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ABSTRACT

The Jeans equations relate the second-order velocity moments to the density and po-
tential of a stellar system. For general three-dimensional stellar systems, there are three
equations and six independent moments. By assuming that the potential is triaxial
and of separable St�ackel form, the mixed moments vanish in confocal ellipsoidal coor-
dinates. Consequently, the three Jeans equations and three remaining non-vanishing
moments form a closed system of three highly-symmetric coupled �rst-order partial
di�erential equations in three variables. These equations were �rst derived by Lynden{
Bell, over 40 years ago, but have resisted solution by standard methods. We present
the general solution here.

We consider the two-dimensional limiting cases �rst. We solve their Jeans equa-
tions by a new method which superposes singular solutions. The singular solutions,
which are new, are standard Riemann{Green functions. The resulting solutions of the
Jeans equations give the second moments throughout the system in terms of pre-
scribed boundary values of certain second moments. The two-dimensional solutions
are applied to non-axisymmetric discs, oblate and prolate spheroids, and also to the
scale-free triaxial limit. There are restrictions on the boundary conditions which we
discuss in detail. We then extend the method of singular solutions to the triaxial case,
and obtain a full solution, again in terms of prescribed boundary values of second
moments. There are restrictions on these boundary values as well, but the boundary
conditions can all be speci�ed in a single plane. The general solution can be expressed
in terms of complete (hyper)elliptic integrals which can be evaluated in a straightfor-
ward way, and provides the full set of second moments which can support a triaxial
density distribution in a separable triaxial potential.

Key words: celestial mechanics, stellar dynamics { galaxies: elliptical and lenticular,
cD { galaxies: kinematics and dynamics { galaxies: structure

1 INTRODUCTION

Much has been learned about the mass distribution and in-

ternal dynamics of galaxies by modeling their observed kine-

matics with solutions of the Jeans equations (e.g., Binney &

Tremaine 1987). These are obtained by taking velocity mo-

ments of the collisionless Boltzmann equation for the phase-

space distribution function f , and connect the second mo-

ments (or the velocity dispersions, if the mean streaming

motion is known) directly to the density and the gravita-

tional potential of the galaxy, without the need to know

f . In nearly all cases there are fewer Jeans equations than

velocity moments, so that additional assumptions have to

be made about the degree of anisotropy. Furthermore, the
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resulting second moments may not correspond to a physi-

cal distribution function f � 0. These signi�cant drawbacks

have not prevented wide application of the Jeans approach

to the kinematics of galaxies, even though the results need

to be interpreted with care. Fortunately, eÆcient analytic

and numerical methods have been developed in the past

decade to calculate the full range of distribution functions f

that correspond to spherical or axisymmetric galaxies, and

to �t them directly to kinematic measurements (e.g., Ger-

hard 1993; Qian et al. 1995; Rix et al. 1997; van der Marel et

al. 1998). This has provided, for example, accurate intrinsic

shapes, mass-to-light ratios, and central black hole masses

(e.g., Verolme et al. 2002; Gebhardt et al. 2003).

Many galaxy components are not spherical or axisym-

metric, but have triaxial shapes (Binney 1976, 1978). These

include early-type bulges, bars, and giant elliptical galax-
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2 Van de Ven et al.

ies. In this geometry, there are three Jeans equations, but

little use has been made of them, as they contain six inde-

pendent second moments, three of which have to be chosen

ad-hoc (see, e.g., Evans, Carollo & de Zeeuw 2000). At the

same time, not much is known about the range of physical

solutions, as very few distribution functions have been com-

puted, and even fewer have been compared with kinematic

data (but see Zhao 1996).

An exception is provided by the special set of triaxial

mass models that have a gravitational potential of St�ackel

form. In these systems, the Hamilton{Jacobi equation sep-

arates in orthogonal curvilinear coordinates (St�ackel 1891),

so that all orbits have three exact integrals of motion, which

are quadratic in the velocities. The associated mass distri-

butions can have arbitrary central axis ratios and a large

range of density pro�les, but they all have cores rather than

central density cusps, which implies that they do not provide

perfect �ts to galaxies (de Zeeuw, Peletier & Franx 1986).

Even so, they capture much of the rich internal dynamics

of large elliptical galaxies (de Zeeuw 1985a, hereafter Z85;

Statler 1987, 1991; Arnold, de Zeeuw & Hunter 1994). Nu-

merical and analytic distribution functions have been con-

structed for these models (e.g., Bishop 1986; Statler 1987;

Dejonghe & de Zeeuw 1988; Hunter & de Zeeuw 1992, here-

after HZ92; Mathieu & Dejonghe 1999), and their projected

properties have been used to provide constraints on the

intrinsic shapes of individual galaxies (e.g., Statler 1994a,

b; Statler & Fry 1994; Statler, DeJonghe & Smecker-Hane

1999; Bak & Statler 2000; Statler 2001).

The Jeans equations for triaxial St�ackel systems have

received little attention. This is remarkable, as Eddington

(1915) already knew that the velocity ellipsoid in these mod-

els is everywhere aligned with the confocal ellipsoidal coor-

dinate system in which the motion separates. This means

that there are only three, and not six, non-vanishing second-

order velocity moments in these coordinates, so that the

Jeans equations form a closed system. However, Eddington,

and later Chandrasekhar (1939, 1940), did not study the

velocity moments, but instead assumed a form for the dis-

tribution function, and then determined which potentials

are consistent with it. Lynden{Bell (1960) was the �rst to

derive the explicit form of the Jeans equations for the triax-

ial St�ackel models. He showed that they constitute a highly

symmetric set of three �rst-order partial di�erential equa-

tions (PDEs) for three unknowns, each of which is a function

of the three confocal ellipsoidal coordinates, but he did not

derive solutions. When it was realized that the orbital struc-

ture in the triaxial St�ackel models is very similar to that in

the early numerical models for triaxial galaxies with cores

(Schwarzschild 1979; Z85), interest in the second moments

increased, and the Jeans equations were solved for a number

of special cases. These include the axisymmetric limits and

elliptic discs (Dejonghe & de Zeeuw 1988; Evans & Lynden{

Bell 1989, hereafter EL89), triaxial galaxies with only thin

tube orbits (HZ92), and, most recently, the scale-free limit

(Evans et al. 2000). In all these cases the equations simplify

to a two-dimensional problem, which can be solved with

standard techniques after recasting two �rst-order equations

into a single second-order equation in one dependent vari-

able. However, these techniques do not carry over to a single

third-order equation in one dependent variable, which is the

best that one could expect to have in the general case. As a

result, the general case has remained unsolved.

In this paper, we �rst present an alternative solution

method for the two-dimensional limiting cases which does

not use the standard approach, but instead uses superposi-

tions of singular solutions. We show that this approach can

be extended to three dimensions, and provides the general

solution for the triaxial case in closed form, which we give

explicitly. We will apply our solutions in a follow-up paper,

and will use them together with the mean streaming mo-

tions (Statler 1994a) to study the properties of the observed

velocity and dispersion �elds of triaxial galaxies.

In x2, we de�ne our notation and derive the Jeans

equations for the triaxial St�ackel models in confocal ellip-

soidal coordinates, together with the continuity conditions.

We summarise the limiting cases, and show that the Jeans

equations for all the cases with two degrees of freedom cor-

respond to the same two-dimensional problem. We solve this

problem in x3, �rst by employing a standard approach with

a Riemann{Green function, and then via the singular so-

lution superposition method. We also discuss the choice of

boundary conditions in detail. We relate our solution to that

derived by EL89 in Appendix A, and explain why it is dif-

ferent. In x4, we extend the singular solution approach to

the three-dimensional problem, and derive the general solu-

tion of the Jeans equations for the triaxial case. It contains

complete (hyper)elliptic integrals, which we express as single

quadratures that can be numerically evaluated in a straight-

forward way. We summarise our conclusions in x5.

2 THE JEANS EQUATIONS FOR SEPARABLE

MODELS

We �rst summarise the essential properties of the triaxial

St�ackel models in confocal ellipsoidal coordinates. Further

details can be found in Z85. We show that for these models

the mixed second-order velocity moments vanish, so that the

Jeans equations form a closed system. We derive the Jeans

equations and �nd the corresponding continuity conditions

for the general case of a triaxial galaxy. We then give an

overview of the limiting cases and show that solving the

Jeans equations for the various cases with two degrees of

freedom reduces to an equivalent two-dimensional problem.

2.1 Triaxial St�ackel models

We de�ne confocal ellipsoidal coordinates (�; �; �) as the

three roots for � of

x2

� + �
+

y2

� + �
+

z2

� + 

= 1; (2.1)

with (x; y; z) the usual Cartesian coordinates, and with con-

stants �; � and 
 such that �
 � � � �� � � � �� � �.

For each point (x; y; z), there is a unique set (�; �; �),

but a given combination (�; �; �) generally corresponds to

eight di�erent points (�x;�y;�z). We assume all three-

dimensional St�ackel models in this paper to be likewise eight-

fold symmetric.

Surfaces of constant � are ellipsoids, and surfaces of

constant � and � are hyperboloids of one and two sheets,

respectively (Fig. 1). The confocal ellipsoidal coordinates
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General solution Jeans equations 3

are approximately Cartesian near the origin and become a

conical coordinate system at large radii with a system of

spheres together with elliptic and hyperbolic cones (Fig. 3).

At each point, the three coordinate surfaces are perpendic-

ular to each other. Therefore, the line element is of the form

ds2 = P 2d�2 +Q2d�2 +R2d�2, with the metric coeÆcients

P
2
=

(�� �)(�� �)

4(�+ �)(�+ �)(�+ 
)
;

Q
2
=

(�� �)(�� �)

4(�+ �)(�+ �)(�+ 
)
; (2.2)

R
2
=

(� � �)(� � �)

4(� + �)(� + �)(� + 
)
:

We restrict attention to models with a gravitational poten-

tial VS(�; �; �) of St�ackel form (Weinacht 1924)

VS = � F (�)

(���)(���) �
F (�)

(���)(���) �
F (�)

(���)(���) ; (2.3)

where F (�) is an arbitrary smooth function.

Adding any linear function of � to F (�) changes VS by

at most a constant, and hence has no e�ect on the dynamics.

Following Z85, we use this freedom to write

F (� ) = (� + �)(� + 
)G(�); (2.4)

where G(�) is smooth. It equals the potential along the in-

termediate axis. This choice will simplify the analysis of the

large radii behaviour of the various limiting cases.1

The density �S that corresponds to VS can be found

from Poisson's equation or by application of Kuzmin's

(1973) formula (see de Zeeuw 1985b). This formula shows

that, once we have chosen the central axis ratios and the

density along the short axis, the mass model is �xed ev-

erywhere by the requirement of separability. For centrally

concentrated mass models, VS has the x-axis as long axis

and the z-axis as short axis. In most cases this is also true

for the associated density (de Zeeuw et al. 1986).

2.2 Velocity moments

A stellar system is completely described by its distribution

function (DF), which in general is a time-dependent func-

tion f of the six phase-space coordinates (x;v). Assuming

the system to be in equilibrium (df=dt = 0) and in steady-

state (@f=@t = 0), the DF is independent of time t and

satis�es the (stationary) collisionless Boltzmann equation

(CBE). Integration of the DF over all velocities yields the

zeroth-order velocity moment, which is the density � of the

stellar system. The �rst- and second-order velocity moments

are de�ned as

hvii(x) =
1

�

ZZZ
vif(x;v) d

3
v;

(2.5)

hvivji(x) =
1

�

ZZZ
vivjf(x;v) d

3
v;

where i; j = 1; 2; 3. The streaming motions hvii together

with the symmetric second-order velocity moments hvivji
provide the velocity dispersions �2ij = hvivji � hviihvji.

1 Other, equivalent, choices include F (�) = �(� +�)(� + 
)G(�)

by HZ92, and F (�) = (� + �)(� + �)U(�) by de Zeeuw et al.

(1986), with U(�) the potential along the short axis.

Figure 1. Confocal ellipsoidal coordinates. Surfaces of constant

� are ellipsoids, surfaces of constant � are hyperboloids of one

sheet and surfaces of constant � are hyperboloids of two sheets.

The continuity equation that results from integrating

the CBE over all velocities, relates the streaming motion

to the density � of the system. Integrating the CBE over

all velocities after multiplication by each of the three veloc-

ity components, provides the Jeans equations, which relate

the second-order velocity moments to � and V , the poten-

tial of the system. Therefore, if the density and potential

are known, we in general have one continuity equation with

three unknown �rst-order velocity moments and three Jeans

equations with six unknown second-order velocity moments.

The potential (2.3) is the most general form for which

the Hamilton{Jacobi equation separates (St�ackel 1890;

Lynden{Bell 1962b; Goldstein 1980). All orbits have three

exact isolating integrals of motion, which are quadratic in

the velocities (e.g., Z85). It follows that there are no irreg-

ular orbits, so that Jeans' (1915) theorem is strictly valid

(Lynden{Bell 1962a; Binney 1982) and the DF is a func-

tion of the three integrals. The orbital motion is a com-

bination of three independent one-dimensional motions |

either an oscillation or a rotation | in each of the three

ellipsoidal coordinates. Di�erent combinations of rotations

and oscillations result in four families of orbits in triaxial

St�ackel models (Kuzmin 1973; Z85): inner (I) and outer (O)

long-axis tubes, short (S) axis tubes and box orbits. Stars

on box orbits carry out an oscillation in all three coordi-

nates, so that they provide no net contribution to the mean

streaming. Stars on I- and O-tubes carry out a rotation in

� and those on S-tubes a rotation in �, and oscillations in

the other two coordinates. The fractions of clockwise and

counterclockwise stars on these orbits may be unequal. This

means that each of the tube families can have at most one

nonzero �rst-order velocity moment, related to � by the con-

tinuity equation. Statler (1994a) used this property to con-

struct velocity �elds for triaxial St�ackel models. It is not

diÆcult to show by similar arguments (e.g., HZ92) that all

mixed second-order velocity moments also vanish

hv�v�i = hv�v�i = hv�v�i = 0: (2.6)
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4 Van de Ven et al.

Eddington (1915) already knew that in a potential of the

form (2.3), the axes of the velocity ellipsoid at any given

point are perpendicular to the coordinate surfaces, so that

the mixed second-order velocity moments are zero. We are

left with three second-order velocity moments, hv2�i, hv2�i
and hv2�i, related by three Jeans equations.

2.3 The Jeans equations

The Jeans equations for triaxial St�ackel models in confo-

cal ellipsoidal coordinates were �rst derived by Lynden{Bell

(1960). We give an alternative derivation here, using the

Hamilton equations.

We �rst write the DF as a function of (�; �; �) and the

conjugate momenta

p� = P
2 d�

dt
; p� = Q

2 d�

dt
; p� = R

2 d�

dt
; (2.7)

with the metric coeÆcients P , Q and R given in (2.2). In

these phase-space coordinates the steady-state CBE reads

d�

dt

@f

@�
+
dp�

dt

@f

@p�
= 0; (2.8)

where we have used the summation convention with respect

to � = �; �; �. The Hamilton equations are

d�

dt
=

@H

@p�
;

dp�

dt
=

@H

@�
; (2.9)

with the Hamiltonian de�ned as

H =
p2�
2P 2

+
p2�

2Q2
+

p2�
2R2

+ V (�; �; �): (2.10)

The �rst Hamilton equation in (2.9) de�nes the momenta

(2.7) and gives no new information. The second gives

dp�

dt
=

p2�
P 3

@P

@�
+

p2�

Q3

@Q

@�
+

p2�
R3

@R

@�
� @V

@�
; (2.11)

and similar for p� and p� by replacing the derivatives with

respect to � by derivatives to � and �, respectively.

We assume the potential to be of the form VS de�ned in

(2.3), and we substitute (2.7) and (2.11) in the CBE (2.8).

We multiply this equation by p� and integrate over all mo-

menta. The mixed second moments vanish (2.6), so that we

are left with

3hfp2�i
P 3

@P

@�
+
hfp2�i
Q3

@Q

@�
+
hfp2�i
R3

@R

@�

� 1

P 2

@

@�
hfp2�i � hfi@VS

@�
= 0; (2.12)

where we have de�ned the moments

hfi �
Z

fd
3
p = PQR�;

(2.13)

hfp2�i �
Z

p
2
�fd

3
p = P

3
QRT��;

with the diagonal components of the stress tensor

T�� (�; �; �) � �hv2�i; � = �; �; �: (2.14)

The moments hfp2�i and hfp2�i follow from hfp2�i by cyclic

permutation �! �! � ! �, for which P!Q!R!P . We

substitute the de�nitions (2.13) in eq. (2.12) and carry out

the partial di�erentiation in the fourth term. The �rst term

Figure 2. Special surfaces inside (� = ��) and outside (� = ��)

the focal ellipse in the plane x = 0, and inside (� = ��) and

outside (� = ��) the two branches of the focal hyperbola in the

plane y = 0 and the plane z = 0 (� = �
).

in (2.12) then cancels, and, after rearranging the remaining

terms and dividing by PQR, we obtain

@T��

@�
+
T���T��

Q

@Q

@�
+
T���T��

R

@R

@�
= ��@VS

@�
: (2.15)

Substituting the metric coeÆcients (2.2) and carrying out

the partial di�erentiations results in the Jeans equations

@T��

@�
+
T�� � T��

2(�� �)
+
T�� � T��

2(�� �)
= ��@VS

@�
; (2.16a)

@T��

@�
+
T�� � T��

2(�� �)
+
T�� � T��

2(�� �)
= ��@VS

@�
; (2.16b)

@T��

@�
+
T�� � T��

2(� � �)
+
T�� � T��

2(� � �)
= ��@VS

@�
; (2.16c)

where the equations for � and � follow from the one for �

by cyclic permutation. These equations are identical to those

derived by Lynden{Bell (1960).

In self-consistent models, the density � must equal �S,

with �S related to the potential VS (2.3) by Poisson's equa-

tion. The Jeans equations, however, do not require self-

consistency. Hence, we make no assumptions on the form

of the density other than that it is triaxial, i.e., a function

of (�; �; �), and that it tends to zero at in�nity. The result-

ing solutions for the stresses T�� do not all correspond to

physical distribution functions f � 0. The requirement that

the T�� are non-negative removes many (but not all) of the

unphysical solutions.

