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Abstract

Given a collection of single-market covariance matrix forecasts for
different markets, we describe how to embed them into a global fore-
cast of total risk.

We do this by starting with any global covariance matrix forecast
that contains information about cross-market correlations, and revis-
ing it to agree with the pre-specified submarket matrices, preserving
the requirement that a covariance matrix be positive semi-definite.

We characterize the ways this can be done and address the resulting
numerical optimization problem.

Key words: portfolio risk, total risk, optimization, positive definite.
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1 Introduction

Portfolio managers and financial firms need risk forecasts for many purposes,
including mean-variance optimization (Markowitz (1952)), control of tracking
error, and regulatory compliance requirements. Commonly, risk forecasts are
derived from a forecast of the covariance matrix1 of returns for the universe
of available assets.

A well-known difficulty is that the asset covariance matrix is generally too
large to estimate directly from a historical time series of asset returns.2 Risk
factor models address this difficulty by specifying a “small” set of factors
that explain “most” of the asset covariances; the factor covariance matrix is
then small enough to estimate from historical factor time series.

A great deal of work has been done on how to choose the best set of
factors and how best to estimate the covariance matrix once the factors are
chosen. Fama and French (1993) proposed three to five factors to estimate
global covariance, and show that this does well for finding the minimum
variance portfolio. Chan, Karceski, and Lakonishok (1999) show that more
factors are needed when the objective is to minimize tracking error volatility,
and in particular industry factors can be useful. Once the factors are chosen,
there is still a statistical estimation problem to face. For example, Ledoit and
Wolf (2003) describe a shrinking method for interpolating between a sample
covariance matrix and a single-index matrix. MSCI-Barra uses a variety
of proprietary methods to improve the outcome of bias tests for volatility
forecasts.

In this paper we do not advocate any particular factor structure or number
of factors; rather, we assume those decisions have already been made, and
address the following subsequent issue.

An investment firm will often contain many individual market portfolios
for a variety of markets, e.g. equities within various different countries. Each
portfolio manager will have her own tailored factor model and covariance
matrix forecast. However, the firm as a whole needs to understand its total

1Sometimes this is called the “variance-covariance matrix”. It contains all the infor-
mation in the correlation matrix, plus the individual variances.

2To compute an n × n sample covariance matrix without introducing spurious corre-
lations requires a times series of length at least n for each asset; even longer series are
necessary to achieve reasonable statistical depths. Nonstationarity in the returns pro-
cess renders such long horizons useless. Volatility clustering on short timescales prevents
solving the problem by the simple expedient of moving to high-frequency data.
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risk exposure due to the sum of all its individual portfolios. This means the
firm as a whole must try to understand the covariances between markets as
well as those within markets. This can be derived from a forecast of the
covariance matrix for the union of all the individual market factors.

Let m denote the total number of such factors. It is likely that the re-
quired m×m factor covariance matrix is again too large to estimate directly.
For example, MSCI-Barra equity risk models use firm-specific factors, in-
cluding industry factors. Because of the number of relevant industry sectors,
this can lead to single-country models with anywhere from 11 to 65 factors
(See Table 1). For a global model covering 50 to 60 such markets, then, one
collectively has perhaps m = 1000 or more factors (e.g. US-oil, UK-size,
JPN-financial, etc.) in the model.

There are various ways to proceed to estimate this m ×m global factor
covariance matrix. (For example, one could make a factor model for the
factors, with individual market factors exposed to a smaller number of global
factors.) However this might be done, we henceforth assume that the firm
can arrive at a (necessarily crude) estimate of the global m ×m covariance
matrix, call it Σ.

This matrix Σ reflects greater estimation error than the individual market
covariance forecasts, but we suppose it contains the best information about
the cross-market covariances so important for estimating total risk.

We now face the following difficulty: the diagonal blocks of Σ correspond-
ing to the individual markets probably are not equal to the more refined
covariance matrix forecasts already developed by the individual managers.
If there is a discrepancy, the global model and an individual market model
will disagree about the risk of portfolios within that market. This means the
firm-wide view of risk is at odds with the views of the constituent managers.

We assume in this paper that such disagreement is unacceptable to the
firm: we adopt as a non-negotiable requirement that, e.g., the global and US
risk models should agree on the risk of US portfolios, and likewise for the
other markets.

