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Abstract 
The uncertainty of flow parameters depending on the error of input data (initial, boundary conditions, 
coefficients) may be efficiently calculated using adjoint equations. This approach is extremely 
effective for uncertainty estimation at certain checkpoint because it needs to solve only single 
(adjoint) system of equations above the system describing the flow-field. The fields of “adjoint 
“temperature”, adjoint “density” etc. are used to calculate the transfer of uncertainty from all input 
data.  

 

Introduction 
 The uncertainty of flow-field parameters depending on the error of initial conditions, 
boundary conditions, and coefficients may be calculated by a number of approaches such as 
Monte-Carlo methods or sensitivity equations. Unfortunately, the algorithms that estimate 
both the flow parameters and their uncertainty are very rare because they usually need a great 
computation time. For example, the dispersion of a result ε  may be calculated from the input 
data if  dispersion using the sensitivity coefficients if∂∂ /ε  [1]. 
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The time for if∂∂ /ε  calculation either using sensitivity equations or the direct numerical 

differentiation of ε  is proportional to time of ε  calculation multiplied by the number N of 
input parameters. The total time of if∂∂ /ε  calculation is practically unacceptable if the time of 

ε  calculation is high and N is great. 
The present paper addresses to the estimation of uncertainty using coefficients if∂∂ /ε  

calculated via adjoint equations. If the uncertainty is estimated in single checkpoint, this 
approach needs minimal computational resources because only one adjoint system should be 
solved independently on number N. The time for if∂∂ /ε  calculation is approximately equal to 

double time of ε  computation in this event. 
The fields of adjoint “temperature”, adjoint “density” etc. depend on flow-field, 

estimated parameter, checkpoint location and do not depend on the set of input data, which 
have an uncertainty. So, they are universal and permit the calculation of uncertainty caused by 
any parameter of the system of equations. 

The adjoint approach is demonstrated herein for parabolized Navier-Stokes. 
 

Flow parameter uncertainty estimation 
We consider the uncertainty estimation in supersonic viscous flow, Fig. 1. The flow 

parameters are calculated by the finite-difference approximation of parabolized Navier-Stokes 
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[2,3]. The march along X coordinate was used. 
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P= ρRT; e= Cv T; (X,Y)∈ Ω=(0<X< Xmax; 0<Y<1); 
 

The entrance boundary (A (X=0), Fig. 1) conditions follow: 
e(0,Y)=e∞ (Y); ρ(0,Y)=ρ∞ (Y)); U(0,Y)=U∞ (Y); V(0,Y)=V∞ (Y);                                  ( 6 ) 
the outflow conditions ∂f/∂Y=0 are used on  B, D (Y=0, Y=1). 

 
Let the inflow parameters to contain the uncertainty. We assume the discrete analogues 

of these parameters to contain a normally distributed error ),,,( eVU σσσσ ρ . 

Let we seek for total flow-field and the accuracy of certain parameter (let it be 
temperature) in some check point T(test,xest), more precisely: a dependence of the temperature 
standard deviation from the input data deviations ...),,( VUT f σσσσ ρ= . 

Note ),( estest YXT  as Re)),(( Yf∞ε . If the estimated parameter is located on the 
outflow boundary we may express it as  

dyYYYXY est )(),())(( max −= ∫∞ δε Tf   

(7) 

If ),( estest YXT  is located within the field we write  

dxdyXXYYYXY estest )()(),())(( −−= ∫
Ω

∞ δδε Tf   

(8) 
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The input data dispersion is transformed to the result dispersion by gradients [1], in our case: 
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The most efficient way for gradient calculation is based on adjoint equations. For these 

equations inference we introduce the Lagrangian )),(( Ψ∞ YfL , composed of the estimated 
value and weak statement of problem (2-5). 
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Consider the influence of inflow data variation )(Xf∞∆  and coefficient variation 

Re)/1(∆ . By subtracting the undisturbed solution we get the linear tangent model: 
 

U
X

U

X

V

Y
V

Y

∂ ρ
∂ ρ

∂
∂ ρ

∂
∂

∂ ρ
∂

( ) ( ) ( ) ( )∆ ∆ ∆ ∆
+ + + +   

∆ ∆ ∆ ∆ρ
∂
∂

∂ ρ
∂ ρ

∂
∂

∂ ρ
∂

U

X
U

X

V

Y
V

Y
+ + + = 0 , 

 
(11) 

 

U
U

X
U

U

X
V

U

Y
V

U

Y

U

Y

U

Y

∂
∂

∂
∂

∂
∂

∂
∂ ρ

∂
∂

ρ
ρ

∂
∂

∆
∆ ∆

∆ ∆ ∆
+ + + − + −

1 2

2 2

2

2Re Re
  







 ∆+∆+∆+∆−+∆−

X
e

X

e

X
e

X

e

X

P

∂
∂ρ

∂
∂ρ

∂
ρ∂

∂
∂ρ

ρ
κ

∂
∂

ρ
ρ )1(
2 ( ) 0Re/1

1
2

2

=∆−
Y

U

∂
∂

ρ
 

 
(12) 