2.4 Continuity conditions

We saw in x2.2 that the velocity ellipsoid is everywhere

aligned with the confocal ellipsoidal coordinates. When �!
��, the ellipsoidal coordinate surface degenerates into the

area inside the focal ellipse (Fig. 2). The area outside the fo-

cal ellipse is labeled by � = ��. Hence, T�� is perpendicular
to the surface inside and T�� is perpendicular to the sur-

face outside the focal ellipse. On the focal ellipse, i.e. when

c
 0000 RAS, MNRAS 000, 1{28



General solution Jeans equations 5

� = � = ��, both stress components therefore have to be

equal. Similarly, T�� and T�� are perpendicular to the area

inside (� = ��) and outside (� = ��) the two branches of
the focal hyperbola, respectively, and have to be equal on

the focal hyperbola itself (� = � = ��). This results in the

following two continuity conditions

T��(��;��; �) = T��(��;��; �); (2.17a)

T��(�;��;��) = T��(�;��;��): (2.17b)

These conditions not only follow from geometrical argu-

ments, but are also precisely the conditions necessary to

avoid singularities in the Jeans equations (2.16) when � =

� = �� and � = � = ��. For the sake of physical under-
standing, we will also obtain the corresponding continuity

conditions by geometrical arguments for the limiting cases

that follow.

2.5 Limiting cases

When two or all three of the constants �, � or 
 are equal,

the triaxial St�ackel models reduce to limiting cases with

more symmetry and thus with fewer degrees of freedom.

We show in x2.6 that solving the Jeans equations for all the
models with two degrees of freedom reduces to the same

two-dimensional problem. EL89 �rst solved this generalised

problem and applied it to the disc, oblate and prolate case.

Evans et al. (2000) showed that the large radii case with

scale-free DF reduces to the problem solved by EL89. We

solve the same problem in a di�erent way in x3, and obtain a
simpler expression than EL89. In order to make application

of the resulting solution straightforward, and to de�ne a uni-

�ed notation, we �rst give an overview of the limiting cases.

2.5.1 Oblate spheroidal coordinates: prolate potentials

When 
 = �, the coordinate surfaces for constant � and �

reduce to oblate spheroids and hyperboloids of revolution

around the x-axis. Since the range of � is zero, it cannot

be used as a coordinate. The hyperboloids of two sheets

are now planes containing the x-axis. We label these planes

by an azimuthal angle �, de�ned as tan� = z=y. In these

oblate spheroidal coordinates (�; �; �) the potential VS has

the form (cf. Lynden{Bell 1962b)

VS = �f(�)� f(�)

��� � g(�)

(�+ �)(�+ �)
; (2.18)

where the function g(�) is arbitrary, and f(�) = (�+�)G(� ),

with G(�) as in eq. (2.4). The denominator of the second

term is proportional to y2 + z2, so that these potentials are

singular along the entire x-axis unless g(�) � 0. In this case,

the potential is prolate axisymmetric, and the associated

density �S is generally prolate as well (de Zeeuw et al. 1986).

The Jeans equations (2.16) reduce to

@T��

@�
+
T�� � T��

2(�� �)
+
T�� � T��

2(�+ �)
= ��@VS

@�
;

@T��

@�
+
T�� � T��

2(�� �)
+
T�� � T��

2(�+ �)
= ��@VS

@�
; (2.19)

@T��

@�
= ��@VS

@�
:

The continuity condition (2.17a) still holds, except that the

focal ellipse has become a focal circle. For � = ��, the one-
sheeted hyperboloid degenerates into the x-axis, so that T��
is perpendicular to the x-axis and coincides with T��. This

gives the following two continuity conditions

T��(��;��; �) = T��(��;��; �);
(2.20)

T��(�;��; �) = T��(�;��; �):
By integrating along characteristics, Hunter et al. (1990)

obtained the solution of (2.19) for the special prolate models

in which only the thin I- and O-tube orbits are populated,

so that T�� � 0 and T�� � 0, respectively (cf. x2.5.6).

2.5.2 Prolate spheroidal coordinates: oblate potentials

When � = �, we cannot use � as a coordinate and replace

it by the azimuthal angle �, de�ned as tan� = y=x. Sur-

faces of constant � and � are confocal prolate spheroids

and two-sheeted hyperboloids of revolution around the z-

axis. The prolate spheroidal coordinates (�; �; �) follow from

the oblate spheroidal coordinates (�; �; �) by taking �!�,

� ! � and � ! � ! 
. The potential VS(�; �; �) is (cf.

Lynden{Bell 1962b)

VS = �f(�)� f(�)

��� � g(�)

(�+ �)(� + �)
: (2.21)

In this case, the denominator of the second term is propor-

tional to R2 = x2+y2, so that the potential is singular along

the entire z-axis, unless g(�) vanishes. When g(�) � 0, the

potential is oblate, and the same is generally true for the

associated density �S.

The Jeans equations (2.16) reduce to

@T��

@�
+
T�� � T��

2(�+ �)
+
T�� � T��

2(�� �)
= ��@VS

@�
;

@T��

@�
= ��@VS

@�
: (2.22)

@T��

@�
+
T�� � T��

2(� � �)
+
T�� � T��

2(� + �)
= ��@VS

@�
:

For � = ��, the prolate spheroidal coordinate surfaces re-
duce to the part of the z-axis between the foci. The part

beyond the foci is reached if � = ��. Hence, in this case,

T�� is perpendicular to part of the z-axis between, and T��
is perpendicular to the part of the z-axis beyond the foci.

They coincide at the foci (� = � = ��), resulting in one

continuity condition. Two more follow from the fact that

T�� is perpendicular to the (complete) z-axis, and thus co-

incides with T�� and T�� on the part between and beyond

the foci, respectively:

T��(��; �;��) = T��(��; �;��);
T��(��; �; �) = T��(��; �; �); (2.23)

T��(�; �;��) = T��(�; �;��):
For oblate models with thin S-tube orbits (T�� � 0, see

x2.5.6), the analytical solution of (2.22) was derived by

Bishop (1987) and by de Zeeuw & Hunter (1990). Robijn

& de Zeeuw (1996) obtained the second-order velocity mo-

ments for models in which the thin tube orbits were thick-

ened iteratively. Dejonghe & de Zeeuw (1988, Appendix D)

found a general solution by integrating along characteristics.

c
 0000 RAS, MNRAS 000, 1{28



6 Van de Ven et al.

Evans (1990) gave an algorithm for solving (2.22) numeri-

cally, and Arnold (1995) computed a solution using charac-

teristics without assuming a separable potential.

2.5.3 Confocal elliptic coordinates: non-circular discs

In the principal plane z = 0, the ellipsoidal coordinates re-

duce to confocal elliptic coordinates (�; �), with coordinate

curves that are ellipses (�) and hyperbolae (�), that share

their foci on the symmetry y-axis. The potential of the per-

fect elliptic disc, with its surface density distribution strat-

i�ed on concentric ellipses in the plane z = 0 (� = �
),
is of St�ackel form both in and outside this plane. By a su-

perposition of perfect elliptic discs, one can construct other

surface densities and corresponding disc potentials that are

of St�ackel form in the plane z = 0, but not necessarily out-

side it (Evans & de Zeeuw 1992). The expression for the

potential in the disc is of the form (2.18) with g(�) � 0:

VS = �f(�)� f(�)

��� ; (2.24)

where again f(�) = (� + �)G(�), so that G(�) equals the

potential along the y-axis.

Omitting all terms with � in (2.16), we obtain the Jeans

equations for non-circular St�ackel discs

@T��

@�
+
T�� � T��

2(�� �)
= ��@VS

@�
;

(2.25)
@T��

@�
+
T�� � T��

2(�� �)
= ��@VS

@�
;

where now � denotes a surface density. The parts of the y-

axis between and beyond the foci are labeled by � = ��
and � = ��, resulting in the continuity condition

T��(��;��) = T��(��;��): (2.26)

2.5.4 Conical coordinates: scale-free triaxial limit

At large radii, the confocal ellipsoidal coordinates (�; �; �)

reduce to conical coordinates (r; �; �), with r the usual dis-

tance to the origin, i.e., r2 = x2+y2+z2 and � and � angular

coordinates on the sphere (Fig. 3). The potential VS(r; �; �)

is scale-free, and of the form

VS = � ~F (r) +
F (�)� F (�)

r2(���) ; (2.27)

where ~F (r) is arbitrary, and F (�) = (� + �)(� + 
)G(� ), as

in eq. (2.4).

The Jeans equations in conical coordinates follow from

the general triaxial case (2.16) by going to large radii. Taking

�! r2 � �� � �; �, the stress components approach each

other and we have

T�� � T��

2(�� �)
;
T�� � T��

2(�� �)
� 1

r
! 0;

@

@�
! 1

2r

@

@�
: (2.28)

Hence, after multiplying (2.16a) by 2r, the Jeans equations

for scale-free St�ackel models are

@Trr

@r
+

2Trr � T�� � T��

r
= ��@VS

@r
;

@T��

@�
+
T�� � T��

2(�� �)
= ��@VS

@�
; (2.29)

@T��

@�
+
T�� � T��

2(� � �)
= ��@VS

@�
:

Figure 3. Behaviour of the confocal ellipsoidal coordinates in the

limit of large radii r. The surfaces of constant � become spheres.

The hyperboloids of constant � and � approach their asymptotic

surfaces, and intersect the sphere on the light and dark curves,

respectively. These form an orthogonal curvilinear coordinate sys-

tem (�; �) on the sphere. The black dots indicate the transition

points (� = � = ��) between both sets of curves.

The general Jeans equations in conical coordinates, as de-

rived by Evans et al. (2000), reduce to (2.29) for vanishing

mixed second moments. At the transition points between the

curves of constant � and � (� = � = ��), the tensor com-
ponents T�� and T�� coincide, resulting in the continuity

condition

T��(r;��;��) = T��(r;��;��): (2.30)

2.5.5 One-dimensional limits

There are several additional limiting cases with more sym-

metry for which the form of VS (Lynden{Bell 1962b) and

the associated Jeans equations follow in a straightforward

way from the expressions that were given above. We only

mention spheres and circular discs.

When �=�=
, the variables � and � loose their mean-

ing and the ellipsoidal coordinates reduce to spherical coor-

dinates (r; �; �). A steady-state spherical model without a

preferred axis is invariant under a rotation over the angles �

and �, so that we are left with only one Jeans equation in r,

and T�� = T��. This equation can readily be obtained from

the CBE in spherical coordinates (e.g., Binney & Tremaine

1987). It also follows as a limit from the Jeans equations

(2.16) for triaxial St�ackel models or from any of the above

two-dimensional limiting cases. Consider for example the

Jeans equations in conical coordinates (2.29), and take

� ! � and � ! �. The stress components Trr and T�� =

T�� = T�� = T�� depend only r, so that we are left with

dTrr

dr
+

2(Trr � T��)

r
= ��dVS

dr
; (2.31)

which is the well-known result for non-rotating spherical

systems (Binney & Tremaine 1987).

In a similar way, the one Jeans equation for the circular
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disc-case follows from, e.g., the �rst equation of (2.25) by

taking � = �� and replacing T�� by T��, where � is the

azimuthal angle de�ned in x2.5.2. With �+� = R2 this gives

dTRR

dR
+
TRR � T��

R
= ��dVS

dR
; (2.32)

which may be compared with Binney & Tremaine (1987),

their eq. (4.29).

2.5.6 Thin tube orbits

Each of the three tube orbit families in a triaxial St�ackel

model consists of a rotation in one of the ellipsoidal coordi-

nates and oscillations in the other two (x2.2). The I-tubes,
for example, rotate in � and oscillate in � and �, with turning

points �1, �2 and �0, so that a typical orbit �lls the volume

�
 � � � ��; �1 � � � �2; �� � � � �0: (2.33)

When we restrict ourselves to in�nitesimally thin I-tubes,

i.e., �1 = �2, there is no motion in the �-coordinate. There-

fore, the second-order velocity moment in this coordinate

is zero, and thus also the corresponding stress component

T I
�� � 0. As a result, eq. (2.16b) reduces to an algebraic

relation between T I
�� and T I

�� . This relation can be used to

eliminate T I
�� and T I

�� from the remaining Jeans equations

(2.16a) and (2.16c) respectively.

HZ92 solved the resulting two �rst-order PDEs (their

Appendix B) and showed that the same result is obtained

by direct evaluation of the second-order velocity moments,

using the thin I-tube DF. They derived similar solutions for

thin O- and S-tubes, for which there is no motion in the

�-coordinate, so that TO
�� � 0 and T S

�� � 0, respectively.

In St�ackel discs we have { besides the 
at box orbits

{ only one family of (
at) tube orbits. For in�nitesimally

thin tube orbits T�� � 0, so that the Jeans equations (2.25)

reduce to two di�erent relations between T�� and the density

and potential. In x3.4.4, we show how this places restrictions

on the form of the density and we give the solution for T��.

We also show that the general solution of (2.25), which we

obtain in x3, contains the thin tube result. The same is true
for the triaxial case: the general solution of (2.16), which we

derive in x4, contains the three thin tube orbit solutions as

special cases (x4.6.6).

2.6 All two-dimensional cases are similar

EL89 showed that the Jeans equations in oblate and pro-

late spheroidal coordinates, (2.19) and (2.22), can be trans-

formed to a system that is equivalent to the two Jeans equa-

tions (2.25) in confocal elliptic coordinates. Evans et al.

(2000) arrived at the same two-dimensional form for St�ackel

models with a scale-free DF. We introduce a transformation

which di�ers slightly from that of EL89, but has the advan-

tage that it removes the singular denominators in the Jeans

equations.

The Jeans equations (2.19) for prolate potentials can be

simpli�ed by introducing as dependent variables

T�� (�; �) = (�+�)
1

2 (�+�)
1

2 (T���T��); � = �; �; (2.34)

so that the �rst two equations in (2.19) transform to

@T��
@�

+
T���T��
2(���) =�(�+�) 12 (�+�) 12

�
�
@VS

@�
+
@T��

@�

�
;

(2.35)
@T��
@�

+
T���T��
2(���) =�(�+�) 12 (�+�) 12

�
�
@VS

@�
+
@T��

@�

�
:

The third Jeans equation (2.19) can be integrated in a

straightforward fashion to give the �-dependence of T��. It

is trivially satis�ed for prolate models with g(�) � 0. Hence

if, following EL89, we regard T��(�; �) as a function which

can be prescribed, then equations (2.35) have known right

hand sides, and are therefore of the same form as those of

the disc case (2.25). The singular denominator (� + �) of

(2.19) has disappeared, and there is a boundary condition

T��(�;��) = 0; (2.36)

due to the second continuity condition of (2.20) and the

de�nition (2.34).

A similar reduction applies for oblate potentials. The

middle equation of (2.22) can be integrated to give the �-

dependence of T��, and is trivially satis�ed for oblate mod-

els. The remaining two equations (2.22) transform to

@T��
@�

+
T���T��
2(���) =�(�+�)

1

2 (����) 12
�
�
@VS

@�
+
@T��

@�

�
;

(2.37)
@T��
@�

+
T���T��
2(���) =�(����)

1

2 (�+�)
1

2

�
�
@VS

@�
+
@T��

@�

�
;

in terms of the dependent variables

T��(�; �) = (�+�)
1

2 (����) 12 (T���T��); � = �; �: (2.38)

We now have two boundary conditions

T��(��; �) = 0; T��(�;��) = 0; (2.39)

as a consequence of the last two continuity conditions of

(2.23) and the de�nitions (2.38).

In the case of a scale-free DF, the stress components in

the Jeans equations in conical coordinates (2.29) have the

form T�� = r��T�� (�; �), with � > 0 and � = r; �; �. After

substitution and multiplication by r�+1, the �rst equation

of (2.29) reduces to

(2� �)Trr + T�� + T�� = r
�+1

�
@VS

@r
: (2.40)

When � = 2, Trr drops out, so that the relation between T��
and T�� is known and the remaining two Jeans equations can
be readily solved (Evans et al. 2000). In all other cases, Trr
can be obtained from (2.40) once we have solved the last two

equations of (2.29) for T�� and T�� . This pair of equations
is identical to the system of Jeans equations (2.25) for the

case of disc potentials. The latter is the simplest form of the

equivalent two-dimensional problem for all St�ackel models

with two degrees of freedom. We solve it in the next section.

Once we have derived the solution of (2.25), we may

obtain the solution for prolate St�ackel potentials by replac-

ing all terms ��@Vs=@� (� = �; �) by the right-hand side of

(2.35) and substituting the transformations (2.34) for T��
and T��. Similarly, our uni�ed notation makes the applica-

tion of the solution of (2.25) to the oblate case and to models

with a scale-free DF straightforward (x3.4).
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8 Van de Ven et al.

3 THE TWO-DIMENSIONAL CASE

We �rst apply Riemann's method to solve the Jeans equa-

tions (2.25) in confocal elliptic coordinates for St�ackel discs

(x2.5.3). This involves �nding a Riemann{Green function

that describes the solution for a source point of stress. The

full solution is then obtained in compact form by represent-

ing the known right-hand side terms as a sum of sources.

In x3.2, we introduce an alternative approach, the singular

solution method. Unlike Riemann's method, this can be ex-

tended to the three-dimensional case, as we show in x4. We

analyse the choice of the boundary conditions in detail in

x3.3. In x3.4, we apply the two-dimensional solution to the

axisymmetric and scale-free limits, and we also consider a

St�ackel disc built with thin tube orbits.

3.1 Riemann's method

After di�erentiating the �rst Jeans equation of (2.25) with

respect to � and eliminating terms in T�� by applying the

second equation, we obtain a second-order partial di�eren-

tial equation (PDE) for T�� of the form

@2T��

@�@�
� 3

2(���)
@T��

@�
+

1

2(���)
@T��

@�
= U��(�; �): (3.1)

Here U�� is a known function given by

U�� = � 1

(���) 32
@

@�

�
(���) 32 �@VS

@�

�
� �

2(���)
@VS

@�
: (3.2)

We obtain a similar second-order PDE for T�� by inter-

changing � $ �. Both PDEs can be solved by Riemann's

method. To solve them simultaneously, we de�ne the linear

second-order di�erential operator

L =
@2

@�@�
� c1

���
@

@�
+

c2

���
@

@�
; (3.3)

with c1 and c2 constants to be speci�ed. Hence, the more

general second-order PDE

LT = U; (3.4)

with T and U functions of � and � alone, reduces to those

for the two stress components by taking

T = T�� : c1 =
3
2
; c2 =

1
2
; U = U��;

(3.5)
T = T�� : c1 =

1
2
; c2 =

3
2
; U = U��:

In what follows, we introduce a Riemann{Green function

G and incorporate the left-hand side of (3.4) into a diver-

gence. Green's theorem then allows us to rewrite the surface

integral as a line integral over its closed boundary, which

can be evaluated if G is chosen suitably. We determine the

Riemann{Green function G which satis�es the required con-

ditions, and then construct the solution.