We now arrive at the problems addressed by this paper:

1. Aggregating the given local risk models: how can we incorporate all of
the prior single market covariance forecasts into the global matrix Σ,
in order to satisfy the above requirement?

2. Minimizing loss of information caused by aggregation: How can we
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solve this risk aggregation problem while keeping as much as possible of
the cross-market covariance information already contained in Σ?

In mathematical terms, we are asking how to find a revised global co-
variance matrix Σ̃ that agrees exactly with the pre-specified diagonal blocks,
and agrees as closely as possible with the off-diagonal blocks of Σ.

The purpose of this paper is to highlight this issue mathematically and
formulate the problem and its solution in precise terms.

In the following sections, we formalize the problem and then describe
the complete set of solutions. This leads naturally to a nontrivial numerical
optimization problem. We describe a simple illustrative example in Section
4, and in Section 5 we report on some results with real data.

2 Formalizing the problem

We assume a collection of asset-specific factors have been determined. This
means we have specified a rectangular matrix A of asset sensitivities (or
“exposures”) to the factors, where the (i, j)th element of A is the exposure
of asset i to factor j.3 If a is the vector of asset returns over a given time step
(say month), we denote by s the (shorter) vector of factor returns, defined
by the cross-sectional linear regression

(2.1) a = As + ε ,

where the vector ε of errors is assumed to have diagonal covariance matrix
D and to be uncorrelated with s.

The factor covariance matrix Σ(s) is, by design, small enough to be re-
liably estimated with a time series of factor returns. The asset covariance
matrix Σ(a) is then estimated as

Σ(a) ≈ AΣ(s)AT + D .

For a fuller discussion of risk factor modelling see, e.g., Grinold and Kahn
(2000).

3In principle, these factors may be arbitrary, and are likely not orthogonal. For in-
dustry factors, the exposures will be 0 or 1. For other factors, (e.g. size) the numerical
specification of an exposure (e.g. number of standard deviations from the mean) defines
the precise meaning of the factor.
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Definition 2.1 An aggregate factor model is a factor model whose m-dimensional
vector of factors s decomposes into k subvectors

(2.2) s =


s1

s2
...
sk

 ,

with m = n1 + n2 + · · ·+ nk, where ni is the length of the ith subvector si.

We can think of the subvector si as representing the factors in the risk model
for market i, i = 1, . . . , k.

This decomposition corresponds to a particular block structure on the
covariance matrix

(2.3) Σ = Σ(s) = (Σi,j)
k
i,j=1,

where Σi,j is the ni × nj matrix of covariances between the variables in si

and sj, called, when i 6= j, the cross-block covariances. For convenience let
Θi denote the ith diagonal block Σi,i – that is, Θi is the factor covariance
matrix for the i-th sub-market.

We henceforth assume that all our covariance matrices are non-singular,
hence positive definite. This means that there are no redundant variables.
(Recall that positive definite means real, symmetric, and all eigenvalues pos-
itive; positive semi-definite means real, symmetric, and all eigenvalues non-
negative).

We begin with the following simple version of our problem. We have a
first draft factor covariance matrix Σ that incorporates some estimation error
from various sources. We wish to improve it by replacing a diagonal block Θ
with a more accurate one Θ̃, for example coming from a more refined factor
model of a submarket.

We cannot in general simply overwrite Θ with Θ̃, because the resulting
matrix is likely no longer to be positive semi-definite (which will lead to neg-
ative risk portfolios, spoil any portfolio optimization routines, and therefore
must be strictly disallowed). (See Section 4 below for an example.)

Rebonato and Jäckel (2000) have discussed this problem of candidates
for a correlation matrix that are not positive semi-definite, and presented a
method for restoring positive semi-definiteness. However, their method does
not respect the constraint that we fix a specified diagonal block.
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The new covariance matrix Σ̃ can be viewed as the result of a change of
the underlying factor variables

(2.4) s̃ = F (s).

In practice we expect that Θ̃ will be close to Θ, so (2.4) will represent a
small change of the factors in the orginal model, dictated by our insistence
on Θ̃ in place of Θ. (Since the identities of the factors are determined by the
regression (2.1), they are only approximate in the first place, so the change
(2.4) can be viewed as a correction via the additional information in Θ̃.)

