows immediately from Proposition 2.2. �

More generally, Proposition 2.2 shows (by an analogous argument) that if the
contact scheme of a variety with a given hyperplane is smooth, then the defect of
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the variety equals the defect of the contact scheme: the last corollary works because
the defect of a linear space equals its dimension. We do not know if this is true for
singular contact loci, or indeed what the appropriate statement would be in that
case.

As a concrete example of the situation of Corollary 2.6, consider the Segre em-
bedding of Pn1 × · · · × Pnr , where n1 ≥ · · · ≥ nr. In [A-C], p. 257 we have
observed that if n1 > m1 =

∑
i>1 ni, then there are hyperplane sections touching

P
n1 × · · · × Pnr along a Pn1−m1 . It follows then immediately from Corollary 2.6

and without further computations (for example, without having to prove that such
sections are ‘general’) that the dual variety of Pn1×· · ·×Pnr must have codimension
n1 −m1 + 1.

§2.5. Zak’s Theorem. As a last application of the results in §1.3 to duality, we
will show that

Proposition 2.7. The dual variety of a smooth nonlinear variety M ⊂ PN has
dimension ≥ dimM .

Proof. This is usually derived as a consequence of Zak’s beautiful theorem on tan-
gencies (see for example [F-L], §7). To obtain the result in our set-up, let Y be the
contact scheme of the general tangent hyperplane H with M (note M 6⊂ H, as M
is non-linear), and let L = O(1) be the hyperplane bundle. Then Y ∼= P

r−1, where
r is the codimension of the dual variety, so by the remark preceding Corollary 2.3

c(L) ∩ µL(Y ) = [Y ] .

We have to show r ≤ N − n (where as usual we denote n = dimM), that is
dimY < N − n; we will assume dimY ≥ N − n and derive a contradiction. By
taking general hyperplane sections we may and will assume dimY = N − n, that
is Y = P

N−n.
We are going to derive a contradiction by computing in two ways the component

of dimension zero {s(Y,M)}0 of the Segre class of Y in M . The first observation is
that since Y is an s.s.h. in M with respect to L:

[Y ] = c(L) ∩ µL(Y ) = c(L)c(T ∗M ⊗ L) ∩ s(Y,M) = c(P1L) ∩ s(Y,M) ,

where P1L is the bundle of principal parts of L. Now say (PN )∗ = PV , and let V
be the trivial bundle with fiber V ; then we have the exact sequence

0 −→W −→ V −→ P1L −→ 0

withW a rank-(N−n) bundle. Restrict this to Y ; if v ∈ V is the section determining
H, v 7→ 0 in P1L|Y (by definition of Y !), so v gives a non-vanishing section of W |Y .
Therefore cN−n(W ) ∩ [Y ] = 0, and since dimY = N − n it follows

0 = {c(W ) ∩ [Y ]}0 = {c(W )c(P1L) ∩ s(Y,M)}0 = {c(V) ∩ s(Y,M)}0
= {s(Y,M)}0(1)

On the other hand, consider the projection from a hyperplane Z = P
N−n−1 of

Y ∼= P
N−n to a Pn ⊂ PN . This induces a regular map π from the blow-up M̃ of M

along Z to Pn, of which Ỹ = B`ZY ∼= Y is a fiber. We claim this map is generically
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finite: for this, it suffices to pick a general p ∈ M and show that the intersection
of the span S of p and Z with M consists of Z and finitely many points. But
otherwise S ∩M would contain a curve hitting Z (since Z is a hyperplane in S) at
some point p′; S ∩M would be singular at p′, which would imply that the tangent
space to M at p′ contains S, and in particular p. This cannot be, because we chose
p general and in particular not in H, while at all points of Z the tangent space to
M must be contained in H (because Z is in the contact locus Y of H and M).