3.1.1 Application of Riemann's method

We form a divergence by de�ning a linear operator L?, called
the adjoint of L (e.g., Copson 1975), as

L? = @2

@�@�
+

@

@�

�
c1

���
�
� @

@�

�
c2

���
�
: (3.6)

The combination GLT �TL?G is a divergence for any twice

di�erentiable function G because

GLT � TL?G = @L=@�+ @M=@�; (3.7)

where

L(�; �) =
G
2

@T

@�
� T

2

@G
@�

� c1 G T
��� ;

(3.8)

M(�; �) =
G
2

@T

@�
� T

2

@G
@�

+
c2 G T
��� :

We now apply the PDE (3.4) and the de�nition (3.6) in zero-

subscripted variables �0 and �0. We integrate the divergence

(3.7) over the domain D = f(�0; �0): � � �0 � 1; � � �0 �
��g, with closed boundary � (Fig. 4). It follows by Green's

theorem thatZZ
D

d�0d�0

�
GL0T � TL?0G

�
=I

�

d�0 L(�0; �0)�
I
�

d�0M(�0; �0); (3.9)

where � is circumnavigated counter-clockwise. Here L0 and
L?0 denote the operators (3.3) and (3.6) in zero-subscripted

variables. We shall seek a Riemann{Green function G(�0; �0)
which solves the PDE

L?0G = 0; (3.10)

in the interior of D. Then the left-hand side of (3.9) be-

comes
RR

D
d�0d�0G(�0; �0)U(�0; �0). The right-hand side

of (3.9) has a contribution from each of the four sides of the

rectangular boundary �. We suppose that M(�0; �0) and

L(�0; �0) decay suÆciently rapidly as �0 ! 1 so that the

contribution from the boundary at �0 =1 vanishes and the

in�nite integration over �0 converges. Partial integration of

the remaining terms then gives for the boundary integral

1Z
�

d�0

h� @G
@�0

� c2 G
�0��0

�
T
i

�0=�

+

��Z
�

d�0

h� @G
@�0

+
c1 G

�0��0
�
T
i

�0=�

+

1Z
�

d�0

h� @T
@�0

+
c2 T

�0��0
�
G
i

�0=��

+ G(�; �)T (�; �): (3.11)

We now impose on G the additional conditions

G(�; �) = 1; (3.12)

and

@G
@�0

� c2 G
�0��0 = 0 on �0 = �;

(3.13)
@G
@�0

+
c1 G

�0��0 = 0 on �0 = �:

Then eq. (3.9) gives the explicit solution

T (�; �) =

1Z
�

d�0

��Z
�

d�0 G(�0; �0)U(�0; �0)

�
1Z
�

d�0

h� @T
@�0

+
c2 T

�0��0
�
G
i

�0=��

; (3.14)

for the stress component, once we have found the Riemann{

Green function G.
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General solution Jeans equations 9

Figure 4. The (�0; �0)-plane. The total stress at a �eld point

(�; �), consists of the weighted contributions from source points

at (�0; �0) in the domain D, with boundary �.

3.1.2 The Riemann{Green function

Our prescription for the Riemann{Green function G(�0; �0)
is that it satis�es the PDE (3.10) as a function of �0 and

�0, and that it satis�es the boundary conditions (3.12) and

(3.13) at the speci�c values �0 = � and �0 = �. Conse-

quently G depends on two sets of coordinates. Henceforth,

we denote it as G(�; �; �0; �0).
An explicit expression for the Riemann{Green function

which solves (3.10) is (Copson 1975)

G(�; �;�0; �0) = (�0��0)c2(���0)c1�c2
(���)c1 F (w); (3.15)

where the parameter w is de�ned as

w =
(�0��)(�0��)
(�0��0)(���) ; (3.16)

and F (w) is to be determined. Since w = 0 when �0 = �

or �0 = �, it follows from (3.12) that the function F has

to satisfy F (0) = 1. It is straightforward to verify that G
satis�es the conditions (3.13), and that eq. (3.10) reduces to

the following ordinary di�erential equation for F (w)

w(1�w)F 00 + [1�(2 + c1�c2)w]F 0 � c1(1�c2)F = 0: (3.17)

This is a hypergeometric equation (e.g., Abramowitz & Ste-

gun 1965), and its unique solution satisfying F (0) = 1 is

F (w) = 2F1(c1; 1�c2; 1;w): (3.18)

The Riemann{Green function (3.15) represents the in
uence

at a �eld point at (�; �) due to a source point at (�0; �0).

Hence it satis�es the PDE

LG(�; �; �0; �0) = Æ(�0��)Æ(�0��): (3.19)

The �rst right-hand side term of the solution (3.14) is a sum

over the sources in D which are due to the inhomogeneous

term U in the PDE (3.4). That PDE is hyperbolic with char-

acteristic variables � and �. By choosing to apply Green's

theorem to the domain D, we made it the domain of depen-

dence (Strauss 1992) of the �eld point (�; �) for (3.4), and

hence we implicitly decided to integrate that PDE in the

direction of decreasing � and decreasing �.

The second right-hand side term of the solution (3.14)

represents the solution to the homogeneous PDE LT = 0

due to the boundary values of T on the part of the bound-

ary � = �� which lies within the domain of dependence.

There is only one boundary term because we implicitly re-

quire that T (�; �) ! 0 as � ! 1. We verify in x3.1.4 that

this requirement is indeed satis�ed.

3.1.3 The disc solution

We obtain the Riemann{Green functions for T�� and T��,

labeled as G�� and G��, respectively, from expressions (3.15)

and (3.18) by substitution of the values for the constants

c1 and c2 from (3.5). The hypergeometric function in G��
is the complete elliptic integral of the second kind2, E(w).

The hypergeometric function in G�� can also be expressed in
terms of E(w) using eq. (15.2.15) of Abramowitz & Stegun

(1965), so that we can write

G��(�; �;�0; �0) = (�0��0) 32
(���) 12

2E(w)

�(�0��) ; (3.20a)

G��(�; �;�0; �0) = (�0��0) 32
(���) 12

2E(w)

�(���0) ; (3.20b)

Substituting these into (3.14) gives the solution of the stress

components throughout the disc as

T��(�; �) =
2

�(���) 12

(

1Z
�

d�0

��Z
�

d�0
E(w)

(�0��)
�
@

@�0

�
�(�0��0) 32�@VS

@�0

�
� (�0��0) 12

2
�
@VS

@�0

�

�
1Z
�

d�0

�
E(w)

(�0��)
�

�0=��

(�0+�)
d

d�0

h
(�0+�)

1

2 T��(�0;��)
i)
;

(3.21a)

T��(�; �) =
2

�(���) 12

(

1Z
�

d�0

��Z
�

d�0
E(w)

(���0)
�
@

@�0

�
�(�0��0)

3

2�
@VS

@�0

�
+
(�0��0) 12

2
�
@VS

@�0

�

�
1Z
�

d�0

�
E(w)

(���0)
�

�0=��

d

d�0

h
(�0+�)

3

2 T��(�0;��)
i)
: (3.21b)

This solution depends on � and VS , which are assumed

to be known, and on T��(�;��) and T��(�;��), i.e., the
stress components on the part of the y-axis beyond the

foci. Because these two stress components satisfy the �rst

Jeans equation of (2.25) at � = ��, we are only free to

choose one of them, say T��(�;��). T��(�;��) then fol-

lows by integrating this �rst Jeans equation with respect to

�, using the continuity condition (2.26) and requiring that

T��(�;��)! 0 as �!1.

3.1.4 Consistency check

We now investigate the behaviour of our solutions at large

distances and verify that our working hypothesis concerning

the radial fall-o� of the functions L and M in eq. (3.8) is

2 We use the de�nition E(w) =
R �

2

0 d�
p
1�w sin2 �
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10 Van de Ven et al.

correct. The solution (3.14) consists of two components: an

area integral due to the inhomogeneous right-hand side term

of the PDE (3.4), and a single integral due to the boundary

values. We examine them in turn to obtain the conditions

for the integrals to converge. Next, we parameterise the be-

haviour of the density and potential at large distances and

apply it to the solution (3.21) and to the energy equation

(2.10) to check if the convergence conditions are satis�ed for

physical potential-density pairs.

As �0 !1, w tends to the �nite limit (�0��)=(���).
Hence E(w) is �nite, and so, by (3.20), G�� = O(�1=20 ) and

G�� = O(�3=20 ). Suppose now that U��(�0; �0) = O(��l1�10 )

and U��(�0; �0) = O(��m1�1
0 ) as �0 ! 1. The area in-

tegrals in the solution (3.14) then converge, provided that

l1 >
1
2
and m1 >

3
2
. These requirements place restrictions

on the behaviour of the density � and potential VS which

we examine below. Since G��(�; �; �0; �0) is O(��1=2) as

�!1, the area integral component of T��(�; �) behaves as

O(��1=2 R1
�

�
�l1�1=2
0 d�0) and so is O(��l1). Similarly, with

G��(�; �; �0; �0) = O(��3=2) as �!1, the �rst component

of T��(�; �) is O(��m1

0 ).

To analyse the second component of the solution (3.14),

we suppose that the boundary value T��(�0;��) = O(��l20 )

and T��(�0;��) = O(��m2

0 ) as �0 !1. A similar analysis

then shows that the boundary integrals converge, provided

that l2 >
1
2
and m2 >

3
2
, and that the second components of

T��(�; �) and T��(�; �) are O(��l2) and O(��m2) as � !
1, respectively.

We conclude that the convergence of the integrals in the

solution (3.14) requires that T��(�; �) and T��(�; �) decay

at large distance as O(��l) with l > 1
2
and O(��m) with

m > 3
2
, respectively. The requirements which we have im-

posed on U(�0; �0) and T (�0;��) cause the contributions toH
�
d�0L(�0; �0) in Green's formula (3.9) from the segment

of the path at large �0 to be negligible in all cases.

Having obtained the requirements for the Riemann{

Green function analysis to be valid, we now investigate the

circumstances in which they apply. Following Arnold et al.

(1994), we consider densities � that decay as N(�)��s=2 at

large distances. We suppose that the function G(�) intro-

duced in eq. (2.4) is O(� Æ) for � 1
2
� Æ < 0 as � ! 1.

The lower limit Æ = � 1
2
corresponds to a potential due to a

�nite total mass, while the upper limit restricts it to poten-

tials that decay to zero at large distances.

For the disc potential (2.24), we then have that f(�) =

O(� Æ+1) when � !1. Using the de�nition (3.2), we obtain

U��(�; �) =
f 0(�)� f 0(�)

2(�� �)2
�+

VS + f 0(�)

(�� �)

@�

@�
; (3.22a)

U��(�; �) =
f 0(�)� f 0(�)

2(�� �)2
�� VS + f 0(�)

(�� �)

@�

@�
; (3.22b)

where � is the surface density of the disc. It follows that

U��(�; �) is generally the larger and is O(�Æ�s=2�1) as

� ! 1, whereas U��(�; �) is O(��2�s=2). Hence, for the
components of the stresses (3.21) we have T�� = O(�Æ�s=2)
and T�� = O(��1�s=2). This estimate for U�� assumes that

@�=@� is also O(��s=2). It is too high if the density becomes
independent of angle at large distances, as it does for discs

with s < 3 (Evans & de Zeeuw 1992). Using these estimates

with the requirements for integral convergence that were

obtained earlier, we obtain the conditions s > 2Æ + 1 and

s > 1, respectively, for inhomogeneous terms in T��(�; �)

and T��(�; �) to be valid solutions. The second condition

implies the �rst because Æ < 0.

With VS(�; �) = O(�Æ) at large �, it follows from the

energy equation (2.10) for bound orbits that the second-

order velocity moments hv2� i cannot exceedO(�Æ), and hence
that stresses T�� = �hv2� i cannot exceed O(�Æ�s=2). This im-
plies for T��(�; �) that s > 2Æ+1, and for T��(�; �) we have

the more stringent requirement that s > 2Æ + 3. This last

requirement is unnecessarily restrictive, but an alternative

form of the solution is needed to do better. Since that al-

ternative form arises naturally with the singular solution

method, we return to this issue in x3.2.6.
Thus, for the Riemann{Green solution to apply, we �nd

the conditions s > 1 and � 1
2
� Æ < 0. These conditions are

satis�ed for the perfect elliptic disk (s = 3; Æ = � 1
2
), and for

many other separable discs (Evans & de Zeeuw 1992).

3.1.5 Relation to the EL89 analysis

EL89 solve for the di�erence � � T���T�� using a Green's

function method which is essentially equivalent to the ap-

proach used here. EL89 give the Fourier transform of their

Green's function, but do not invert it. We give the Riemann{

Green function for � in Appendix A, and then rederive it by

a Laplace transform analysis. Our Laplace transform anal-

ysis can be recast in terms of Fourier transforms. When we

do this, we obtain a result which di�ers from that of EL89.

3.2 Singular Solution Superposition

We have solved the disc problem (2.25) by combining the two

Jeans equations into a single second-order PDE in one of the

stress components, and then applying Riemann's method to

it. However, Riemann's method and other standard tech-

niques do not carry over to a single third-order PDE in one

dependent variable, which is the best that one could expect

to have in the general case. We therefore introduce an alter-

native but equivalent method of solution, also based on the

superposition of source points. In constrast to Riemann's

method, this singular solution method is applicable to the

general case of triaxial St�ackel models.

3.2.1 Simpli�ed Jeans equations

We de�ne new independent variables

S��(�; �) = j���j 12 T��(�; �);
(3.23)

S��(�; �) = j���j 12 T��(�; �);
where j:j denotes absolute value, introduced to make the

square root single-valued with respect to cyclic permutation

of � ! � ! �. The Jeans equations (2.25) can then be

written in the form

@S��

@�
� S��

2(���) = �j���j 12 �@VS
@�

� g1(�; �); (3.24a)

@S��

@�
� S��

2(���) = �j���j 12 �@VS
@�

� g2(�; �): (3.24b)
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For given density and potential, g1 and g2 are known func-

tions of � and �. Next, we consider a simpli�ed form of

(3.24) by taking for g1 and g2, respectively

~g1(�; �) = 0; ~g2(�; �) = Æ(�0��)Æ(�0��); (3.25)

with �� � � � �0 � �� � � � �0. A similar set of simpli-

�ed equations is obtained by interchanging the expressions

for ~g1 and ~g2. We refer to solutions of these simpli�ed Jeans

equations as singular solutions.

Singular solutions can be interpreted as contributions

to the stresses at a �xed point (�; �) due to a source point

in (�0; �0) (Fig. 4). The full stress at the �eld point can be

obtained by adding all source point contributions, each with

a weight that depends on the local density and potential. In

what follows, we derive the singular solutions, and then use

this superposition principle to construct the solution for the

St�ackel discs in x3.2.6.

3.2.2 Homogeneous boundary problem

The choice (3.25) places constraints on the functional form

of S�� and S��. The presence of the delta-functions in ~g2
requires that S�� contains a term �Æ(�0��)H(�0��), with
the step-function

H(x�x0) =
(
0; x < x0;

1; x � x0:
(3.26)

Since H0(y) = Æ(y), it follows that, by taking the partial

derivative of �Æ(�0��)H(�0��) with respect to �, the

delta-functions are balanced. There is no balance when S��
contains Æ(�0��), and similarly neither stress components

can contain Æ(�0��). We can, however, add a function of �

and � to both components, multiplied byH(�0��)H(�0��).
In this way, we obtain a singular solution of the form

S��=A(�; �)H(�0��)H(�0��);
(3.27)

S��=B(�; �)H(�0��)H(�0��)�Æ(�0��)H(�0��);
in terms of functions A and B that have to be determined.

Substituting these forms in the simpli�ed Jeans equations

and matching terms yields two homogeneous equations

@A

@�
� B

2(���) = 0;
@B

@�
� A

2(���) = 0; (3.28)

and two boundary conditions

A(�0; �) =
1

2(�0��) ; B(�; �0) = 0: (3.29)

Two alternative boundary conditions which are useful below

can be found as follows. Integrating the �rst of the equations

(3.28) with respect to � on � = �0, where B(�; �0) = 0, gives

A(�; �0) =
1

2(�0��0) : (3.30)

Similarly, integrating the second of equations (3.28) with

respect to � on � = �0 where A is known gives

B(�0; �) =
�0��

4(�0��0)(�0��) : (3.31)

Even though expressions (3.30) and (3.31) do not add new

information, they will be useful for identifying contour inte-

gral formulas in the analysis which follows.

Figure 5. Contours C� and C� in the complex z-plane which

appear in the solution (3.37). The two cuts running from � to �0
and one from � to �0 make the integrands single-valued.

We have reduced the problem of solving the Jeans equa-

tions (2.25) for St�ackel discs to a two-dimensional bound-

ary problem. We solve this problem by �rst deriving a one-

parameter particular solution (x3.2.3) and then making a

linear combination of particular solutions with di�erent val-

ues of their free parameter, such that the four boundary

expressions are satis�ed simultaneously (x3.2.4). This gives
the solution of the homogeneous boundary problem.

3.2.3 Particular solution

To �nd a particular solution of the homogeneous equations

(3.28) with one free parameter z, we take as an Ansatz

A(�; �) / (���)a1 (z��)a2(z��)a3 ;
(3.32)

B(�; �) / (���)b1(z��)b2(z��)b3 ;
with ai and bi (i = 1; 2; 3) all constants. Hence,

@A

@�
= A

�
a1

��� �
a2

z��
�
=

1

2(���)
�
2a1A

z��
z��

�
;

(3.33)
@B

@�
= B

�
b1

��� �
b3

z��
�
=

1

2(���)
�
2b1B

z��
z��

�
;

where we have set a2 = �a1 and b3 = �b1. Taking a1 =

b1 =
1
2
, the homogeneous equations are satis�ed if

z��
z�� =

A

B
=

(z��)� 1

2
�b2

(z��)� 1

2
�a3

; (3.34)

so, a3 = b2 = � 3
2
. We denote the resulting solutions as

A
P
(�; �) =

j���j 12
(z��) 12 (z��) 32

; (3.35a)

B
P
(�; �) =

j���j 12
(z��) 12 (z��) 32

: (3.35b)

These particular solutions follow from each other by cyclic

permutation �! �! �, as is required from the symmetry

of the homogeneous equations (3.28).