If F is nonlinear, the new covariance matrix Σ̃ depends not just on Σ,
but also on higher moments of the variables s. These higher moments are
usually not available in practice, so we restrict attention to the case of affine
change of variables:

s̃ = Ls + b,

where b is a constant vector and L is an arbitrary nonsingular linear trans-
formation. In this case the covariance matrix of s̃ is

(2.5) Σ̃ = LΣLT ,

and Σ̃ is positive definite.
The matrix L now needs to be chosen to convert Θ to Θ̃ while respecting

the given decomposition (2.2) of s. Some terminology is convenient.

Definition 2.2 Let Θ be a diagonal block of the m × m covariance matrix
Σ for an aggregate factor model. Let Θ̃ be a positive definite matrix of the
same size as Θ.

A linear transformation L : Rm → Rm that preserves the decomposition
(2.2), changes Θ to Θ̃, and leaves the other variables unchanged will be called
a simple revising transformation converting Θ to Θ̃.

That is, L is block diagonal, with the identity in each block except the one
corresponding to Θ, and the diagonal block of Σ̃ = LΣLT corresponding to Θ
is Θ̃.

In general, there are infinitely many possible linear revising transforma-
tions for a given Σ, Θ, and Θ̃. The next theorem characterizes them all.

Notation: If A is a positive semi-definite matrix, we will denote by A1/2

the unique positive semi-definite square root of A. When A is also positive
definite, A−1/2 will denote the inverse of A1/2.
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For convenience we use the direct sum notation ⊕ to represent block
diagonal matrices: A⊕B is the block diagonal matrix with A and B as the
diagonal blocks and zeros elsewhere. We use O(n) to denote the orthogonal
group of n× n real matrices O satisfying OOT = I.

The proof of following theorem is in the Appendix.

Theorem 2.3 Let Θ be an n× n diagonal block of the covariance matrix Σ
with block structure (2.3). If Θ̃ is an n× n positive definite matrix, then the
space of simple revising transformations L converting Θ to Θ̃ is parametrized
by the orthogonal group O(n) via

(2.6) L(O) = I ⊕ Θ̃1/2OΘ−1/2 ⊕ I

for O ∈ O(n), where each occurrence of I denotes the identity of the appro-
priate dimension.

In general the practitioner may want to revise several diagonal blocks at
once – perhaps all of them. The previous theorem is easily generalized: the
transformation accomplishing revision of several diagonal blocks is a com-
position of simple revising transformations. Since these commute for non-
overlapping blocks, the order of composition doesn’t matter.

Definition 2.4 Suppose we have an aggregate factor model (2.2) with diag-
onal blocks Θ1, . . . , Θk, and proposed replacements Θ̃1, . . . , Θ̃k, respectively.
A revising transformation converting the Θi’s to the Θ̃i’s is a linear
transformation L : Rm → Rm that preserves the decomposition (2.2), and
changes the Θi’s to Θ̃i’s, i.e. L is block diagonal, and the diagonal blocks of
Σ̃ = LΣLT are the Θ̃i’s.

Theorem 2.5 For i = 1, . . . , k, suppose Θi is an ni × ni diagonal block of
the covariance matrix Σ with block structure (2.3).

If, for each i, Θ̃i is an ni × ni positive definite matrix, then the space of
revising transformations L converting the Θi’s to the Θ̃i’s is parametrized by
the product of orthogonal groups O(n1) × O(n2) × . . . × O(nk) via the block
diagonal transformation

(2.7) L(O1, . . . , Ok) =
k⊕

i=1

Θ̃
1/2
i OiΘ

−1/2
i .

We remark that if some of the blocks of Σ remain unchanged, we may
reduce the size of the parameter space O(n1)×O(n2)×. . .×O(nk) by requiring
L to be the identity on those factors.
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3 An Optimization Problem

Any choice, such as the identity, in the parameter group

G = O(n1)×O(n2)× . . .×O(nk)

provides a solution of the risk aggregation problem described in the Intro-
duction. Namely, we form a block diagonal matrix L from equation (2.7),
and then Σ̃ = LΣLT is our new global covariance matrix that agrees exactly
with the specified blocks Θ̃i. Moreover, all possible solutions L are of this
form.