Summing up, π is a quasi-finite map M̃ −→ P
n of which Ỹ ∼= Y is a fiber, say

over q ∈ Pn. By [F], Prop. 4.2 (a), s(Ỹ , M̃) must push-forward to a multiple of
s(q,Pn) = [q], and in particular {s(Ỹ , M̃)}0 6= 0. We are almost done: Ỹ ∼= Y ∼=
P
N−n identifies the exceptional divisor in Ỹ with the hyperplane Z, so

s(Ỹ , M̃) = c(NỸ M̃)−1 ∩ [Ỹ ] = c(NYM ⊗O(−1))−1 ∩ [Y ]

(by [F], p. 437); by Corollary 1.12, c(NYM ⊗O(−1)) = c(N∗YM); and finally

{s(Y,M)}0 = {c(NYM)−1 ∩ [Y ]}0 = ±{c(N∗YM)−1 ∩ [Y ]}0 = ±{s(Ỹ , M̃)}0
6= 0

contradicting (1). �

§3. Examples

We list here a few examples illustrating how the results in §1 pose strong con-
straints on what schemes may appear as singular schemes of hypersurfaces in a
given variety. We do not have any specific guiding principle in mind in choosing
these examples, other than they seem amusing and we find it somewhat surprising
that they do not belong to the classical literature or to the folklore.

The idea for most of the examples is to equate the expressions for µL obtained
from the intrinsic computations of §1.3 and from a given realization of Y as a
singular scheme of a hypersurface. This is quickly done in a large class of examples
by way of Corollary 1.12: suppose Y is a singular scheme of a hypersurface X in
a smooth variety M , and let Z ⊂ Y be a smooth subvariety of Y such that the
inclusion is an isomorphism away from a subset of Z of codimension ≥ 2. Suppose
dimZ = m, dimM = n, and let KZ , KM denote the canonical divisors of Z, M .

Claim. Then 2(KZ −KM ) = (n−m)X

(as divisors of Z). This follows immediately from Corollary 1.12, once one observes
that the torsion term is supported in codimension ≥ 2.

Note that any smooth hypersurface is itself the singular scheme of its ‘double’:
the formula in the claim then reduces to the usual adjunction formula, and is
automatically satisfied. Similarly, smooth codimension-2 complete intersections
are clearly singular schemes of the union of two hypersurfaces defining them, and
again the above relation is just adjunction in disguise. Question: are there any
singular complete intersections that are s.s.h.? (This seems unlikely.)

For the examples that follow, we specialize the ambient variety to M = P
n, a

projective space, and O(X) = O(d). The Claim then says then that if, outside of a
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subscheme of codimension ≥ 2, Y ⊂ PN is smooth and a component of the singular
scheme of a hypersurface X of degree d, then necessarily

(*) 2KY = (d(n−m)− 2(n+ 1))H

where KY and H denote respectively the canonical class and the hyperplane section
of Y .

Example 3.1. Suppose a linear subspace Y = P
m ⊂ Pn, 0 < m < n, is a connected

component of the singular scheme of a hypersurface X. Then X is necessarily a
quadric.

Indeed KY = −(m+ 1)H in this case, and m > 0, so (*) gives

−2(m+ 1) = d(n−m)− 2(n+ 1) , that is (d− 2)(n−m) = 0 ;

so d = 2 since m < n. For example, the union of two disjoint lines cannot be
the singular scheme of a hypersurface in Pn: by the above, the hypersurface would
necessarily be a quadric, contradiction. Similarly, a P2 “with embedded points”
cannot be a component of the singular scheme of a hypersurface in Pn: indeed,
the embedded points are ignored in codimension 1, so the hypersurface would be
a quadric by the above, while the singular scheme of a quadric is reduced (cf. also
Example 3.8 below). Singular schemes of hypersurfaces, even when supported on
a non-singular variety, may well have embedded components: the classic Whitney
umbrella x2 = yz2 is singular along a line, and the singular scheme has an em-
bedded component at the pinch point. Question: are embedded components of an
s.s.h. necessarily in codimension 1? �

Example 3.2. The only Veronese embeddings

P
m O(r)

↪→ P
n , n =

(
m+ r

r

)
− 1

that are singular schemes of hypersurfaces are the linear ones (cf. Example 3.1),
the nonsingular conic P1 ↪→ P

2, and the Veronese surface P2 ↪→ P
5.