3.2.4 The homogeneous solution

We now consider a linear combination of the particular solu-

tion (3.35) by integrating it over the free parameter z, which

we assume to be complex. We choose the integration con-

tours in the complex z-plane, such that the four boundary

expressions can be satis�ed simultaneously.
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12 Van de Ven et al.

We multiply BP (�; �) by (z��0)
1

2 , and integrate it

over the closed contour C� (Fig. 5). When � = �0, the inte-

grand is analytic within C�, so that the integral vanishes by

Cauchy's theorem. Since both the multiplication factor and

the integration are independent of � and �, it follows from

the superposition principle that the homogeneous equations

are still satis�ed. In this way, the second of the boundary

expressions (3.29) is satis�ed.

Next, we also multiply BP (�; �) by (z��0)
�

1

2 , so that

the contour C� (Fig. 5) encloses a double pole when � =

�0. From the Residue theorem (e.g., Conway 1973), it then

follows thatI
C�

(z��0) 12
(z��0) 12

B
P
(�0; �) dz =

I
C�

(z��0) 12 (�0��) 12
(z��) 12 (z��0)2

dz =

2�i(�0��)
1

2

�
d

dz

�
z��0
z��

� 1

2

�
z=�0

=
�i(�0��)

(�0��0) 12 (�0��)
; (3.36)

which equals the boundary expression (3.31), up to the fac-

tor 4�i(�0��0) 12 .
Taking into account the latter factor, and the ratio

(3.34) of A and B, we postulate as homogeneous solution

A(�; �)=
1

4�i

j���j 12
j�0��0j 12

I
C

(z��0) 12 dz
(z��) 12(z��) 32(z��0) 12

; (3.37a)

B(�; �)=
1

4�i

j���j 12
j�0��0j 12

I
C

(z��0) 12 dz
(z��) 12(z��) 32(z��0) 12

; (3.37b)

with the choice for the contour C still to be speci�ed.

The integrands in (3.37) consist of multi-valued func-

tions that all come in pairs (z��)1=2�m(z��0)1=2�n, for in-
teger m and n, and for � being either � or �. Hence, we can

make the integrands single-valued by specifying two cuts in

the complex z-plane, one from � to �0 and one from � to �0.

The integrands are now analytic in the cut plane away from

its cuts and behave as z�2 at large distances, so that the

integral over a circular contour with in�nite radius is zero3.

Connecting the simple contours C� and C� with this cir-

cular contour shows that the cumulative contribution from

each of these contours cancels. As a consequence, every time

we integrate over the contour C�, we will obtain the same

result by integrating over �C� instead. This means we inte-

grate over C� and take the negative of the result or, equally,

integrate over C� in clockwise direction.

For example, we obtained the boundary expression for

B in (3.36) by applying the Residue theorem to the double

pole enclosed by the contour C�. The evaluation of the inte-

gral becomes less straightforward when we consider the con-

tour �C� instead. Wrapping the contour around the branch

points � and �0 (Fig. 6), one may easily verify that the con-

tribution from the two arcs vanishes if their radius goes to

zero. Taking into account the change in phase when going

around the two branch points, one may show that the con-

tributions from the two remaining parts of the contour, par-

allel to the real axis, are equivalent. Hence, we arrive at the

3 We evaluate the square roots as (z��)
1

2 = jz�� j exp i arg(z��)

with j arg(z � �)j � �.

Figure 6. Integration along the contour C� . The contour is

wrapped around the branch points � and �0 (� = �; �), and split

into four parts. �1 and �3 run parallel to the real axis in opposite

directions. �2 and �4 are two arcs around � and �0, respectively.

following (real) integral

B(�0; �) =
1

2�

(���0) 12
(�0��0) 12

�0Z
�

dt

(�0�t)2
r
�0�t
t�� : (3.38)

The substitution

t = �+
(�0��)(�0��0) sin2 �
(�0��) s�(�0��) (3.39)

then indeed gives the correct boundary expression (3.31).

When we take � = �0 in (3.37b), we are left with the

integrand (z � �)�3=2(z � �0)
�1=2. This is analytic within

the contour C� and hence it follows from Cauchy's theorem

that there is no contribution. However, if we take the con-

tour �C� instead, it is not clear at once that the integral

indeed is zero. To evaluate the complex integral we wrap

the contour C� around the branch points � and �0 (Fig. 6).

There will be no contribution from the arc around �0 if its

radius goes to zero. However, since the integrand involves

the term z � � with power � 3
2
, the contribution from the

arc around � is of the order ��1=2 and hence goes to in-

�nity if its radius � > 0 reduces to zero. If we let the two

remaining straight parts of the contour run from �+� to �0,

then their cumulative contribution becomes proportional to

tan �(�), with �(�) approaching �
2
when � reduces to zero.

Hence, both the latter contribution and the contribution

from the arc around � approaches in�nity. However, care-

ful investigation of their limiting behaviour shows that they

cancel when � reaches zero, as is required for the boundary

expression B(�; �0) = 0.

We have shown that the use of C� and �C� gives the

same result, but the e�ort to evaluate the contour integral

varies between the two choices. The boundary expressions

for A(�; �), (3.29) and (3.30) are obtained most easily if we

consider C� when � = �0 and �C� when � = �0. In both

cases the integrand in (3.37a) has a single pole within the

chosen contour, so that the boundary expressions follow by

straightforward application of the Residue theorem.

We now have proven that the homogeneous solution

(3.37) solves the homogeneous equations (3.28), satis�es the

boundary values (3.29){(3.31) separately and, from the ob-

servation that C� and �C� produce the same result, also

simultaneously.
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3.2.5 Evaluation of the homogeneous solution

The homogeneous solution (3.37) consists of complex con-

tour integrals, which we transform to real integrals by wrap-

ping the contours C� and C� around the corresponding pair

of branch points (Fig. 6). To have no contribution from the

arcs around the branch points, we choose the (combination

of) contours such that the terms in the integrand involv-

ing these branch points have powers larger than �1. In this

way, we can always evaluate the complex integral as a (real)

integral running from one branch point to the other.

In the homogeneous solution (3.37a) for A we choose

C = C� and in (3.37b) for B we take C = �C�. Taking

into account the changes in phase when going around the

branch points, we obtain the following expressions for the

homogeneous solution

A(�; �)=
1

2�

j���j 12
j�0��0j 12

�0Z
�

dt

t��
r

t��0
(t��)(t��)(�0�t) ; (3.40a)

B(�; �)=
1

2�

j���j 12
j�0��0j 12

�0Z
�

dt

��t
r

�0�t
(��t)(t��)(�0�t) : (3.40b)

By a parameterisation of the form (3.39), or by using an

integral table (e.g., Byrd & Friedman 1971), expressions

(3.40) can be written conveniently in terms of the complete

elliptic integral of the second kind, E, and its derivative E0

A(�; �; �0; �0) =
E(w)

�(�0��) ; (3.41a)

B(�; �;�0; �0) = � 2wE0(w)

�(�0��) : (3.41b)

with w de�ned as in (3.16). The second set of arguments

that were added to A and B make explicit the position

(�0; �0) of the source point which is causing the stresses at

the �eld point (�; �).

3.2.6 The disc solution

The solution of equations (3.24) with right hand sides of the

simpli�ed form

~g1(�; �) = Æ(�0��)Æ(�0��); ~g2(�; �) = 0; (3.42)

is obtained from the solution (3.27) by interchanging �$ �

and �0 $ �0. It is

S��=B(�; �;�0; �0)H(�0��)H(�0��)�Æ(�0��)H(�0��);
(3.43)S��=A(�; �;�0; �0)H(�0��)H(�0��):

To �nd the solution to the full equations (3.24) at (�; �),

we multiply the singular solutions (3.27) and (3.43) by

g1(�0; �0) and g2(�0; �0) respectively and integrate over D,

the domain of dependence of (�; �). This gives the �rst two

lines of the two equations (3.44) below. The terms in the

third lines are due to the boundary values of S�� at � = ��.
They are found by multiplying the singular solution (3.27)

evaluated for �0 = �� by �S��(�0;��) and integrating

over �0 inD. It is easily veri�ed that this procedure correctly

represents the boundary values with singular solutions. The

�nal result for the general solution of the Jeans equations

(3.24) for St�ackel discs, after using the evaluations (3.41), is

S��(�; �) = �
1Z
�

d�0 g1(�0; �)

+

1Z
�

d�0

��Z
�

d�0

�
�g1(�0; �0) 2wE

0(w)

�(�0��) +g2(�0; �0)
E(w)

�(�0��)
�

�
1Z
�

d�0 S��(�0;��)
�

E(w)

�(�0��)
�

�0=��

; (3.44a)

S��(�; �) = �
��Z
�

d�0 g2(�; �0)

+

1Z
�

d�0

��Z
�

d�0

�
�g1(�0; �0) E(w)

�(���0)�g2(�0; �0)
2wE0(w)

�(�0��)
�

+ S��(�;��)�
1Z
�

d�0 S��(�0;��)
�
� 2wE0(w)

�(�0��)
�

�0=��

: (3.44b)

The terms (�0��)�1 and (�0��)�1 do not cause singularities
because they are canceled by components of w. In order to

show that equations (3.44) are equivalent to the solution

(3.21) given by Riemann's method, integrate the terms in

E0(w) by parts, and use the de�nitions of S�� , g1 and g2.

3.2.7 Convergence of the disc solution

We now return to the convergence issues �rst discussed

in x3.1.4, where we assumed that the density � decays as

N(�)��s=2 at large distances and the St�ackel potential as

O(�Æ). For the physical reasons given there, the assigned

boundary stress T��(�;��) cannot exceed O(�Æ�s=2) at

large �, giving an S��(�;��) of O(�Æ�s=2+1=2). It follows
that the in�nite integrals in S��(�0;��) in the solution

(3.44) require only that s > 2Æ + 1 for their convergence.

This is the less restrictive result to which we referred earlier.

The terms in the boundary stress are seen to contribute

terms of the correct order O(�Æ�s=2+1=2) to S��(�; �) and

S��(�; �). The formulas for the density and potential show

that g1(�; �) = O(�Æ�s=2�1=2) while g2(�; �) is larger and

O(��s=2�1=2) as �!1. The �0 integrations with g1 and g2
in their integrands all converge provided s > 2Æ + 1. Hence,

both S��(�; �) and S��(�; �) are O(�Æ�s=2+1=2), so that the
stress components T�� (�; �) (� = �; �) are O(�Æ�s=2), which
is consistent with the physical reasoning of x3.1.4.

Hence, all the conditions necessary for (3.44) to be a

valid solution of the Jeans equations (3.24) for a St�ackel

disc are satis�ed provided that s > 2Æ + 1. We have seen in

x3.1.4 that Æ must lie in the range [� 1
2
; 0). When Æ ! 0 the

models approach the isothermal disk, for which also s = 1

when the density is consistent with the potential. Only then

our requirement s > 2Æ + 1 is violated.

3.3 Alternative boundary conditions

We now derive the alternative form of the general disc so-

lution when the boundary conditions are not speci�ed on
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� = �� but on � = ��, or on � = �� rather than in the

limit � ! 1. While the former switch is straightforward,

the latter is non-trivial, and leads to non-physical solutions.

3.3.1 Boundary condition for �

The analysis in x3.1 and x3.2 is that needed when the bound-
ary conditions are imposed at large � and at � = ��. The
Jeans equations (2.25) can be solved in a similar way when

one or both of those conditions are imposed instead at the

opposite boundaries � = �� and/or � = ��. The solution
by Riemann's method is accomplished by applying Green's

theorem to a di�erent domain, for example D0 = f(�0; �0):
� � �0 � 1;�� � �0 � �g when the boundary conditions

are at � = �� and as � ! 1. The Riemann{Green func-

tions have to satisfy the same PDE (3.10) and the same

boundary conditions (3.12) and (3.13), and so again are

given by equations (3.20a) and (3.20b). The variable w is

negative in D0 instead of positive as in D, but this is unim-

portant. The only signi�cant di�erence in the solution of

eq. (3.4) is that of a sign due to changes in the limits of the

line integrals. The �nal result, in place of eq. (3.14), is

T (�; �) = �
1Z
�

d�0

�Z
��

d�0G(�0; �0)U(�0; �0)

�
1Z
�

d�0

h� @T
@�0

+
c2 T

�0��0
�
G
i

�0=��

: (3.45)

To apply the method of singular solutions to solve for the

stresses when the boundary stresses are speci�ed at � = ��
rather than at � = ��, we modify the singular solutions

(3.27) by replacing the step-function H(�0��) by�H(���0)
throughout. No other change is needed because both func-

tions give �Æ(�� �0) on partial di�erentiation with respect

to �. The two-dimensional problem for A and B remains

the same, and so, as with Riemann's method, its solution

remains the same. Summing over sources in D0 now gives

S��(�; �) = �
1Z
�

d�0 g1(�0; �)

�
1Z
�

d�0

�Z
��

d�0

�
�g1(�0; �0) 2wE

0(w)

�(�0��) + g2(�0; �0)
E(w)

�(�0��)
�

�
1Z
�

d�0 S��(�0;��)
�

E(w)

�(�0��)
�

�0=��

; (3.46a)

S��(�; �) =

�Z
��

d�0 g2(�; �0)

�
1Z
�

d�0

�Z
��

d�0

�
�g1(�0; �0) E(w)

�(���0) � g2(�0; �0)
2wE0(w)

�(�0��)
�

+ S��(�;��)�
1Z
�

d�0 S��(�0;��)
�
� 2wE0(w)

�(�0��)
�

�0=��

: (3.46b)

as an alternative to equations (3.44).

3.3.2 Boundary condition for �

There is a much more signi�cant di�erence when one assigns

boundary values at � = �� rather than at �!1. It is still

necessary that stresses decay to zero at large distances. The

stresses induced by arbitrary boundary data at the �nite

boundary � = �� do decay to zero as a consequence of

geometric divergence. The issue is that of the rate of this

decay. We �nd that it is generally less than that required by

our analysis in x3.1.4.
To isolate the e�ect of boundary data at � = ��,

we study solutions of the two-dimensional Jeans equations

(2.25) when the inhomogeneous right hand side terms are set

to zero and homogeneous boundary conditions of zero stress

are applied at either � = �� or � = ��. These solutions

can be derived either by Riemann's method or by singular

solutions. The solution of the homogeneous PDE LT = 0 is

T (�; �) =�
��Z
�

d�0

h�
@T

@�0
� c1 T

�0��0
�
G(�; �;�0; �0)

i
�0=��

; (3.47)

for the case of zero stress at � = ��, and

T (�; �) =

�Z
��

d�0

h� @T
@�0

� c1 T

�0��0
�
G(�; �; �0; �0)

i
�0=��

; (3.48)

for the case of zero stress at � = ��.
The behaviour of the stresses at large distances is gov-

erned by the behaviour of the Riemann{Green functions G
for distant �eld points (�; �) and source points at �0 = ��.
It follows from equations (3.20) that T��(�; �) = O(��1=2)
and T��(�; �) = O(��3=2). As a restult, the radial stresses

dominate at large distances and they decay as only the in-

verse �rst power of distance. Their rate of decay is less than

O(�Æ�s=2) { obtained in x3.1.4 from physical arguments { if

the requirement s > 2Æ+1 is satis�ed. This inequality is the

necessary condition which we derived in x3.2.6 for (3.44) to
be a valid solution of the disc Jeans equations (3.24). It is

violated in the isothermal limit.

There is a physical implication of radial stresses which

decay as only the inverse �rst power of distance. It implies

that net forces of �nite magnitude are needed at an outer

boundary to maintain the system, the �nite magnitudes aris-

ing from the product of the decaying radial stresses and the

increasing length of the boundary over which they act. That

length grows as the �rst power of distance. Because this sit-

uation is perhaps more naturally understood in three dimen-

sions, we return to it in our discussion of oblate models in

x3.4.2. For now, lacking any physical reason for allowing a

stellar system to have such an external constraint, we con-

clude that boundary conditions can be applied only at large

� and not at � = ��.

3.3.3 Disc solution for a general �nite region

We now apply the singular solution method to solve

equations (3.24) in some rectangle �min � � � �max,

�min � � � �max, when the stress S�� is given a boundary

in �, and S�� is given on a boundary in �. This solution

includes (3.44) and (3.46) as special cases. It will be needed

for the large-radii scale-free case of x3.4.3.
As we saw in x3.3.1, singular solutions can easily be
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General solution Jeans equations 15

adapted to alternative choices for the domain of dependence

of a �eld point (�; �). Originally this was D, the �rst of the

four quadrants into which (�0; �0)-space is split by the lines

�0 = � and �0 = � (Fig. 4). It has the singular solution

(3.27). We then obtained the singular solution for the fourth

quadrant D0 simply by replacing H(�0��) by �H(���0)
in (3.27). We can similarly �nd the singular solution for

the second quadrant �min � �0 � �, � � �0 � �max by

replacing H(�0��) by�H(���0), and for the third quadrant
�min � �0 � �, �min � �0 � � by replacing H(�0��) by
�H(���0) and H(�0��) by �H(���0). We �nd the part of

the solution of equations (3.24) due to the right hand side

g terms by multiplying the �rst and second terms of the

singular solutions by g1(�0; �0) and g2(�0; �0), respectively,

and integrating over the relevant domain. We use � = �e
and � = �e to denote the boundaries at which stresses are

speci�ed. We �nd the part of the solution generated by the

boundary values of S�� by multiplying the singular solution

(3.27), modi�ed for the domain and evaluated at �0 = �e,

by �S��(�0; �e) and integrating over �0 in the domain. The
plus sign is needed when �e = �min and the minus when

�e = �max. Similarly, the part of the solution generated

by the boundary values of S�� is obtained by multiplying

the singular solution (3.43), modi�ed for the domain and

evaluated at �0 = �e, by �S��(�e; �0) and integrating over

�0 in the domain. The sign is plus if �e = �min and minus

if �e = �max. The �nal solution is

S��(�; �) = S��(�e; �)�
�eZ
�

d�0g1(�0; �)

+

�eZ
�

d�0

�eZ
�

d�0 [g1(�0;�0)B(�;�;�0;�0)+g2(�0;�0)A(�;�;�0;�0)]

�
�eZ
�

d�0S��(�0;�e)A(�;�;�0;�e)�
�eZ
�

d�0S��(�e;�0)B(�;�;�0;�e);

(3.49a)

S��(�; �) = S��(�; �e)�
�eZ
�

d�0g2(�; �0)

+

�eZ
�

d�0

�eZ
�

d�0 [g1(�0;�0)A(�;�;�0;�0)+g2(�0;�0)B(�;�;�0;�0)]

�
�eZ
�

d�0S��(�0;�e)B(�;�;�0;�e)�
�eZ
�

d�0S��(�e;�0)A(�;�;�0;�e):

(3.49b)

This solution is uniquely determined once g1 and g2 are

given, and the boundary values S��(�0; �e) and S��(�e; �0)

are prescribed. It shows that the hyperbolic equations (3.24)

can equally well be integrated in either direction in the

characteristic variables � and �. Solutions (3.44) and (3.46)

are obtained by taking �e ! 1, S��(�e; �0) ! 0, setting

�e = �� and �e = �� respectively, and evaluating A and

B by equations (3.41).