We minimize the loss of cross-market correlation information caused by
this transformation by making an optimal or near-optimal choice for the
orthogonal matrices in the product space G above.

This is a maximum likelihood problem. If we imagine that Σ̃ is the
unknown “true” covariance matrix, we can view the estimated matrix Σ as a
random sample from a distribution PΣ̃ on the space of n×n matrices. Then
we can seek the parameter Σ̃ maximizing the likelihood that Σ was sampled,
i.e. find Σ̃ so that pΣ̃(Σ) is maximum, subject to the condition that Σ̃ has
the specified diagonal blocks, and where pΣ̃ is the density function for the
distribution PΣ̃.

Of course this depends on the choice of distribution PΣ̃. It is reasonable
to require that pΣ̃ be a unimodal density peaked at Σ̃ and monotonically
decreasing with distance from Σ̃. In the absence of any special information,
we make the simple quadratic choice (as do Rebonato and Jäckel (2000))
corresponding to minimizing the objective

Ecov =
∣∣∣∣∣∣Σ− Σ̃

∣∣∣∣∣∣2 ,(3.1)

where || · || refers to the Frobenius norm, defined as the square root of the
sum of the squares of the matrix entries.

A potential difficulty with the use of ||Σ − Σ̃||2 as an objective function
is its implicit bias giving greater importance to factors with larger variances.
To address this, we may wish to normalize all our factors in advance to have
unit variance and consider only the covariance matrices of such normalized
variables. This is equivalent to using the correlation matrices Σcorr, Σ̃corr in
place of the covariance matrices Σ, Σ̃, where

Σcorr = S−1ΣS−1, Σ̃corr = S̃−1Σ̃S̃−1
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and S is the diagonal matrix of standard deviations of the factors underlying
Σ, and similarly for S̃.

Hence our objective function takes the form

Ecorr(O) =
∣∣∣∣∣∣Σcorr − Σ̃corr

∣∣∣∣∣∣2 .(3.2)

Unless we need to distinguish between this objective function Ecorr and
the previous objective Ecov, we will simply drop the subscript and use E, Σ,
and Σ̃.

For the revision of a single diagonal block Θ, by permutation of the vari-
ables we may assume Θ is the lower right block of Σ, which then has the
form

Σ =

(
Φ CT

CT Θ

)
.

Our objective function is then

E(O) = ‖Σ̃− Σ‖2

= 2‖Θ̃1/2OΘ−1/2C − C‖2 + ‖Θ̃−Θ‖2,(3.3)

in which the second term is independent of O and can safely be ignored.
Since this objective is quadratic, we might hope for a simple algebraic

expression for the minimum. In this direction, there is a strong resemblance
between our problem and a classical problem about the orthogonal group.

Orthogonal Procrustes Problem: Given m× n matrices A and D,
find O ∈ O(n) minimizing ‖AO −D‖.

There is a substantial literature about this problem and its relatives,
e.g. Schonemann (1966); Bojanczyk and Lutoborski (1999); Golub and Van
Loan (1989); Edelman, Arias, and Smith (1998). The orthogonal Procrustes
problem as stated has an analytic solution in terms of singular value de-
compositions. Unfortunately, we know of no analytic solution for our more
general problem, which we call the

Double Orthogonal Procrustes Problem: Given matrices A, B, and
D of compatible sizes, find an orthogonal matrix O minimizing
‖AOB −D‖.
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This is a nontrivial numerical optimization problem. We do not attempt
to fully analyze it in the present paper; however, it is not necessary for the
purpose at hand. If we can simply improve the objective (3.3) inexpensively,
we do.

We will show in Section 5 that we can find, for realistic data, parameters
O for which the objective is significantly improved when compared with the
default choice O = I. This will show that the optimization problem is worth
addressing, and that progress toward the minimum can be made without
requiring full analysis of the Double Orthogonal Procrustes Problem.

We turn to the general revising problem of Theorem 2.5. Ignoring the
contribution of diagonal subblocks, which do not depend on the orthogonal
matrix, our objective function for revising the first p blocks is

E(O1, . . . , Op) =
∑
i6=j

∥∥LiΣi,jL
T
j − Σi,j

∥∥2
,

where Li = Θ̃
1/2
i OiΘ

−1/2
i for i ≤ p and Li = I otherwise.