(This latter is the singular scheme of its chordal variety, a divisor of degree 3.
Interpreting P5 as parametrizing 3× 3 symmetric matrices, the Veronese surface is
the set of rank–1 matrices, and its chordal variety is the set of rank ≤ 2 symmetric
matrices.) To see these are the only cases, assume the r-th Veronese embedding
of Pm in Pn is a connected component of the singular scheme of a hypersurface of
degree d, and apply (*) above to compute

d = 2 +
2(m+ 1)(r − 1)

r(n−m)
, that is d = 2 +

2(r − 1)(
m+r
r−1

)
− r

.

Now
(
m+r
r−1

)
is increasing in m, so(

m+ r

r − 1

)
− r ≤ 2(r − 1) =⇒

(
1 + r

r − 1

)
− r ≤ 2(r − 1) =⇒ r ≤ 4 .

Since d is an integer, r = 3 or 4 are excluded; r = 1 gives the linear embeddings;
for r = 2, the formula gives d = 2 + 2

m : so necessarily m = 1 or 2, which is the
claim. �
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Example 3.3. The only Segre embeddings

P
n1 × · · · × Pnr ↪→ P

n , n = (n1 + 1) · · · (nr + 1)− 1

(r ≥ 2, ni ≥ 1) that are singular schemes of hypersurfaces are

P
1 × P1 ↪→ P

3 and P
2 × P2 ↪→ P

8

(The second is the embedding of the set of rank–1 matrices in the P8 of 3 × 3
matrices, and is the singular scheme of its chordal, that is the degree-3 hypersurface
consisting of matrices of rank ≤ 2.) To see that these are the only possibilities,
apply (*) to get

−2((n1 +1)h1 + · · ·+(nr+1)hr) = (d(n−n1−· · ·−nr)−2(n+1))(h1 + · · ·+hr) ,

where hi denotes the pull-back of the hyperplane from the i-th factor. Taking the
coefficient of hi gives

n(d− 2) = dn1 + · · ·+ (d− 2)ni + · · ·+ dnr

for every i: thus n1 = · · · = nr, and

((n1 + 1)r − 1)(d− 2) = (rd− 2)n1 .

This gives

d = 2 +
2(r − 1)∑r
j=2

(
r
j

)
nj−1

1

:

the denominator on the right is then necessarily ≤ 2(r − 1); on the other hand, it
is clearly increasing in n1 for r ≥ 2 and n1 ≥ 1. It follows that the above can be
an integer only if 2r − 1 − r ≤ 2(r − 1), which implies (as r ≥ 2) r = 2 or 3. For
r = 2 the only possibilities are n1 = 1 and 2, giving the above two cases. For r = 3,
one finds that necessarily n1 = 1, thus ruling out all cases but P1 × P1 × P1 −→ P

7;
but this would imply d = 3, and a degree 3 hypersurface which is singular along
P

1 × P1 × P1 would contain its chordal variety: however, this is easily seen to be
the whole of P7, so this case cannot occur. �

Now we specialize further, and assume Y is a smooth curve of degree r and genus
g. Taking degrees in (*) gives

2(2g − 2) = r(d(n− 1)− 2(n+ 1)) ,

that is (for n > 1)

d = 2 +
4(r + g − 1)
r(n− 1)

.

In particular, n is bounded above for any given genus g > 0: in other words,
hypersurfaces of Pn whose singular scheme is a smooth curve of low positive genus
are a phenomenon belonging to low dimension. For genus 0:
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Example 3.4. Let Y be a smooth rational curve of degree r in Pn, which is a
connected component of the singular scheme of a hypersurface of degree d. Then
the only possibilities are:

(1) r = 1, any n, d = 2;
(2) r = 2, (n, d) = (2, 4) or (3, 3);
(3) r = 4, n = 4, d = 3.