3.4 Applying the disc solution to limiting cases

We showed in x2.6 that the Jeans equations for prolate and
oblate potentials and for three-dimensional St�ackel models

with a scale-free DF all reduce to a set of two equations

equivalent to those for the St�ackel disc. Here we apply our so-

lution for the St�ackel disc to these special three-dimensional

cases, with particular attention to the behaviour at large

radii and the boundary conditions. This provides further in-

sight in some of the previously published solutions. We also

consider the case of a St�ackel disc built with thin tube orbits.

3.4.1 Prolate potentials

We can apply the disc solution (3.46) to solve the Jeans

equations (2.35) by setting S��(�; �) = j� � �j 12 T��(�; �)
and S��(�; �) = j�� �j 12 T��(�; �), and taking

g1(�; �)=�j���j
1

2 (�+�)
1

2 (�+�)
1

2

�
�
@VS

@�
+
@T��

@�

�
;

(3.50)

g2(�; �)=�j���j 12 (�+�) 12 (�+�) 12
�
�
@VS

@�
+
@T��

@�

�
:

The boundary terms in S��(�;��) vanish because of the

boundary condition (2.36). As before, we regard the az-

imuthal stress T�� as a variable that can be arbitrarily as-

signed, provided that it has the correct behaviour at large �

(x3.1.4). The choice of T�� is also restricted by the require-

ment that the resulting solutions for the stresses T�� and

T�� must be non-negative (see x2.3).
The analysis needed to show that the solution obtained

in this way is valid requires only minor modi�cations of

that of x3.2.7. We suppose that the prescribed azimuthal

stresses also decay as O(�Æ�s=2) as � ! 1. As a result

of the extra factor in the de�nitions (3.50), we now have

g1(�; �) = O(�Æ�s=2) and g2(�; �) = O(��s=2) as � ! 1.

The �0 integrations converge provided s > 2Æ + 2, and S��
and S�� are O(�Æ�s=2+1). Hence the stresses T�� and T��,

which follow from T�� = T�� + S��=
p
(���)(�+�)(�+�),

are once again O(�Æ�s=2). The requirement s > 2Æ + 2 is

no stronger than the requirement s > 2Æ + 1 of x3.2.7; it is
simply the three-dimensional version of that requirement. It

also does not break down until the isothermal limit. That

limit is still Æ ! 0, but now s! 2.

3.4.2 Oblate potentials

The oblate case with Jeans equations (2.37) di�ers sig-

ni�cantly from the prolate case. Now S��(�; �) = j� �
�j 12 T��(�; �) vanishes at � = �� and S��(�; �) = j� �
�j 12 T��(�; �) vanishes at � = ��. If one again supposes that

the azimuthal stresses T�� can be assigned initially, then

one encounters the problem discussed in x3.3.2 of excessively
large radial stresses at large distances. To relate that anal-

ysis to the present case, we use the solution (3.44) with �

replaced by �, and with zero boundary value S��(�;��),
and for g1 and g2 the right hand side of (2.37) multiplied by

j�� �j 12 and j� � �j 12 , respectively.
The estimates we obtained for the prolate case are

still valid, so the stresses T�� and T�� are O(�Æ�s=2). Dif-
�culties arise when this solution for S�� does not van-

ish at � = ��, but instead has some nonzero value �(�)

there. To obtain a physically acceptable solution, we must

add to it a solution of the homogeneous equations (2.37)

with boundary values T��(��; �) = ��(�)=p��� � and
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16 Van de Ven et al.

T��(�;��) = 0. This is precisely the problem we discussed

in x3.3.2 where we showed that the resulting solution gives

T��(�; �) = O(��1=2), and hence T��(�; �) = O(��1). This
is larger thanO(�Æ�s=2) when the three-dimensional require-
ment s > 2Æ + 2 is met. We therefore conclude that the ap-

proach in which one �rst selects the azimuthal stress T��
and then calculates the other two stresses will be unsuc-

cessful unless the choice of T�� is fortunate, and leads to

�(�) � 0. Otherwise, it leads only to models which either

violate the continuity condition T�� � T�� = 0 at � = ��,
or else have radial stresses which require external forces at

large distances.

The physical implication of radial stresses which decay

as only O(��1), or the inverse second power of distance, is

that net forces of �nite magnitude are needed at an outer

boundary to maintain the system. This �nite magnitude

arises from the product of the decaying radial stresses and

the increasing surface area of the boundary over which they

act, which grows as the second power of distance. This sit-

uation is analogous to that of an isothermal sphere, as il-

lustrated in problem 4{9 of Binney & Tremaine (1987), for

which the contribution from an outer surface integral must

be taken into account in the balance between energies re-

quired by the virial theorem.

There are, of course, many physical models which sat-

isfy the continuity condition and whose radial stresses decay

in the physically correct manner at large distances, but some

strategy other than that of assigning T�� initially is needed

to �nd them. In fact, only Evans (1990) used the approach

of assigning T�� initially. He computed a numerical solution

for a mass model with s = 3 and VS / O(��1=2 ln�) for
large �, so that the stresses there should be O(��2 ln�).
He set T�� = � 1

3
�VS, which is of this magnitude, and inte-

grated from � = �� in the direction of increasing � for a

�nite range. Evans does not report on the large � behaviour,

and it is possible that his choice of T�� gives �(�) = 0, but

his Figure 2 especially shows velocity ellipsoids which be-

come increasingly elongated in the radial direction, consis-

tent with our prediction that T�� generally grows as O(��1)
when the boundary value of T�� is assigned at � = ��.

A more common and e�ective approach to solve the

Jeans equations for oblate models has been to specify the

ratio T��=T�� , and then to solve for one of those stresses

and T�� (Bacon, Simien & Monnet 1983; Dejonghe & de

Zeeuw 1988; Evans & Lynden{Bell 1991; Arnold 1995). This

leads to a much simpler mathematical problem with just

a single �rst-order PDE. The characteristics of that PDE

have non-negative slopes d�=d�, and therefore cut across the

coordinate lines of constant � and �. The solution is obtained

by integrating in along the characteristics from large �. The

continuity conditions (2.23) are taken care of automatically,

the region �
 � � � �� � 1 is covered, and it is easy to

verify that the stresses so obtained are everywhere positive.

3.4.3 Large radii limit with scale-free DF

We found in x2.5.4 that the �rst of the Jeans equations in

conical coordinates (2.29) reduces to an algebraic relation

for the radial stress Trr. The problem that remains is that

of solving the second and third Jeans equations for T�� and

T�� . Those equations are exactly the same as those of the

disc case after we apply the coordinate permutation � !

� ! �, and the physical domain is �
 � � � �� � � �
�� with �nite ranges of both variables. Hence, the solution

(3.49) can be applied with T�� assigned at either �e = ��
or �e = ��, and T�� at either �e = �� or �e = �
. For
g1 and g2 we take the same expressions as for the disc case,

i.e., the right-hand side of (3.24), but with �! �! � and

multiplied by r� . To obtain T�� and T�� from the S�� and

S�� respectively, we use the transformation

S�� = (���) 12 r�T�� ; � = �; �; (3.51)

with � > 0 the scaling factor. We can choose to specify

the stress components on the two boundaries � = �� and

� = ��. For a given radius r these boundaries cover the

circular cross section with the (x; z)-plane (Fig. 3). We can

consider the (x; z)-plane as the starting space for the solu-

tion. It turns out that the latter also applies to the triax-

ial solution (x4.6.3) and compares well with Schwarzschild

(1993), who used the same plane to start his numerically

calculated orbits from.

3.4.4 Thin tube orbits

For in�nitesimally thin tube orbits in St�ackel discs we have

that S�� � 0 (x2.5.6), so that equations (3.24) reduce to

� S��

2(���) = g1(�; �);
@S��

@�
= g2(�; �): (3.52)

A solution is possible only if the right hand side terms satisfy

the subsidiary equation

g2(�; �) = �2 @

@�
[(���)g1(�; �)] : (3.53)

We �nd below that this equation places restrictions on the

form of the (surface) density �, and we use this relation

between g1 and g2 to show that the disc solution (3.44) yields

the right results for the stress components.

If we write the disc potential (2.24) as a divided di�er-

ence, VS = �f [�; �], we have that
g1 = (���) 12 �f [�; �; �]; g2 = (���) 12 �f [�; �; �]: (3.54)

Upon substitution of these expressions in (3.53) we obtain a

PDE in �, of which the solution implies the following form

for the density

�(�; �) =
~f(�)

(���)
p
f [�; �; �]

; (3.55)

where ~f(�) is an arbitrary function independent of �.

From (3.52) and the de�nition (3.23) it then follows that

T��(�; �; �) = �2 ~f(�)
p
f [�; �; �]. The tube density that

de Zeeuw, Hunter & Schwarzschild (1987) derive from the

DF for thin tube orbits in the perfect elliptic disk (their

eq. [4.25]) is indeed of the form (3.55).

To show that the general disc solution (3.44) gives

S��(�; �) = 0, we substitute eq. (3.53) for g2(�; �) in (3.44a).

After partial integration and using

2(�0��0) @

@�0

E(w)

�(�0��) =
2wE0(w)

�(�0��) ; (3.56)

we �nd that the area integral reduces to

1Z
�

d�0

�
g1(�0; �)� 2(�0+�)g1(�0;��)

�
E(w)

�(�0��)
�

�0=��

�
: (3.57)
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The �rst part cancels the �rst line of (3.44a) and since from

(3.52) we have that �2(�0+�)g1(�0;��) = S��(�0;��),
the second part cancels the third line. Hence, we have

S��(�; �) = 0 as required. To see that the general disc so-

lution also yields S��(�; �) correctly, we apply similar steps

to (3.44b), where we use the relation

�2(�0��0) @

@�0

2wE0(w)

�(�0��) =
E(w)

�(���0) : (3.58)

We are �nally left with

S��(�; �) = S��(�;��)�
��Z
�

d�0g2(�; �0); (3.59)

which is just the second equation of (3.52) integrated with

respect to �.

4 THE GENERAL CASE

We now solve the system of three Jeans equations (2.16)

for triaxial St�ackel models by applying the singular solu-

tion superposition method, introduced in x3.2 for the two-

dimensional case. Although the calculations are more com-

plex for a triaxial model, the step-wise solution method is

similar to that in two dimensions. Speci�cally, we �rst sim-

plify the Jeans equations and show that they reduce to

a three-dimensional homogeneous boundary problem. We

then �nd a two-parameter particular solution and apply con-

tour integration to both complex parameters to obtain the

general homogeneous solution. The latter yields the three

singular solutions of the simpli�ed Jeans equations, from

which, by superposition, we construct the general solution.

4.1 Simpli�ed Jeans equations

We start by introducing the functions

S�� (�; �; �) =
p
(���)(���)(���)T��(�; �; �); (4.1)

with � = �; �; �, to write the Jeans equations for triaxial

St�ackel models (2.16) in the more convenient form

@S��

@�
� S��

2(���) �
S��

2(���) = g1(�; �; �); (4.2a)

@S��

@�
� S��

2(���) �
S��

2(���) = g2(�; �; �); (4.2b)

@S��

@�
� S��

2(���) �
S��

2(���) = g3(�; �; �); (4.2c)

where the function g1 is de�ned as

g1(�; �; �) = �
p
(���)(���)(���)� @VS

@�
; (4.3)

and g2 and g3 follow by cyclic permutation �! �! � ! �.

We keep the three terms ���, ��� and ��� under one square
root. With each cyclic permutation two of the three terms

change sign, so that the combination of the three terms is

always positive real. Therefore. the square root of the com-

bination is always single-valued, whereas in the case of three

separate square roots we would have a multi-valued function.

We simplify equations (4.2) by substituting for g1, g2
and g3, respectively

~g1(�; �; �) = 0;

~g2(�; �; �) = Æ(�0��) Æ(�0��) Æ(�0��); (4.4)

~g3(�; �; �) = 0;

with

�
 � � � �0 � �� � � � �0 � �� � � � �0: (4.5)

We obtain two similar systems of simpli�ed equations by

cyclic permutation of the left-hand side of (4.2). Once we

have obtained the singular solutions of the simpli�ed system

with the right-hand side given by (4.4), those for the other

two systems follow via cyclic permutation.

4.2 Homogeneous boundary problem

The choice (4.4) implies that the functions S��(�; �; �) (4.1)

must have the following forms

S�� = A(�; �; �)H(�0��)H(�0��)H(�0��)
+ F (�; �) Æ(�0��)H(�0��)H(�0��);

S�� = B(�; �; �)H(�0��)H(�0��)H(�0��)
+ G(�; �) Æ(�0��)H(�0��)H(�0��)

(4.6)
+ H(�; �) Æ(�0��)H(�0��)H(�0��)
� Æ(�0��)Æ(�0��)H(�0��);

S�� = C(�; �; �)H(�0��)H(�0��)H(�0��)
+ I(�; �) Æ(�0��)H(�0��)H(�0��);

with A, B, C and F , G, H, I yet unknown functions of

three and two coordinates, respectively, and H the step-

function (3.26). After substituting these forms into the sim-

pli�ed Jeans equations and matching terms we obtain 14

equations. Eight of them comprise the following two homo-

geneous systems with two boundary conditions each8>><
>>:

@F

@�
� G

2(���) = 0; F (�0; �) =
1

2(�0��) ;

@G

@�
� F

2(���) = 0; G(�; �0) = 0;

(4.7)

and8>><
>>:

@H

@�
� I

2(���) = 0; H(�0; �) = 0;

@I

@�
� H

2(���) = 0; I(�; �0) =
1

2(�0��) :
(4.8)

We have shown in x3 how to solve these two-dimensional

homogeneous boundary problems in terms of the complete

elliptic integral of the second kind E and its derivative E0.

The solutions are

F (�; �) =
E(w)

�(�0 � �)
; G(�; �) = � 2wE0(w)

�(�0 � �)
;

(4.9)

H(�; �) = � 2uE0(u)

�(�0 � �)
; I(�; �) = � E(u)

�(�� �0)
;

where u and similarly v, which we will encounter later on,

follow from w (3.16) by cyclic permutation �! �! � ! �

and �0 ! �0 ! �0 ! �0, so that

u =
(�0��)(�0��)
(�0��0)(���) ; v =

(�0��)(�0��)
(�0��0)(���) : (4.10)
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The remaining six equations form a three-dimensional homo-

geneous boundary problem, consisting of three homogeneous

Jeans equations

@A

@�
� B

2(���) �
C

2(���) = 0;

@B

@�
� C

2(���) �
A

2(���) = 0; (4.11)

@C

@�
� A

2(���) �
B

2(���) = 0:

and three boundary conditions, speci�cally the values of

A(�0; �; �), B(�; �0; �), and C(�; �; �0). As in x3.2.2, it is
useful to supplement these boundary conditions with the val-

ues of A, B, and C at the other boundary surfaces. These are

obtained by integrating the pairs of equations (4.11) which

apply at those surfaces, and using the boundary conditions.

This results in the following nine boundary values

A(�0; �; �) =
1

2�

"
E(u)

(�0��)(���0) +
2uE0(u)

(�0��)(�0��)

#
;

A(�; �0; �) =
1

2�

"
E(v)

(�0��)(�0��0) +
2vE0(v)

(�0��0)(�0��)

#
;

A(�; �; �0) =
E(w)

4�(�0��)

"
���

(���0)(���0) +
�0��0

(�0��0)(�0��0)

#
;

B(�0; �; �) =
uE0(u)

2�(�0��)

"
�0��

(�0��0)(�0��)�
�0��

(�0��0)(�0��)

#
;

B(�; �0; �) = 0; (4.12)

B(�; �; �0) =
wE0(w)

2�(�0��)

"
�0��

(�0��0)(���0)�
�0��

(�0��0)(���0)

#
;

C(�0; �; �) =
E(u)

4�(���0)

"
���

(�0��)(�0��) +
�0��0

(�0��0)(�0��0)

#
;

C(�; �0; �) =
1

2�

"
E(v)

(�0��0)(���0)�
2vE0(v)

(�0��0)(�0��)

#
;

C(�; �; �0) =
1

2�

"
E(w)

(�0��)(���0)�
2wE0(w)

(���0)(�0��)

#
:

If we can solve the three homogeneous equations (4.11) and

satisfy the nine boundary expressions (4.12) simultaneously,

then we obtain the singular solutions (4.6). By superposi-

tion, we can then construct the solution of the Jeans equa-

tions for triaxial St�ackel models.

4.3 Particular solution

By analogy with the two-dimensional case, we look for par-

ticular solutions of the homogeneous equations (4.11) and by

superposition of these particular solutions we try to satisfy

the boundary expressions (4.12) simultaneously, in order to

obtain the homogeneous solution for A, B and C.

4.3.1 One-parameter particular solution

By substitution one can verify that

A
P
(�; �; �) =

p
(���)(���)(���)
(���)(���)

(z��)
(z��)(z��) ; (4.13)

with BP and CP following from AP by cyclic permutation,

solves the homogeneous equations (4.11). To satisfy the nine

boundary expressions (4.12), we could integrate this partic-

ular solution over its free parameter z, in the complex plane.