This is a substantially larger problem than the simple revision, and again
an analytic solution is out of reach. We do not attempt to minimize the
objective over the full product space; rather, to improve the objective we
follow a sequential revision strategy: at step i we will solve the simple revision
problem consisting of the revised covariance matrix from step i− 1 and the
ith diagonal subblock. This is easy to implement in terms of the simple
revision problem, and as we see below it results in an improved revising
transformation.

In the remainder of this section we discuss a simple numerical approach
that improves the objective (3.3) and is easy to implement. The idea is
to remove the constraint by finding a convenient parametrization of the or-
thogonal group and then applying an unconstrained Levenberg-Marquardt
nonlinear least squares method.

Let N = n(n − 1)/2 denote the dimension of O(n). Our method is to
select a map f from RN to O(n) and then to minimize the composition of the
objective function (3.3) with this map f . To describe f , for 1 ≤ i < j ≤ n we
denote by Ri,j(θ) the rotation by angle θ in the (i, j) plane. This rotation,
sometimes called a Jacobi map, transforms the si and sj factors according
to si → si cos θ + sj sin θ and sj → sj cos θ− si sin θ, and leaves other factors
unchanged. We use the following fact, whose proof is straightforward and
omitted:
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Every element of O(n) with determinant 1 may be expressed as a product of
N rotations,

f(θ1, . . . , θN) ≡ R1,2(θ1)R1,3(θ2) . . . R1,n(θn) . . . Rn−1,n(θN).(3.4)

for some angles θ1, . . . , θN .
With f in hand, we optimize E(f(θ1, . . . , θN)) over RN . The form of the

objective function (3.3) as a sum of squares lends itself to the Levenberg-
Marquardt numerical method (see, for example, Press et al. (2002)) because
the partial derivatives of E(f(θ1, . . . , θN)) are easily computed. If the method
converges starting from the identity, the result is a value O∗ ∈ O(n) for which
the simple revising transformation L(O∗) is better than L(I), often, as we see
in the next section, by a significant amount. Our experiments showed this
method to be fast enough to treat a 30×30 diagonal subblock of a 700×700
matrix without worrying about runtime. 4

4 Examples

We consider a small example to illustrate the ideas.
Suppose we have a 3 × 3 correlation matrix (say, for three world equity

indices) given by

Σ =

 1 .9 .7
.9 1 .4
.7 .4 1

 .

We suppose the risk manager has an external reason for wanting to adjust
the correlation between the second and third indices from 0.4 to 0.3. In our
terms, this means we wish to revise the lower right diagonal block

Θ =

(
1 .4
.4 1

)
by replacing it with

Θ̃ =

(
1 .3
.3 1

)
.

4This estimate is based on our relatively crude first implementation. We believe there
is plenty of room for performance enhancement through refined numerical analysis.
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Notice now that if we simply substitute Θ̃ for Θ, it is easy to check that
the resulting matrix

Σ∗ =

 1 .9 .7
.9 1 .3
.7 .3 1


has a negative eigenvalue, and hence does not qualify as a possible correlation
matrix.

Instead, we employ Theorem 2.3, and look for a block diagonal matrix

L = I ⊕ Θ̃1/2OΘ−1/2,

so our revised matrix will be Σ̃ = LΣLT . In this case O ∈ O(2) is described
by a single angle variable θ, and it is easy to determine numerically that the
matrix L minimizing the objective ||Σ̃−Σ||2, as θ ranges between 0 and 2π,
is

L =

 1 0 0
0 1.0309 −.0848
0 −.0317 1.0122

 ,

and the corresponding correlation matrix Σ̃ is

Σ̃ = LΣLT =

 1 .8684 .6801
.8684 1 .3
.6801 .3 1

 .

Note that the lower diagonal block of Σ̃ is exactly Θ̃.
For comparison, we mention that Rebonato and Jäckel (2000) address the

related problem of finding the positive semi-definite correlation matrix ΣRJ

that is closest to Σ∗ in the same sense of the Frobenius norm, but without
the constraint of a specified block Θ̃. In their paper they use for illustration
the same matrices Σ and Σ∗.