 

U
V

X
U

V

X
V

V

Y
V

V

Y

V

Y

V

Y

∂∆
∂

∂
∂

∂
∂

∂∆
∂ ρ

∂
∂ ρ

∂
∂+ + + − + −∆ ∆

∆ ∆ρ4

3

4

3

2

2 2

2

2Re Re
 







 ∆+∆+∆+∆−+∆−

Y
e

Y

e

Y
e

Y

e

Y

P

∂
∂ρ

∂
∂ρ

∂
ρ∂

∂
∂ρ

ρ
κ

∂
∂

ρ
ρ )1(
2 ( ) 0Re/1

3

4
2

2

=∆−
Y

V

∂
∂

ρ
 

 
(13) 

 

U
e

X
U

e

X
V

e

Y
V

e

Y
e

U

X

V

Y
e

U

X

V

Y

∂
∂

∂
∂

∂
∂

∂
∂ κ

∂
∂

∂
∂ κ

∂
∂

∂
∂

∆
∆ ∆

∆
∆

∆ ∆
+ + + + − +



 + − +



 −( ) ( )1 1  



 

 

4

 








 ∆−∆−
2

2

2

2

PrRePrRe

1

Y

e

Y

e

∂
∂

ρ
ρκ

∂
∂κ

ρ
.

Re3

4

Re3

81
2

−















∆−













 ∆−

Y

U

Y

U

Y

U

∂
∂

ρ
ρ

∂
∂

∂
∂

ρ
 

 

( ) 0Re/1
3

4

Pr

1
2

2

2

=∆















+−

Y

U

Y

e

∂
∂

∂
∂κ

ρ
 

 
(14) 

 
 On the boundaries the variations ∆ρ,∆U,∆V,∆e should satisfy to: 
Inflow boundary conditions:                ∆e(0,Y)=∆e∞(Y), ∆ρ(0,Y)=∆ρ∞(Y), 
                                                                ∆ρ(0,Y)=∆ρ∞(Y), ∆V(0,Y)=∆V∞(Y) 
Lateral boundary conditions: B (Y=1): ∆e(X,1)=0, ∆ρ(X,1)=0, ∆U(X,1)=0,∆V(X,1)=0. 
                                                 D (Y=0): ∆e(X,0)=0, ∆ρ(X,0)= 0, ∆U(X,0)=0, ∆V(X,0)=0. 

 
(15) 

 
We use equations (11-15) for Lagrangian (10) variation statement.  

∫
Ω

+−−∆=∆ dtdxxxttTtQ estestw )()())(( δδε … (16) 

 
Integrating the Lagrangian variation (16) by parts taking into account of (11-15) allows 

estimating the variation of target parameter in dependence on the disturbed parameters (17). 
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Eq. (17) is valid if the remaining terms of ),),(( Ψ∆ ∞ ff YL  equal zero, i.e. on the solution of 
the adjoint problem (18-22). 
 

Adjoint problem 
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The source term in equation describing eΨ  (21) corresponds the checkpoint location 

within the flow-field. 
 

Initial conditions C (X=Xmax): ;0
max

,, =Ψ
=XX

VUρ  ;0)()1( =−+Ψ−+Ψ est
Ue YYU δκ  (22) 

 
Expression for eΨ  in (22) corresponds the checkpoint location on the inflow boundary Xmax. 

Boundary conditions B,D (Y=0; Y=1):
∂Ψ
∂

f

Y
= 0;  

 

(23) 

The statement (18-23) differs from the adjoint equations used in Inverse CFD 
problems by the form of the target functional and, respectively, by the source term form in 
(21,22). The adjoint problem is solved in the reverse direction along X. Its statement is 
determined by the forward problem, check point position, and the choice of the estimated 
parameter. The adjoint problem does not depend on the choice of parameters containing the 
uncertainty. So, the same field of adjoint parameters may be used for the calculation of 
uncertainty propagation from any parameters (initial, boundary conditions, coefficients, 
sources). The gradients used for the uncertainty propagation (see Eq. (9)) have the following 
form: 
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The calculation of the gradient implies the consequent solution of the direct and 
adjoint problems. So, the time for uncertainty calculation of the single parameter in the single 
checkpoint equals approximately two times of the flow-field calculation. The uncertainty 
estimation of every additional parameter needs the solution of additional adjoint equation. 