From x3.2.4, it follows that, at the boundaries, this results in
simple polynomials in (�; �; �) and (�0; �0; �0). This means

that the nine boundary expressions (4.12) cannot be satis-

�ed, since in addition to these simple polynomials they also

contain E and E0. The latter are functions of one variable,

so that at least one extra freedom is necessary. Hence, we

look for a particular solution with two free parameters.

4.3.2 Two-parameter particular solution

A particular solution with two free parameters z1 and z2
can be found by splitting the z-dependent terms of the one-

parameter solution (4.13) into two similar parts and then

relabelling them. The result is the following two-parameter

particular solution

A
P
=

p
(���)(���)(���)
(���)(���)

2Y
i=1

(zi��) 12
(zi��) 12 (zi��) 12

;

B
P
=

p
(���)(���)(���)
(���)(���)

2Y
i=1

(zi��) 12
(zi��) 12(zi��) 12

; (4.14)

C
P
=

p
(���)(���)(���)
(���)(���)

2Y
i=1

(zi��) 12
(zi��) 12 (zi��) 12

:

These functions are cyclic in (�; �; �), as is required from the

symmetry of the homogeneous equations (4.11). The pres-

ence of the square roots, such as occurred earlier in the solu-

tion (3.32) for the disc case, allows us to �t boundary values

that contain elliptic integrals.

To show that this particular solution solves the ho-

mogeneous Jeans equations, we calculate the derivative of

AP (�; �; �) with respect to �:

@AP

@�
=

AP

2

 
1

��z1 +
1

��z2 �
1

��� �
1

���

!
: (4.15)

This can be written as

@AP

@�
=

1

2(���)

"
� (z1��)(z2��)(���)
(z1��)(z2��)(���)A

P

#
(4.16)

+
1

2(���)

"
(z1��)(z2��)(���)
(z1��)(z2��)(���)A

P

#
:

From the two-parameter particular solution we have

BP

AP
= � (z1 � �)(z2 � �)(�� �)

(z1 � �)(z2 � �)(�� �)
;

(4.17)
CP

AP
=

(z1 � �)(z2 � �)(�� �)

(z1 � �)(z2 � �)(�� �)
;

so that, after substitution of these ratios, the �rst homoge-

neous equation of (4.11), is indeed satis�ed. The remaining

two homogeneous equations can be checked in the same way.

4.4 The homogeneous solution

In order to satisfy the four boundary expressions of the two-

dimensional case, we multiplied the one-parameter partic-

ular solution by terms depending on �0, �0 and the free
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complex parameter z, followed by contour integration over

the latter. Similarly, in the triaxial case we multiply the two-

parameter particular solution (3.35) by terms depending on

�0, �0, �0 and the two free parameters z1 and z2, in such a

way that by contour integration over the latter two complex

parameters the nine boundary expressions (4.12) can be sat-

is�ed. Since these terms and the integration are independent

of �, � and �, it follows from the superposition principle that

the homogeneous equations (4.11) remain satis�ed.

The contour integrations over z1 and z2 are mutually

independent, since we can separate the two-parameter par-

ticular solution (4.14) with respect to these two parameters.

This allows us to choose a pair of contours, one contour

in the z1-plane and the other contour in the z2-plane, and

integrate over them separately. We consider the same sim-

ple contours as in the disk case (Fig. 5) around the pairs

of branch points (�; �0) and (�; �0), and a similar contour

around (�; �0). We denote these contours by C�
i , C

�
i and

C�
i respectively, with i = 1; 2 indicating in which of the two

complex planes we apply the contour integration.

4.4.1 Boundary expressions for B

It follows from (4.12) that B = 0 at the boundary � = �0.

From Cauchy's theorem, B would indeed vanish if, in this

case, in either the z1-plane or z2-plane the integrand for

B is analytic within the chosen integration contour. The

boundary expression for B at � = �0 follows from the one

at � = �0 by taking � $ � and �0 $ �0. In addition to

this symmetry, also the form of both boundary expressions

puts constraints on the solution for B. The boundary ex-

pressions can be separated in two parts, one involving the

complete elliptic integral E0 and the other consisting of a

two-component polynomial in � and �0 (� = �; �; �). Each

of the two parts follows from a contour integration in one of

the two complex planes. For either of the complex parame-

ters, z1 or z2, the integrands will consist of a combination of

the six terms zi�� and zi��0 with powers that are half-odd
integers, i.e., the integrals are of hyperelliptic form. If two

of the six terms cancel on one of the boundaries, we will be

left with an elliptic integral. We expect the polynomial to

result from applying the Residue theorem to a double pole,

as this would involve a �rst derivative and hence give two

components. This leads to the following Ansatz

B(�; �; �) /
p
(���)(���)(���)
(���)(���) �

I
C1

(z1��) 12 (z1��0) 12 dz1
(z1��) 12 (z1��) 12 (z1��0) 12 (z1��0) 32

�

I
C2

(z2��) 12 (z2��0) 12 dz2
(z2��) 12 (z2��) 12 (z2��0) 12 (z2��0) 32

: (4.18)

Upon substitution of � = �0, the terms involving �0 cancel

in both integrals, so that the integrands are analytic in both

contours C�
1 and C�

2 . Hence, by choosing either of these

contours as integration contour, the boundary expression

B(�; �0; �) = 0 is satis�ed.

When � = �0, the terms with �0 in the �rst inte-

gral in (4.18) cancel, while in the second integral we have

(z2��0)
�2. The �rst integral is analytic within C�

1 , so that

there is no contribution from this contour. However, the in-

tegral over C
�
1 is elliptic and can be evaluated in terms of

E0 (cf. x3.2.5). We apply the Residue theorem to the second

integral, for which there is a double pole inside the contour

C�
2 . Considering C

�
1 and C�

2 as a pair of contours, the ex-

pression for B at � = �0 becomes

B(�; �; �) / �16�2
p
(�0��0)(�0��0)(�0��0)

(�0��0)(�0��0) �

uE0(u)

2�(�0��)

"
�0��

(�0��0)(�0��)�
�0��

(�0��0)(�0��)

#
; (4.19)

which is the required boundary expression up to a scaling

factor. As before, we keep the terms �0��0, �0��0 and

�0��0 under one square root, so that it is single-valued with
respect to cyclic permutation in these coordinates.

The boundary expression for B at � = �0 is symmetric

with the one at � = �0, so that a similar approach can

be used. In this case, for the second integral, there is no

contribution from C�
2 , whereas it can be expressed in terms

of E0 if C2 = C
�
2 . The �rst integrand has a double pole in

C�
1 . The total contribution from the pair (C�

1 ,C
�
2 ) gives the

correct boundary expression, up to a scaling factor that is

the same as in (4.19).

Taking into account the latter scaling factor, this shows

that the Ansatz (4.18) for B produces the correct boundary

expressions and hence we postulate it as the homogeneous

solution for B. The expressions for A and C then follow

from the ratios (4.17). Absorbing the minus sign in (4.19)

into the pair of contours, i.e., either of the two contours we

integrate in clockwise direction, we postulate the following

homogeneous solution

A(�; �; �)=
(�0��0)(�0��0)
16�2(���)(���)

s
(���)(���)(���)

(�0��0)(�0��0)(�0��0) �I
C1

(z1��) 12 (z1��0) 12 dz1
(z1��) 12 (z1��) 12 (z1��0) 12 (z1��0) 32

�

I
C2

(z2��) 12 (z2��0) 12 dz2
(z2��) 12 (z2��) 12 (z2��0) 12 (z2��0) 32

; (4.20)

B(�; �; �)=
(�0��0)(�0��0)
16�2(���)(���)

s
(���)(���)(���)

(�0��0)(�0��0)(�0��0) �I
C1

(z1��) 12 (z1��0) 12 dz1
(z1��) 12 (z1��) 12 (z1��0) 12 (z1��0) 32

�

I
C2

(z2��) 12 (z2��0) 12 dz2
(z2��) 12 (z2��) 12 (z2��0) 12 (z2��0) 32

; (4.21)

C(�; �; �)=
(�0��0)(�0��0)
16�2(���)(���)

s
(���)(���)(���)

(�0��0)(�0��0)(�0��0) �I
C1

(z1��) 12 (z1��0) 12 dz1
(z1��) 12 (z1��) 12 (z1��0) 12 (z1��0) 32

�

I
C2

(z2��) 12 (z2��0) 12 dz2
(z2��) 12 (z2��) 12 (z2��0) 12 (z2��0) 32

: (4.22)

The integrands consist of multi-valued functions that all

c
 0000 RAS, MNRAS 000, 1{28



20 Van de Ven et al.

come in pairs of the form (z��) 12�m(z��0) 12�n, for integers
m and n, with � equal to �, � or �. Hence, completely analo-

gous to our procedure in x3.2.4, we can make the integrands
single-valued by specifying, in the complex z1-plane and z2-

plane, three cuts running between the three pairs (�; �0),

(�; �0), (�; �0) of branch points, that are enclosed by the

simple contours. The integrands are now analytic in the cut

plane away from its cuts and behave again as z�2i at large

distances, so that the integral over a circular contour with

radius going to in�nity, will be zero. Hence, connecting the

simple contours C�
i , C

�
i and C�

i with this circular contour,

shows that their cumulative contribution cancels

C
�
i +C

�
i + C

�
i = 0; i = 1; 2: (4.23)

This relation will allow us to make a combination of con-

tours, so that the nine boundary expressions (4.12) can be

satis�ed simultaneously (x4.4.3). Before doing so, we �rst

establish whether, with the homogeneous solution for A and

C given by (4.20) and (4.22), respectively, we indeed satisfy

their corresponding boundary expressions separately.

4.4.2 Boundary expressions for A and C

The boundary expressions and the homogeneous solution of

C, follow from those of A by taking � $ � and �0 $ �0.

Henceforth, once we have checked the boundary expressions

for A, those for C can be checked in a similar way.

Upon substitution of � = �0 in the expression for A

(4.20), the �rst integrand is proportional to z1��0 and thus

is analytic within the contour C�
1 . The contribution to the

boundary expression therefore needs to come from either C�
1

or C�
1 . The substitution

z1 � �0 =
�0��
��� (z1��)� �0��

��� (z1��); (4.24)

splits the �rst integral into two complete elliptic integrals

�0��
���

I
C1

(z1��) 12 dz1
(z1��) 12 (z1��0) 12 (z1��0) 32

� �0��
���

I
C1

(z1��) 12 dz1
(z1��) 12 (z1��0) 12 (z1��0) 32

: (4.25)

Within the contour C�
1 , the integrals can be evaluated in

terms of E0(u) and E(u) respectively. When � = �0, the

second integral in (4.20) has a single pole contribution from

the contour C�
2 . Together, �C�

1C
�
2 , exactly reproduces the

boundary expression A(�0; �; �) in (4.12).

When � = �0, both integrands in the expression for

A have a single pole within the contour C�
i . However, the

combination C
�
1 C

�
2 does not give the correct boundary ex-

pression. We again split both integrals to obtain the required

complete elliptic integrals. In the �rst we substitute

z1 � �0 =
�0��0
�0��0 (z1��0)�

�0��0
�0��0 (z1��0): (4.26)

For the contour C�
1 , the �rst integral after the split can be

evaluated in terms of E0(v), but the second integral we leave

unchanged. For the integral in the z2-plane we substitute

z2 � �0 =
�0��0
�0��0 (z2��0)�

�0��0
�0��0 (z2��0): (4.27)

We take C�
2 as contour, and evaluate the �rst integral after

the split in terms of E(v). We again leave the second integral

unchanged. Except for the contour choice, it is of the same

form as the integral we left unchanged in the z1-plane.

To obtain the required boundary expression for A at

� = �0, it turns out that we have to add the contribution

of three pairs of contours, C�
1C

�
2 , C

�
1 C

�
2 and C

�
1 C

�
2 . With

the above substitutions (4.26) and (4.27), the �rst two pairs

together provide the required boundary expression, but in

addition we have two similar contour integrals

i=8�

(�0��0) 12 (���) 12

I
C�

(z��) 12 dz
(z��) 12(z��0) 12(z��0) 12(z��0)

; (4.28)

with contours C� and C� , respectively. The third pair,

C
�
1C

�
2 , involves the product of two single pole contributions.

The resulting polynomial

i=8�

(�0��0) 12 (���) 12
2�i (���0) 12

(�0��) 12(�0��0) 12(�0��0) 12
; (4.29)

can be written in the same form as (4.28), with contour C�.

As a result, we now have the same integral over all three

contours, so that from (4.23), the cumulative result vanishes

and we are left with the required boundary expression.

The expression for A at � = �0 resembles the one for B

at the same boundary. This is expected since their boundary

expressions in (4.12) are also very similar. The �rst integral

now has a contribution from a double pole in the contour

C�
1 . The second integral has no contribution from the con-

tour C�
2 . However, within C

�
2 , the second integral can be

evaluated in terms of E(w). We obtain the correct bound-

ary expression A(�; �; �0) by considering the pair �C�
1C

�
2 .

4.4.3 Combination of contours

In the previous paragraphs we have constructed a homoge-

neous solution for A, B and C, and we have shown that

with this solution all nine boundary expressions can be sat-

is�ed. For each boundary expression separately, we have de-

termined the required pair of contours and also contours

from which there is no contribution. Now we have to �nd

the right combination of all these contours to �t the bound-

ary expressions simultaneously.

We �rst summarise the required and non-contributing

pairs of contours per boundary expression

A(�0; �; �) : �C�
1 C

�
2 �C

�
1C

�
2 ;

A(�; �0; �) : +C
�
1 C

�
2 + C

�
1C

�
2 + C

�
1C

�
2 ;

A(�; �; �0) : �C�
1C

�
2 � C

�
1C

�
2 ;

B(�0; �; �) : �C�
1 C

�
2 �C

�
1C

�
2 ;

B(�; �0; �) : �C�
1 C

�
2 � C

�
1C

�
2 ; (4.30)

B(�; �; �0) : �C�
1C

�
2 � C

�
1C

�
2 ;

C(�0; �; �) : �C�
1 C

�
2 �C

�
1C

�
2 ;

C(�; �0; �) : +C�
1 C

�
2 + C�

1C
�
2 + C�

1C
�
2 ;

C(�; �; �0) : �C�
1C

�
2 � C

�
1C

�
2 ;

where � can be �, � or �. At each boundary separately,

� = �0, � = �0 and � = �0, the allowed combination of con-

tours matches between A, B and C. This leaves the question
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how to relate the combination of contours at the di�erent

boundaries relative to each other.

From (4.23), we know that in both the complex z1-plane

and z2-plane, the cumulative contribution of the three sim-

ple contours cancels. As a consequence, each of the following

three combinations of integration contours

C
�
1 C

�
2 = �C

�
1 (C

�
2 + C

�
2 ) = � (C

�
1 + C

�
1 )C

�
2 ; (4.31)

will give the same result. Similarly, we can add to each com-

bination the pairs C�
1C

�
2 and C

�
1 C

�
2 , to obtain

C
�
1 C

�
2+C

�
1C

�
2+C

�
1C

�
2 =C

�
1C

�
2�C�

1C
�
2 =C

�
1C

�
2�C�

1C
�
2 : (4.32)

The �rst combination of contour pairs matches the allowed

range for � = �0 in (4.30) and the second and third match

the boundary expressions � = �0 and � = �0. This completes

the proof that the expressions (4.20){(4.22) for A, B and

C solve the homogeneous equations (4.11) and satisfy the

nine boundary expressions (4.12) simultaneously when the

integration contour is any of the three combinations (4.32).

We shall see below that the �rst of these combinations is

preferred in numerical evaluations.

4.5 Evaluation of the homogeneous solutions

We write the complex contour integrals in the homogeneous

solutions A, B and C (4.20{4.22) as real integrals. The re-

sulting complete hyperelliptic integrals are expressed as sin-

gle quadratures, which can be evaluated numerically in a

straightforward way. We also express the complete elliptic

integrals in the two-dimensional homogeneous solutions F ,

G, H and I (4.9) in this way to facilitate their numerical

evaluation.

4.5.1 From complex to real integrals

To transform the complex contour integrals in (4.20){(4.22)

in real integrals we wrap the contours C�, C� and C� around

the corresponding pair of branch points (Fig. 6). The inte-

grands consist of terms z � � and z � �0, all with powers

larger than �1, except z1 � �0 and z2 � �0, both of which

occur to the power � 3
2
. This means that for all simple con-

tours C�
i (� = �; �; �; i = 1; 2), except for C�

1 and C�
2 , the

contribution from the arcs around the branch points van-

ishes. In the latter case, we are left with the parts parallel

to the real axis, so that we can rewrite the complex inte-

grals as real integrals with the branch points as integration

limits. The only combination of contours of the three given

in (4.32) that does not involve both C�
1 and C�

2 , is

S � C
�
1 C

�
2 + C

�
1C

�
2 + C

�
1 C

�
2 : (4.33)

We have to be careful with the changes in phase when wrap-

ping each of the simple contours around the branch points.

One can verify that the phase changes per contour are the

same for all three the homogeneous solutions A, B and C,

and also that the contribution from the parts parallel to the

real axis is equivalent. This gives a factor 2 per contour and

thus a factor 4 for the combination of contour pairs in S.

In this way, we can transform the double complex contour

integration into the following combination of real integrals

ZZ
S

dz1dz2 = 4(

�0Z
�

dt1

�0Z
�

dt2 +

�0Z
�

dt1

�0Z
�

dt2 �
�0Z
�

dt1

�0Z
�

dt2); (4.34)

with ti the real part of zi.

We apply this transformation to (4.20){(4.22), and we

absorb the factor of 4 left in the denominators into the in-

tegrals, so that we can write

A(�;�;�;�0;�0;�0)=
(�0��0)(�0��0)�
�2(���)(���) (A1A2+A3A4�A2A3);

B(�;�;�;�0;�0;�0)=
(�0��0)(�0��0)�
�2(���)(���) (B1B2+B3B4�B2B3);

C(�;�;�;�0;�0;�0)=
(�0��0)(�0��0)�
�2(���)(���) (C1C2+C3C4�C2C3);

(4.35)

where Ai,Bi and Ci (i = 1; 2; 3; 4) are complete hyperelliptic

integrals, for which we give expressions below, and

�
2
=

(���)(���)(���)
(�0��0)(�0��0)(�0��0) : (4.36)

The second set of arguments added to A, B and C make

explicit the position (�0; �0; �0) of the source point which is

causing the stresses at the �eld point (�; �; �).