All other possibilities are excluded by the above relation among r, d, n when g = 0.
To see the listed cases arise:

(1) clear (cf. Example 3.1);
(2) for n = 2, any smooth plane conic is the singular scheme of the “double

conic” supported on it; for n = 3, the union of a quadric and a plane
intersecting transversally is a cubic surface whose singular scheme is the
conic of intersection;

(3) interpret P4 as the space of quartic forms in two variables x, y, or equiv-
alently as the space parametrizing 4-tuples of points on P1; then consider
the closure of the orbit of the 4-tuple given by x4 − y4 under the action of
the linear group on P1. This is a degree-3 hypersurface which is singular
precisely along the rational normal curve of “quadruple points”, cf. [A-F],
Proposition 4.3.

For example, twisted cubics cannot be connected components of the singular
scheme of a hypersurface in any projective space. Note however that the tangential
surface of the twisted cubic in P3 is singular precisely along the twisted cubic; the
scheme structure of the singular scheme is non-reduced in this case. �

Example 3.5. For g = 1, the only possibilities are
(1) n = 2, d = 6;
(2) n = 3, d = 4;
(3) n = 5, d = 3.

All other possibilities are ruled out by the above relation. To realize the cases
listed here:

(1) any smooth plane cubic is the singular scheme of its double;
(2) transversal intersections of a plane and a smooth cubic surface, or of two

smooth quadrics are examples;
(3) this can be realized as follows: let Y be the image of a smooth plane cubic

in P5 by Veronese; the chordal variety of Y is then a nonic, complete inter-
section of two cubic hypersurfaces; a general combination of these latter is
a cubic hypersurface whose singular scheme is Y . �

Example 3.6. No smooth curve of genus 2 is the singular scheme of a hypersurface
in a projective space.

Indeed, the above condition imposes r | 4: but r = 1, 2, 4 cannot occur for a
smooth curve of genus 2 in any Pn, cf. [H], p.354. �

We end with a few examples illustrating the situation when Y itself is singular.
For these, the main tools are Proposition 1.11 and Theorem 1.6.

Example 3.7. The planar triple point Y = Spec
k[x, y]

(x2, xy, y2)
is not the singular

scheme of any hypersurface in any non-singular variety.
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Indeed, it is easy to compute minimal resolutions of ΩY and Hom(ΩY ,OY );

tensoring with k =
OY

(x, y)
gives the complexes

· · · −→ k24 0−→ k12 0−→ k6 0−→ k3 0−→ k2 ∼=−→ ΩY ⊗ k −→ 0

· · · −→ k16 0−→ k8 0−→ k4 ∼=−→ Hom(ΩY ,Oy)⊗ k −→ 0

from which T or3(ΩY , k) ∼= k12, T or1(Hom(ΩY ,OY ), k) ∼= k8. By Proposition 1.11,
Y cannot be the singular scheme of a hypersurface. Any curvilinear multiple point

Spec
K[x]
(xm)

of course is an s.s.h. �

Example 3.8. Let Y be the subscheme of P3
x:y:z:w defined by the ideal (x2, xy, xz)

(that is, a plane with an embedded point). Then Y cannot be the singular scheme
of a hypersurface in a non-singular variety.