 
Test results 

The singular source in (21) is integrated over the cell and thus transformed to the finite 
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source term )/( YXij ∆∆δ , if check point is located within flow-field, and Yij ∆/δ  if the 

check point is on the boundary (22), where ijδ is the unit matrix. 

The uncertainty propagation is calculated by the adjoint equations and Monte-Carlo 
method (averaged over 100 trials) for the comparison. The inflow parameters contain the 
normally distributed error with the standard deviation in the range of 0.01-0.1. The standard 
deviations of temperature in the middle point (N=50) on the outflow boundary calculated by 
both methods are presented in the Table 1 for the case of uniform flow.  

 
Uniform flow-field (Nest=50) 

Table 1 

∞f
σ  Tσ , adjoint approach Tσ , averaged over 100 runs 

0.01 0.0024 0.002613 
0.05 0.012 0.0144 
0.1 0.024 0.03 

 
Adjoint “density” field is presented in Figure 2, adjoint “temperature” is presented in Figure 3. 
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Fig. 2 Fig. 3 

 
The flow-field parameters and their gradients form sources and coefficients of adjoint 

equations. So, the following tests are conducted for non-uniform flow corresponding to 
underexpanded jet with the temperature ratio Tj/T=3 (density isolines are provided in Fig. 4). 
The coincidence of adjoint and Monte-Carlo approaches is of the same quality. The 
temperature uncertainty estimations are presented in Tables 2 and 3 for different checkpoint 
locations (Nest=50 and Nest=20). By comparing Fig. 5 and Fig. 6 we may see the difference of 
regions from which the main part of uncertainty is propagated. 

 
Underexpanded jet (Nest=50) 

Table 2 

∞f
σ  Tσ , adjoint approach Tσ , averaged over 100 runs 

0.01 0.0029 0.0029 
0.05 0.0145 0.0152 
0.1 0.029 0.03 
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Underexpanded jet, (Nest=20) 

Table 3 

∞f
σ  Tσ , adjoint approach Tσ  averaged over 100 runs 

0.01 0.00284 0.00304 
0.05 0.0142 0.0148 
0.1 0.0284 0.034 
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Fig. 4 Fig. 5 
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Fig. 6 Fig. 7 
 

Figures 2,3,5,6 correspond the checkpoint located on the boundary, (Eq. (22)), Fig. 7 
corresponds the check point within the flow-field (Eq. (21)). Generally, the results of both 
approaches (Monte-Carlo and adjoint) correlate, while the consumed computer time differs by 
two orders of magnitude for these tests. 

The computation of the single parameter (T) at the single checkpoint needs calculation 
of the flow-field and the adjoint field. The estimation of another parameter (or the same in 
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another check point) needs calculation of the new adjoint field with the same flow-field.  
Discussion 

 Let’s compare different approaches for the uncertainty calculation from the viewpoint 
of necessary computer resources. 

The temperature dispersion for total flow-field may be calculated by the sensitivity 

equations written for values 
)(

),(
),,(

k
ikk Xf

YXT
XYXS

∞

=
∂
∂

. This approach implies the solution of 

the system of equations of higher dimension (by the dimension of the space of control 
parameters) in comparison with the system (2-5). For problem under consideration it may 
mean 4Ny calculations of (2-5). The adjoint equations need NxNy+1 calculations of (2-5) for 
the temperature dispersion in the total flow-field. Thus, the sensitivity equations are less 
expensive if the total field of dispersion is calculated. Nevertheless, the adjoint equations are 
far more efficient from computation time viewpoint for relatively small set of estimated 
parameters. 

Another approach to the uncertainty estimation based on the adjoint equations of the 
second order is described in [4]. The target functional for this approach has a form: 

 ( ) dXXTXTYf
X

error
Y

exact
Y estest

2
)()())(( ∫ −=∞δε  

 

 

Second order adjoint approach uses calculation of Hessian (or part of its spectrum) and needs 
computation time proportional to the number of parameters containing error, which is for 
considered problem of the order of Ny. In general, the second order approach seems to be most 
suitable for the calculation of the uncertainty in the inverse CFD problem. 
 Monte-Carlo Methods are also expensive from the computational time standpoint, 
although they may be implemented much more simply because do not need the solution of any 
auxiliary problem. 

In general, the considered adjoint method is most efficient from computational time 
viewpoint if we calculate the uncertainty of parameters in the small set of checkpoints. 

The adjoint approach implies the simultaneous solution of the set of adjoint equations 
having slightest differences. So, the computation of the uncertainty may be easily paralleled. 

 
Conclusion 

The uncertainty of the flow parameter in the checkpoint from input data error may be 
calculated using adjoint equations under the total computer time consumption corresponding 
the double calculation of the flow-field. 

The calculation of the uncertainty of n parameters needs the calculation of n+1 fields 
(flow-field + n adjoint fields).  
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