4.5.2 The complete hyperelliptic integrals

With the transformation described in the previous section

the expression for, e.g., the complete hyperelliptic integral

A2 is of the form

A2 =
1

2

�0Z
�

dt

�0�t

s
(��t)(t��0)

(�0�t)(t��)(�0�t)(t��) : (4.37)

The integrand has two singularities, one at the lower inte-

gration limit t = � and one at the upper integration limit

t = �0. The substitution t = � + (�0 � �) cos2 � removes

both singularities, since dt=
p
(�0�t)(t��) = 2(�0 � �)d�.

All complete hyperelliptic integrals Ai, Bi and Ci (i =

1; 2; 3; 4) in (4.35) are of the form (4.37) and have at most

two singularities at either of the integration limits. Hence, we

can apply a similar substitution to remove the singularities.

This results in the following expressions

A1=(�0��)2
�=2Z
0

sin2 � cos2 �d�

x3�x
; A2=

�=2Z
0

y1y4d�

y3�y
;

(4.38a)

A4=(�0��)
�=2Z
0

z2 sin
2 �d�

z1�z

; A3=

�=2Z
0

y3y4d�

y1�y

;

B1=(�0��)
�=2Z
0

x2 sin
2 �d�

x3�x

; B2=(�0��)
�=2Z
0

y1 cos
2 �d�

y3�y

;

(4.38b)

B4=(�0��)
�=2Z
0

z4 sin
2 �d�

z1�z
; B3=(�0��)

�=2Z
0

y3 cos
2 �d�

y1�y
;

C1=(�0��)
�=2Z
0

x4 sin
2 �d�

x3�x

; C2=

�=2Z
0

y1y2d�

y3�y

;

(4.38c)

C4=(�0��)2
�=2Z
0

sin2 � cos2 �d�

z1�z

; C3=

�=2Z
0

y2y3d�

y1�y

;
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where we have de�ned

�
2
x = x1x2x3x4; �

2
y = y1y2y3y4; �

2
z = z1z2z3z4; (4.39)

and the factors xi, yi and zi (i = 1; 2; 3; 4) are given by

x1=(���0)+(�0��) cos2 �; x2=(���)+(�0��) cos2 �;
x3=(���0)+(�0��) cos2 �; x4=(���)+(�0��) cos2 �;
y1=(���0)+(�0��) cos2 �; y2=(���)+(�0��) cos2 �;
y3=(���0)+(�0��) cos2 �; y4=(���)+(�0��) cos2 �;
z1=(���0)+(�0��) cos2 �; z2=(���)+(�0��) cos2 �;
z3=(���0)+(�0��) cos2 �; z4=(���)+(�0��) cos2 �:

(4.40)

For each i these factors follow from each other by cyclic

permutation of � ! � ! � ! � and at the same time

�0 ! �0 ! �0 ! �0. Half of the factors { all xi, y1 and

y2 { are always positive, whereas the other factors are al-

ways negative. The latter implies that one has to be careful

with the signs of the factors under the square root when

evaluating the single quadratures numerically.

4.5.3 The complete elliptic integrals

The two-dimensional homogeneous solutions F , G, H and I

are given in (4.9) in terms of the Legendre complete elliptic

integrals E(m) and E0(m) = [E(m) � K(m)]=2m. Numer-

ical routines for E(m) and K(m) (e.g., Press et al. 1999)

generally require the argument to be 0 � m < 1. In the

allowed range of the confocal ellipsoidal coordinates, the ar-

guments u (4.10) and w (3.16) become larger than unity.

In these cases we can use transformations to express E(m)

and K(m) in terms of E(1=m) and K(1=m) (e.g., Byrd &

Friedman 1971).

We prefer, however, to write the complete elliptic inte-

grals as single quadratures similar to the above expressions

for the hyperelliptic integrals. These quadratures can easily

be evaluated numerically and apply to the full range of the

confocal ellipsoidal coordinates. The resulting expressions

for the two-dimensional homogeneous solutions are

F (�; �; �0; �0) =
1

�

s
���
�0��0

�=2Z
0

x1d�

x2
p
x1x2

;

G(�; �; �0; �0) =
1

�

s
���
�0��0 (�0��)

�=2Z
0

sin2 �d�

y4
p
y3y4

;

H(�; �;�0; �0) =
1

�

r
���
�0��0 (�0��)

�=2Z
0

sin2 �d�

y2
p
y1y2

;

I(�; �;�0; �0) =
1

�

r
���
�0��0

�=2Z
0

z3d�

z4
p
z3z4

: (4.41)

Again we have added two arguments to make the position

of the unit source explicitly. We note that the homogeneous

solutions A(�; �;�0; �0) and B(�; �;�0; �0) for the disc case

(3.41) are equivalent to F and G respectively.

4.6 General triaxial solution

We now construct the solution of the Jeans equations for

triaxial St�ackel models (4.2), by superposition of singular

solutions, which involve the homogeneous solution derived

in the above. We match the solution to the boundary con-

ditions at � = �� and � = ��, and check for convergence

of the solution when � !1. Next, we consider alternative

boundary conditions and present the triaxial solution for a

general �nite region. We also show that the general solution

yields the correct result in the case of thin tube orbits and

the triaxial Abel models of Dejonghe & Laurent (1991). Fi-

nally, we describe a numerical test of the triaxial solution to

a polytrope model.

4.6.1 Superposition of singular solutions

Substitution of the functions A, B, C (4.35) and the func-

tions F , G, H, I (4.41) in expression (4.6), provides the

three singular solutions of the system of simpli�ed Jeans

equations, with the right-hand side given by (4.4). We de-

note these by S��2 (� = �; �; �). The singular solutions of the

two similar simpli�ed systems, with the triplet of delta func-

tions at the right-hand side of the �rst and third equation,

S��1 and S��3 then follow from S��2 by cyclic permutation.

This gives

S
��
1 =B(�; �; �; �0; �0; �0)+G(�; �; �0; �0)Æ(�0��)

+H(�; �; �0; �0)Æ(�0��)�Æ(�0��)Æ(�0��);
S
��
1 =C(�; �; �; �0; �0; �0)+I(�; �;�0; �0)Æ(�0��)
S��1 =A(�; �; �; �0; �0; �0)+F (�; �; �0; �0)Æ(�0��); (4.42a)

S
��
2 =A(�; �; �;�0; �0; �0)+F (�; �;�0; �0)Æ(�0��);

S
��
2 =B(�; �; �;�0; �0; �0)+G(�; �; �0; �0)Æ(�0��)

+H(�; �;�0; �0)Æ(�0��)�Æ(�0��)Æ(�0��);
S
��
2 =C(�; �; �;�0; �0; �0)+I(�; �;�0; �0)Æ(�0��) (4.42b)

S
��
3 =C(�; �; �;�0; �0; �0)+I(�; �; �0; �0)Æ(�0��);

S
��
3 =A(�; �; �;�0; �0; �0)+F (�; �;�0; �0)Æ(�0��)
S��3 =B(�; �; �;�0; �0; �0)+G(�; �;�0; �0)Æ(�0��)

+H(�; �; �0; �0)Æ(�0��)�Æ(�0��)Æ(�0��): (4.42c)

These singular solutions describe the contribution of a

source point in (�0; �0; �0) to (�; �; �). To �nd the solution

of the full equations (4.2), we multiply the singular solutions

(4.42a), (4.42b) and (4.42c) by g1(�0; �0; �0), g2(�0; �0; �0)

and g3(�0; �0; �0), respectively, so that the contribution from

the source point naturally depends on the local density and

potential (cf. eq. [4.3]). Then, for each coordinate � = �; �; �,

we add the three weighted singular solutions, and integrate

over the volume 
, de�ned as


=f(�0; �0; �0) :���0<1; ���0���; ���0���g; (4.43)

which is the three-dimensional extension of the integration

domain D in Fig. 4. The resulting solution solves the in-

homogeneous Jeans equations (4.2), but does not give the

correct values at the boundaries � = �� and � = ��. They
are found by multiplying the singular solutions (4.42b) eval-

uated at �0 = ��, and, similarly, the singular solutions

(4.42c) evaluated at �0 = ��, by �S��(�0;��; �0) and

�S��(�0; �0;��), respectively, and integrating in 
 over the
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coordinates that are not �xed. One can verify that this pro-

cedure represents the boundary values correctly. The �nal

result for the general solution of the Jeans equations (4.2)

for triaxial St�ackel models is

S�� (�;�;�)=

1Z
�

d�0

��Z
�

d�0

��Z
�

d�0

3X
i=1

gi(�0;�0;�0)S
��
i (�;�;�;�0;�0;�0)

�
��Z
�

d�0

1Z
�

d�0 S��(�0;��;�0)S��2 (�;�;�;�0;��;�0)

�
1Z
�

d�0

��Z
�

d�0 S��(�0;�0;��)S��3 (�;�;�;�0;�0;��);(4.44)

where � = (�; �; �). This gives the stresses everywhere, once

we have speci�ed S��(�;��; �) and S��(�; �;��). At both
boundaries � = �� and � = ��, the three stress compo-

nents are related by a set of two Jeans equations, i.e., (4.2)

evaluated at � = �� and � = �� respectively. From x3,
we know that the solution of these two-dimensional systems

both will involve a (boundary) function of one variable. We

need this latter freedom to satisfy the continuity conditions

(2.17). This means it is suÆcient to specify any of the three

stress components at � = �� and � = ��.

4.6.2 Convergence of the general triaxial solution

As in xx3.1.4, 3.2.7 and 3.4 we suppose G(�) = O(� Æ) when
� ! 1, with Æ in the range [� 1

2
; 0). This implies that the

potential VS (2.3) is also O(� Æ). We assume that the density

�, which does not need to be the density �S which generates

VS, is of the form N(�; �)��s=2 when �!1. In the special

case where � = �S, we have s � 4 except possibly along the

z-axis. When s = 4 the models remain 
attened out to the

largest radii, but when s < 4 the function N(�; �) ! 1 in

the limit �!1 (de Zeeuw et al. 1986).

From the de�nition (4.3), we �nd that g1(�0; �0; �0) =

O(�Æ�s=20 ) as �0 !1, while g2(�0; �0; �0) and g3(�0; �0; �0)

are larger and both O(��s=20 ). To investigate the behaviour

of the singular solutions (4.42) at large distance, we have

to carefully analyse the complete hyperelliptic (4.38) and

elliptic (4.41) integrals as �0 ! 1. This is simpli�ed by

writing them as Carlson's R-functions (Carlson 1977). We

�nally �nd for the singular solutions that S��1 = O(1) when
�0 !1, whereas S��2 and S��3 are smaller and O(��10 ), with

� = �; �; �. This shows that for the volume integral in the

triaxial solution (4.44) to converge, we must have Æ� s=2 +

1 < 0. This is equivalent to the requirement s > 2Æ + 2 we

obtained in x3.4 for the limiting cases of prolate and oblate

potentials and for the large radii limit with scale-free DF.

From the convergence of the remaining two double integrals

in (4.44), we �nd that the boundary stresses S��(�;��; �)
and S��(�; �;��) cannot exceed O(1) when �!1.

The latter is in agreement with the large � behaviour of

S�� (�; �; �) that follows from the volume integral. The sin-

gular solutions S��i = O(1) (i = 1; 2; 3) when �!1, larger

than S
��
i and S��i , which are all O(��1). Evaluating the

volume integral at large distance then gives S�� (�; �; �) =

O(�Æ�s=2+1), i.e., not exceeding O(1) if the requirement

s > 2Æ + 2 is satis�ed. We obtain the same behaviour and

requirement from the energy equation (2.10).

We conclude that for the general triaxial case, as well

as for the limiting cases with a three-dimensional shape,

the stress components T�� (�; �; �) are O(�Æ�s=2) at large

distance, with the requirement that s > 2Æ + 2 for � 1
2
�

Æ < 0. We obtained the same result for the stresses in the

disc case, except that then s > 2Æ + 1. Both the three-

dimensional and two-dimensional requirements are met for

many density distributions � and potentials VS of interest.

They do not break down until the isothermal limit Æ ! 0,

with s = 1 (disc) and s = 2 (three-dimensional) is reached.

4.6.3 Alternative boundary conditions

Our solution for the stress components at each point (�; �; �)

in a triaxial model with a St�ackel potential consists of the

weighted contribution of all sources outwards of this point.

Accordingly, we have integrated with respect to �0, �0 and

�0, with lower limits the coordinates of the chosen point

and upper limits 1, �� and ��, respectively. To obtain

the correct expressions at the outer boundaries, the stresses

must vanish when � ! 1 and they have to be speci�ed at

� = �� and � = ��.
The integration limits �, � and � are �xed, but for the

other three limits we can, in principle, equally well choose

��, �� and �
 respectively. The latter choices also imply

the speci�cation of the stress components at these bound-

aries instead. Each of the eight possible combinations of

these limits corresponds to one of the octants into which the

physical region �
 � �0 � �� � �0 � �� � �0 <1 is split

by the lines through the point (�; �; �). By arguments simi-

lar to those given in x3.3, one may show that in all octants

the expressions (4.35) for A, B, C, and (4.9) for F , G, H, I

are equivalent. Hence, again the only di�erences in the sin-

gular solutions are due to possible changes in the sign of the

step-functions, but the changes in the integration limits can-

cel the sign di�erences between the corresponding singular

solutions. However, as in x3.3 for the two-dimensional case,
it is not diÆcult to show that while switching the boundary

conditions � and � is indeed straightforward, the switch from

�!1 to � = �� again leads to solutions which generally

have the incorrect radial fall-o�, and hence are non-physical.

4.6.4 Triaxial solution for a general �nite region

If we denote non-�xed integration limits by �e, �e and �e
respectively, we can write the triaxial solution for a general

�nite region as

S��(�;�;�)=

�eZ
�

d�0

�eZ
�

d�0

�eZ
�

d�0

3X
i=1

gi(�0;�0;�0)S
��
i (�;�;�;�0;�0;�0)

�
�eZ
�

d�0

�eZ
�

d�0 S��(�e;�0;�0)S
��
1 (�;�;�;�e;�0;�0)

�
�eZ
�

d�0

�eZ
�

d�0 S��(�0;�e;�0)S
��
2 (�;�;�;�0;�e;�0)

�
�eZ
�

d�0

�eZ
�

d�0 S��(�0;�0;�e)S
��
3 (�;�;�;�0;�0;�e); (4.45)
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with, as usual, � = �; �; �. The weight functions gi (i =

1; 2; 3) are de�ned in (4.3) and the singular solutions S��i are

given by (4.42). The non-�xed integration limits are chosen

in the corresponding physical ranges, i.e., �e 2 [��;1],

�e 2 [��;��] and �e 2 [�
;��], but �e 6= �� (see x4.6.3).
The solution requires the speci�cation of the stress compo-

nents on the boundary surfaces � = �e, � = �e and � = �e.

On each of these surfaces the three stress components are re-

lated by two of the three Jeans equations (4.2) and the conti-

nuity conditions (2.17). Hence, once one of the stress compo-

nents is prescribed on three boundary surfaces, the solution

(4.44) yields all three stresses everywhere in the triaxial

St�ackel galaxy. The stresses on the remaining three bound-

ary surfaces then follow as the limits of the latter solution.

4.6.5 Physical solutions

Statler (1987) and HZ92 showed that many di�erent DFs

are consistent with a triaxial density � in the potential VS.

Speci�cally, the boundary plane � = ��, i.e., the area out-

side the focal hyperbola in the (x; z)-plane (Fig. 2), is only

reached by inner (I) and outer (O) long-axis tube orbits. A

split between the contribution of both orbit families to the

density in this plane has to be chosen, upon which the DF

for both the I and O orbits is �xed in case only thin tubes

are populated, but many other possibilities exist when the

full set of I- and O-orbits is included. For each of these DFs,

the density provided by the I- and O-tubes can then in prin-

ciple be found throughout con�guration space. In the area

outside the focal ellipse in the (y; z)-plane (� = ��), only
the O-tubes and S-tubes contribute to the density. Subtract-

ing the known density of the O-orbits leaves the density to

be provided by the S-tubes in this plane, from which their

DF can be determined. This is again unique when only thin

orbits are used, but is non-unique otherwise. The density

that remains after subtracting the I-, O-, and S-tube densi-

ties from � must be provided by the box (B) orbits. Their

DF is now �xed, and can be found by solving a system of

linear equations, starting from the outside (�!1).

The total DF is the sum of the DFs of the four orbit

families, and is hence highly non-unique. All these DFs give

rise to a range of stresses T��; T��; T�� , and our solution of

the Jeans equations must be suÆciently general to contain

them as a subset. This is indeed the case, as we are allowed

to choose the stresses on the special surfaces � = �� and

� = ��. However, not all choices will correspond to physical
DFs. The requirement T�� � 0 is necessary but not suÆcient

for the associated DF to be non-negative everywhere.

4.6.6 The general solution for thin tube orbits

For each of the three tube families in case of in�nitesimally

thin orbits one of the three stress components vanishes ev-

erywhere (see x2.5.6). We are left with two non-zero stress

components related to the density and potential by three

reduced Jeans equations (4.2). We thus have subsidiary con-

ditions on the three right hand side terms g1, g2 and g3.

HZ92 solved for the two non-trivial stresses and showed

that they can be found by single quadratures (with inte-

grands involving no worse than complete elliptic integrals),

once the corresponding stress had been chosen at � = ��
(for I- and O-tubes) or at � = �� (for S-tubes).

By analogy with the reasoning for the thin tube orbits in

the disc case (x3.4.4), we can show that for each of the three

tube families in the case of thin orbits the general triaxial so-

lution (4.45) gives the stress components correctly. Consider,

e.g., the thin I-tubes, for which S�� � 0. Apply the latter

to (4.45), substitute for g1, g2 and g3 the subsidiary condi-

tions that follow from the reduced Jeans equations (4.2) and

substitute for the singular solutions the expressions (4.42).