This can be seen again by explicitly computing the Tors and applying Proposition
1.11. Or in fact one can compute the right-hand-side of the statement of Theorem
1.6, first using (in the definition of AL) Z = Yred = P

2 and then using Z = the
blow-up of Yred at the support of the embedded point. The computation is a little
laborious; we get

[P2]− 3[P1] + 5[P0]

in the first case, and
[P2]− 3[P1] + 3[P0]

in the second. This shows the right-hand-side in Theorem 1.6 is not well-defined
for this scheme, and it follows that the plane with an embedded point cannot be
the singular scheme of a hypersurface. �

Example 3.9. A nodal curve (with its reduced structure) cannot be the singular
scheme of a hypersurface.1

This follows by applying Proposition 1.11 with M = the skyscraper sheaf k
supported on the node. As a prototype situation (to which one may reduce by
taking completions at the singular point) to evaluate the T or, consider the union
C2 of 2 lines intersecting at a point with independent tangent directions; in fact it
is no more work to consider the union Cn of n such lines, given for example by the
ideal (xixj)i<j in Anx1,...,xn :

Claim. n 6= 3 =⇒ Cn is not a singular scheme of a hypersurface.

Indeed, compute minimal resolutions of ΩY and Hom(ΩY ,OY ); after tensoring
with k these become

· · · −→ k(n2)(n−2)(n−1) 0−→ k(n2)(n−2) 0−→ k(n2) 0−→ kn
∼=−→ ΩY ⊗ k −→ 0

· · · −→ kn(n−1)3 0−→ kn(n−1)2 0−→ kn(n−1) 0−→ kn
∼=−→ Hom(ΩY ,OY )⊗ k −→ 0

1I am grateful to Robert Varley for showing to me that this can also be proved in a more

elementary way.
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Hence

T ori+2(ΩY , k) ∼= k(n2)(n−2)(n−1)i , T ori(Hom(ΩY ,Oy), k) ∼= kn(n−1)i i ≥ 0 ,

and the statement follows by Proposition 1.11.
Notice that for n = 3, Cn is a singular scheme of a hypersurface: the union

of three coordinate planes (cf. also Example 3.10 below). Notice also that a nodal
curve may be the singular scheme of a hypersurface if one allows an embedded point
at the node (for example, the singular scheme of the union of a smooth quadric and
a tangent plane in P3). �

The claim shows that the union of three curves meeting at a point with indepen-
dent tangent directions is the only example of an s.s.h. of this kind. Even in this
case the situation, at least in projective space, is tremendously constrained:

Example 3.10. Let Y be the the union of three curves meeting at exactly one
point with independent tangent directions, considered with the reduced structure.
Suppose Y is the singular scheme of a hypersurface of degree d in Pn, and assume
its components are smooth rational curves. Then n = d = 3, and Y is necessarily
the union of three lines, realized as the singular scheme of the union of three general
planes in P3.

To see this, consider one component C and apply Corollary 1.12 to the embedding
of C in Y . To evaluate the relevant torsion sheaf we may work locally, therefore
we may assume for a moment that Y = Spec(k[x, y, z]/(xy, xz, yz)) and that C has
ideal (y, z) in Y . Tensoring the standard presentation of ΩY by OC gives

O3
C


0 0 0
x 0 0
0 x 0


−−−−−−−−−→ O3

C −→ ΩY ⊗OC −→ 0

showing that the torsion of ΩY ⊗L⊗OC consists of a k2 concentrated at the singular
point.

Going back to the projective situation, assuming C has degree r, applying Corol-
lary 1.12 and taking degrees now yields

r(2 + d+ 2n− dn) = 2 :

therefore r = 1 or 2. If r = 2, this relation forces (d, n) = (5, 2) or (3, 4); but these
cannot occur: the first because three curves in P2 cannot have independent tangent
directions; for the second, the other two components of Y would also have to be
conics (by the same relation), and if there were a cubic threefold in P4 singular
along 3 conics, then its general hyperplane section would be a cubic surface in P3

with 6 isolated singularities; there is no such surface ([G-H], p. 644).
Thus necessarily r = 1, so C is a line; the same relation now easily shows that

necessarily n = 3 and d = 3, and it follows also that the other two components
must be lines. So Y consists of three lines, and is the singular locus of a cubic
surface X in P3. The general hyperplane section of X is a cubic curve in the plane,
with three singular points, so it must be the union of three general lines: it follows
that X is the union of three general planes, as claimed. �
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