After several partial integrations, we use that the homoge-

neous solutions A, B and C solve a homogeneous system

similar to (4.11), but now with respect to the source point

coordinates (�0; �0; �0)

@B(�;�;�;�0;�0;�0)

@�0
=
A(�;�;�;�0;�0;�0)

2(�0��0) +
C(�;�;�;�0;�0;�0)

2(�0��0) ;

(4.46)

where other relations follow by cyclic permutation of � !
� ! � ! � and �0 ! �0 ! �0 ! �0. And similar for the

two-dimensional homogeneous solutions F , G, H and I the

relations follow from

@G(�; �;�0; �0)

@�0
=

F (�; �; �0; �0)

2(�0��0) ;

(4.47)
@H(�; �;�0; �0)

@�0
=

I(�; �; �0; �0)

2(�0��0) :

It indeed turns out that for S��(�; �; �) all terms cancel on

the right hand side of (4.45). The terms that are left in

the case of S�� and S�� are just eq. (4.2a) integrated with

respect to � and eq. (4.2c) integrated with respect to �,

respectively, and using that S�� � 0. A similar analysis as

above shows that also for thin O- and S-tubes { for which

S�� � 0 in both cases { the general triaxial solution yields

the correct result.

4.6.7 Triaxial Abel models

For a galaxy with a triaxial potential of St�ackel form, the DF

is a function of the three exact isolating integrals of motion,

f(x;v) = f(E; I2; I3) (see also x2.2). The expressions for

E, I2 and I3 in terms of the phase-space coordinates (x;v)

can be found in e.g. Z85. We can thus write the velocity

moments of the DF as a triple integral over E, I2 and I3.

Assuming that the DF is function of only one variable

S � E + wI2 + uI3; (4.48)

with w and u constants, Dejonghe & Laurent (1991) show

that the triple integration simpli�es to a one-dimensional

Abel integration over S. Even though a DF of this form can

only describe a self-consistent model in the spherical case

(ellipsoidal hypothesis, see, e.g., Eddington 1915), the Jeans

equations do not require self-consistency.

The special Abel form results in a simple analytical re-

lation between the three stress components (Dejonghe &

Laurent 1991, their eq. [5.6])

T�� = T��a��=a�� ; T�� = T��a��=a��; (4.49)

with

a�� = (
��) + (�+�)(�+�)w � (�+
)(�+
)u; (4.50)

and �; � = �; �; �. With these relations we �nd that

T���T��
��� =

T��

a��

@a��

@�
;

T���T��
��� =

T��

a��

@a��

@�
: (4.51)
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The �rst Jeans equation (2.16a) now becomes a �rst-order

partial di�erential equation for T��. This equation can be

solved in a straightforward way and provides an elegant and

simple expression for the radial stress component

T��(�; �; �) =

r
a�e�a�e�

a��a��
T��(�e; �; �)

+

�eZ
�

d�0

�r
a�0�a�0�

a��a��
�
@VS

@�0

�
: (4.52)

The expressions for T�� and T�� follow by application of the

ratios (4.49). If we let the boundary value �e !1, the �rst

term on the right-hand side of (4.52) vanishes.

The density �, which does not need to be the density �S
which generates VS , is of the Abel form as given in eq. (3.11)

of Dejonghe & Laurent (1991). If we substitute this form in

(4.52), we obtain, after changing the order of integration and

evaluating the integral with respect to �, again a single Abel

integral that is equivalent to the expression for T�� that

follows from eq. (3.10) of by Dejonghe & Laurent (1991).

Using the relations (4.49) and the corresponding subsidiary

conditions for g1, g2 and g3, it can be shown that the general

triaxial solution (4.45) gives the stress components correctly.

4.6.8 Numerical test

We have numerically implemented the general triaxial solu-

tion (4.45), and tested it on a polytrope dynamical model,

for which the DF depends only on energy E as f(E) /
En�3=2, with n > 1

2
. Integration of this DF over velocity v,

with E = �V � 1
2
v2 for a potential V � 0, shows that the

density � / (�V )n (e.g., Binney & Tremaine 1987, p. 223).

This density is not consistent with the St�ackel potentials we

use but, as noted in x2.3, the Jeans equations do not require
self-consistency. The �rst velocity moments and the mixed

second moments of the DF are all zero. The remaining three

moments all equal �V=(n+ 1), so that the isotropic stress

of the polytrope model Tpol / (�V )n+1.
We take the potential V to be of St�ackel form VS (2.3),

and consider two di�erent choices for G(�) in (2.4). The �rst

is the simple form G(�) = �GM=(
p
�+

p��) that is related
to H�enon's isochrone (de Zeeuw & Pfenniger 1988). The sec-

ond is the form for the perfect ellipsoid, for which G(� ) is

given in Z85 in terms of complete elliptic integrals. The par-

tial derivatives of VS(�; �; �), that appear in the weights g1,

g2 and g3, can be obtained in terms ofG(�) and its derivative

in a straightforward way by using the expressions derived by

de Zeeuw et al. (1986).

The calculation of the stresses is done in the following

way. We choose the polytrope index n, and �x the triaxial

St�ackel model by choosing �, � and 
. This gives Tpol. Next,

we obtain successively the stresses T��, T�� and T�� from

the general triaxial solution (4.45) by numerical integration,

where the relation between S�� and T�� is given by (4.1). We

�rst �x the upper integration limits �e, �e and �e. All inte-

grands contain the singular solutions (4.42), that involve the

homogeneous solutions A, B, C, F , G, H and I, for which

we numerically evaluate the single quadratures (eq. [4.35],

[4.38] and [4.41]). The weights g1, g2 and g3 (4.3) involve

the polytrope density and St�ackel potential. This leaves the

boundary stresses in the integrands, for which we use the

polytrope stress Tpol that follows from the choice of the DF,

evaluated at the corresponding boundary surfaces. We then

evaluate the general solution away from these boundaries,

and compare it with the known result.

We carried out the numerical calculations for di�erent

choices of n, �, � and 
 and at di�erent �eld points (�; �; �).

In each case the resulting stresses T��, T�� and T�� { inde-

pendently calculated { were equivalent to high precision and

equal to Tpol. This agreement provides a check on the accu-

racy of both our formulae and their numerical implementa-

tion, and demonstrates the feasibility of using our methods

for computing triaxial stress distributions. That will be the

subject of a follow-up paper.

5 DISCUSSION AND CONCLUSIONS

Eddington (1915) showed that the velocity ellipsoid in a tri-

axial galaxy with a separable potential of St�ackel form is

everywhere aligned with the confocal ellipsoidal coordinate

system in which the equations of motion separate. Lynden{

Bell (1960) derived the three Jeans equations which relate

the three principal stresses to the potential and the density.

They constitute a highly-symmetric set of �rst-order par-

tial di�erential equations in the three confocal coordinates.

Solutions were found for the various two-dimensional limit-

ing cases, but with methods that do not carry over to the

general case, which, as a consequence, remained unsolved.

In this paper, we have introduced an alternative solu-

tion method, using superposition of singular solutions. We

have shown that this approach not only provides an elegant

alternative to the standard Riemann{Green method for the

two-dimensional limits, but also, unlike the standard meth-

ods, can be generalised to solve the three-dimensional sys-

tem. The resulting solutions contain complete (hyper)elliptic

integrals which can be evaluated in a straightforward way.

In the derivation, we have recovered (and in some cases cor-

rected) all previously known solutions for the various two-

dimensional limiting cases with more symmetry, as well as

the two special solutions known for the general case, and

have also clari�ed the restrictions on the boundary values.

We have numerically tested our solution on a polytrope

model.

The general Jeans solution is not unique, but requires

speci�cation of principal stresses at certain boundary sur-

faces, given a separable triaxial potential, and a triaxial den-

sity distribution (not necessarily the one that generates the

potential). We have shown that these boundary surfaces can

be taken to be the plane containing the long and the short

axis of the galaxy, and, more speci�cally, the part that is

crossed by all three families of tube orbits and the box or-

bits. This is not unexpected, as HZ92 demonstrated that the

phase-space distribution functions of these triaxial systems

are de�ned by specifying the population of each of the three

tube orbit families in a principal plane. Once the tube orbit

populations have been de�ned in this way, the population

of the box orbits is �xed, as it must reproduce the density

not contributed by the tubes, and there is only one way to

do this. While HZ92 chose to de�ne the population of inner

and outer long axis tubes in a part of the (x; z)-plane, and

the short axis tubes in a part of the (y; z)-plane, it is in fact
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also possible to specify all three of them in the appropriate

parts of the (x; z)-plane, just as is needed for the stresses.

The set of all Jeans solutions (4.45) contains all the

stresses that are associated with the physical distribution

functions f � 0, but, as in the case of spherical and axisym-

metric models, undoubtedly also contains solutions which

are unphysical, e.g., those associated with distribution func-

tions that are negative in some parts of phase space. The

many examples of the use of spherical and axisymmetric

Jeans models in the literature suggest nevertheless that the

Jeans solutions can be of signi�cant use.

While triaxial models with a separable potential do not

provide an adequate description of the nuclei of galaxies with

cusped luminosity pro�les and a massive central black hole,

they do catch much of the orbital structure at larger radii,

and in some cases even provide a good approximation of

the galaxy potential. The solutions for the mean streaming

motions, i.e., the �rst velocity moments of the distribution

function, are quite helpful in understanding the variety of

observed velocity �elds in giant elliptical galaxies and con-

straining their intrinsic shapes (e.g., Statler 1991, 1994b;

Arnold et al.1994; Statler, DeJonghe & Smecker-Hane 1999;

Statler 2001). We expect that the projected velocity disper-

sion �elds that can be derived from our Jeans solutions will

be similarly useful, and, in particular, that they can be used

to establish which combinations of viewing directions and

intrinsic axis ratios are �rmly ruled out by the observations.

As some of the projected properties of the St�ackel models

can be evaluated by analytic means (Franx 1988), it is possi-

ble that this holds even for the intrinsic moments considered

here. Work along these lines is in progress.

The solutions presented here constitute a signi�cant

step towards completing the analytic description of the prop-

erties of the separable triaxial models, whose history by now

spans more than a century. It is remarkable that the entire

Jeans solution can be written down by means of classical

methods. This suggests that similar solutions can be found

for the higher dimensional analogues of (2.16), most likely

involving hyperelliptic integrals of higher order. It is also

likely that the higher-order velocity moments for the sepa-

rable triaxial models can be found by similar analytic means,

but the e�ort required may become prohibitive.
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APPENDIX A: SOLVING FOR THE

DIFFERENCE IN STRESS

We compare our solution for the stress components T�� and

T�� with the result derived by EL89. They combine the two

Jeans equations (2.25) into the single equation

@2�

@�@�
+

�
@

@�
� @

@�

�
�

2(���) =
@�

@�

@VS

@�
� @�

@�

@VS

@�
; (A1)

for the di�erence � � T�� � T�� of the two stress compo-

nents. Eq. (A1) is of the form

L?� =
@�

@�

@VS

@�
� @�

@�

@VS

@�
; (A2)

where L? is the adjoint operator de�ned in eq. (3.6). As in

x3.1, eq. (A1) can be solved via a Riemann{Green function.

A1 The Green's function

In order to obtain the Riemann{Green function G? for the

adjoint operator L?, we use the reciprocity relation (Copson

1975, x5.2) to relate it to the Riemann{Green function G, de-
rived in x3.1.2 for L. With c1 = c2 = � 1

2
in this case, we get

G?(�; �;�0; �0) = G(�0; �0;�; �)

=

�
�0��0
���

� 1

2

2F1(� 1

2
; 3
2
; 1;w); (A3)

where w as de�ned in (3.16). EL89 seek to solve eq. (A2)

using a Green's function G which satis�es the equation

L?G = Æ(�0��)Æ(�0��): (A4)

That they impose the same boundary conditions that we do

is evident from their remark that, if L? were the simpler op-
erator @2=@�@�, G would be H(�0��)H(�0��). This is the
same result as would be obtained by the singular solution

method of x3.2, which, as we showed there, is equivalent to

the Riemann{Green analysis. Hence their G should match

the G? of eq. (A3). We show in xA3 that it does not.

Figure A1. The physically relevant region of the (�; �)-plane for

the determination of the Riemann{Green function G, overlayed

with the new coordinates � and � (A5). The dot marks the source

point of the Riemann{Green function G at (�0; �0). This function

is non-zero only in the shaded region, which denotes the domain

of in
uence in the (�; �)-plane of that source point. Fig. 4 on the

other hand shows the (�0; �0)-plane. It is relevant to the solution

for the stress at a single �eld point (�; �). The hatched region D

of Fig. 4 shows the domain of dependence of the �eld point, that

is the portion of the source plane on which the solution at the

�eld point depends.

A2 Laplace transform

We use a Laplace transform to solve (A4) because the re-

quired solution is that to an initial value problem to which

Laplace transforms are naturally suited. The PDE is hyper-

bolic with the lines � = const and � = const as charac-

teristics, and its solution is non-zero only in the rectangle

bounded by the characteristics � = �0 and � = �0, and the

physical boundaries � = �� and � = �� (Fig. A1). We

introduce new coordinates

� = (���)=
p
2; � = �(�+�)=

p
2; (A5)

so that eq. (A4) simpli�es to

L?G � @2G

@�2
� @2G

@�2
� @

@�

�
G

�

�
= 2Æ(�� �0)Æ(�� �0); (A6)

where �0 = (�0��0)=
p
2 and �0 = �(�0+�0)=

p
2 are the

coordinates of the source point. The factor of 2 arises from

the transformation of the derivatives; the product of the

delta functions in (A4) transforms into that of (A6) because

the Jacobian of the transformation (A5) is unity. The reason

for our choice of � is that G � 0 for � < �0, that is � +

� > �0 + �0. Hence � is a time-like variable which increases

in the direction in which the non-zero part of the solution

propagates. We take a Laplace transform in ~� = �� �0, and
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transform G(�; �) to

Ĝ(�; p) =

1Z
0

e
�p~�

G(�; ~�)d~�: (A7)

There are two equally valid ways of taking proper account

of the Æ(�� �0) in taking the Laplace transform of equation

(A6). One can either treat it as Æ(~��0+), in which case it has
a Laplace transform of 1, or one can treat it as Æ(~� � 0�),
in which case it contributes a unit initial value to @G=@�

which must be included in the Laplace transform of @2G=@�2

(Strauss 1992). Either way leads to a transformed equation

for Ĝ(�; p) of

p
2
Ĝ� d2Ĝ

d�2
� d

d�

 
Ĝ

�

!
= 2Æ(� � �0): (A8)

The homogeneous part of eq. (A8) is the modi�ed Bessel

equation of order one in the variable p�. Two independent

solutions are the modi�ed Bessel functions I1 and K1. The

former vanishes at � = 0 and the latter decays exponentially

as � ! 1. We need Ĝ to decay exponentially as � ! 1
because G(�; �) vanishes for ~� < ���0, and hence its Laplace
transform Ĝ is exponentially small for large �. We also need

Ĝ to vanish at � = 0 where � = �. The focus at which

� = � = �� is the only physically relevant point at which

� = 0. It lies on a boundary of the solution region in the

�0 ! �� limit (Fig. A1). The focus is a point at which

the di�erence � between the stresses vanishes, and hence G

and Ĝ should vanish there. The delta function in eq. (A8)

requires that Ĝ be continuous at � = �0 and that dĜ=d�

decrease discontinuously by 2 as � increases through � = �0.

Combining all these requirements, we obtain the result

Ĝ(�; p) =

(
2�0K1(p�) I1(p�0); �0 � � <1;

2�0K1(p�0) I1(p�); 0 � � � �0:
(A9)

We use the Wronskian relation I1(x)K
0

1(x)� I 01(x)K1(x) =

�1=x (eq. [9.6.15] of Abramowitz & Stegun 1965) in cal-

culating the prefactor of the products of modi�ed Bessel

functions. The inversion of this transform is obtained from

formula (13.39) of Oberhettinger & Badii (1973) which gives

G(�;~�)=

(q
�0
� 2F1(� 1

2
; 3
2
;1;w); j�0��j� ~���0+�;

0; �1< ~�< j�0��j;
(A10)

we have (cf. eq. [3.16])

w � ~�2 � (�0��)2
4�0�

=
(�0��)(�0��)
(�0��0)(���) : (A11)

The second case of eq. (A10) shows that G does indeed va-

nish outside the shaded sector � < �0, � < �0. The �rst case

shows that it agrees with the adjoint Riemann{Green func-

tion G? of (A3) which was derived from the analysis of x3.1.

A3 Comparison with EL89

EL89 use variables s = �� and t = �, whereas we avoided

using t for the non-time-like variable. They consider the

Fourier transform

�G(�; k) =

1Z
�1

e
�ik~�

G(�; ~�)d~�: (A12)

Because G � 0 for ~� � 0, we can rewrite our Laplace

transform as their Fourier transform. Setting p = �ik
gives �G(�; k) = iĜ(�;�ik), and using the formulas I1(x) =

�J1(ix) and K1(x) =
1
2
�iH

(1)
1 (ix), eq. (A9) yields

�G(�; k) =

(
�i�0H

(1)
1 (k�) J1(k�0); �0 � � <1;

�i�0H
(1)
1 (k�0) J1(k�); 0 � � � �0:

(A13)

This formula di�ers from the solution for the Fourier

transform given in eq. (70) of EL89. The major di�erence is

that their solution has Hankel functions of the second kind

H
(2)
1 (kt) = H

(2)
1 (k�) where ours has J1 Bessel functions.

Consequently their solution has an unphysical singularity at

t = � = 0, and so, in our opinion, is incorrect. Our solution,

which was devised to avoid that singularity, gives a result

which matches that derived by Riemann's method in x3.1.

A4 The solution for �

The solution for � using the adjoint Riemann{Green func-

tion is given by eq. (3.14) with G replaced by G? and the

sign of c2 changed for the adjoint case (Copson 1975). The

hypergeometric function of eq. (A3) for G? is expressible in
terms of complete elliptical integrals as

2F1(� 1

2
; 3
2
; 1;w) =

2

�
[E(w) + 2wE

0

(w)]: (A14)

Hence, the solution for the di�erence � between the two

principal stresses is given by

�(�; �) =
2

�(���) 12

(

1Z
�

d�0

��Z
�

d�0

h
E(w) + 2wE

0

(w)
i
(�0��0)

1

2

�
@�

@�0

@VS

@�0
� @�

@�0

@VS

@�0

�

�
1Z
�

d�0

�
E(w) + 2wE

0

(w)

�
�0=��

d

d�0

h
(�0+�)

1

2�(�0;��)
i)
: (A15)

The determined reader can verify, after some manipulation,

that this expression is equivalent to the di�erence between

the separate solutions (3.21a) and (3.21b), derived in x3.1.

Note added in manuscript

We agree with the amendment to our method of solution

for � given in Appendix A4. Our Green's function, while

solving the di�erential equation, had the wrong boundary

conditions.

N.W. Evans & D. Lynden-Bell
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