They propose an optimization scheme over a six-dimensional space of
angles, which arrives at a solution

ΣRJ =

 1 .8946 .6966
.8946 1 .3025
.6966 .3025 1


11



minimizing the Frobenius distance to Σ∗.
As expected, this is indeed closer to Σ∗ than Σ̃, but at the cost of changing

the correlation between the second and third indices from .3 to .3025.

5 Empirical Results

It remains to address the question of how much real benefit is gained by
implementing the optimization described above. Is it possible that there is
no practical difference between any two choices of revising transformation?
We answer this by examining a concrete example of a commercial risk model
with real data and comparing the optimized and non-optimized results.

We choose is the Barra global equity risk model, essentially as it was
constituted in 2001. This model covers 23 markets and has 730 factors, as
described in Table 1. The markets range from highly developed, such as UK
and Japan, to emerging, such as Mexico and Taiwan. The largest market is
the US, comprising 65 factors, and the smallest is the 11-factor New Zealand
block. Our test data comes from factor covariances forecasts as estimated by
Barra for the month of April 2001, based on historical monthly time series
of prices.

The inputs to our study are a “first draft” 730 × 730 factor covariance
matrix, estimated by a Barra method using global factors, and a collection
of preferred single market blocks that have been estimated with separate
models tuned to their individual markets.

We first examine the result of revising a single market block, comparing

1. the “default” simple revising transformation using O = I, with

2. the optimized transformation in which the choice of O is obtained by
minimizing the objective (3.2).

Consider the 15-factor Mexico block. According to Theorem 2.3, the
optimal revising transformation is obtained by searching over the orthog-
onal group O(15). This generates an optimization problem with 105(=
15 × 14/2) parameters. We address this problem straightforwardly by us-
ing the parametrization described in Section 3, and a Levenberg-Marquardt
optimization method implemented in C++ (see, e.g., Press, et. al. (2002)),
using the default choice O = I as a starting value.

12



Our results show that this optimization results in a substantial improve-
ment of the objective function. That is, cross-market correlation changes are
noticeably reduced when the revising transformation is optimized.

In Figure 1 we illustrate this finding for the Mexico block, and also for
several other markets. The results show the root mean square change in
cross-market correlations when a single target block of the global 730× 730
correlation matrix is revised to match our prior specialized single-country
correlation matrix forecast. The root mean square change provides us with
a kind of average change per entry, and is proportional to our objective
function.

We can see from this chart that there is a significant improvement in
the use of an optimized revising transformation as compared to the default,
generally by a factor of two to four. Typical average correlations change by
around 0.05 with the default transformation (O = I), while the optimized
transformation leads to average correlation changes of around 0.02. Note that
we do not attempt to globally optimize our non-convex objective function,
simply to inexpensively improve it by waiting until our Levenberg-Marquardt
routine converges. Therefore these results should be interpreted as only a
lower bound on the amount of improvement potentially available from a
solving the optimization problem at hand.

The full problem requires us to update more than one diagonal block in
the rough draft global covariance matrix – perhaps all of them. Suppose,
in the case at hand, we update all 23 blocks. An optimized solution would
require minimizing over a product of 23 orthogonal groups, which in this
case has dimension 13,217 — far too large for us to handle with our current
method.

Instead, we may simply try updating the blocks one at a time, where the
input to the next simple revising problem is the output of the previous one.
The resulting covariance matrix depends on the order, but our experiments
show that dependence is very small.

For performance reasons, we choose four smaller blocks to update: Mex-
ico, Netherlands, Switzerland, and France, sequentially updating the diag-
onal blocks in five different orders. For each chosen order, we performed
the four simple revising transformations sequentially, first using the default
choice O = I for each block, and second by performing our optimization
technique to chose the value of O for each block in the sequence.

Interestingly, our results did not significantly depend on the sequence
order in which the four blocks were revised. The default choice led to a
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resulting root mean square correlation change of about 0.062 in the global
correlation matrix, while with optimization we found an RMS change of
about 0.021 no matter what sequence order was chosen. This represents an
improvement by about a factor of three. 5

In summary: we have taken a 730× 730 global factor correlation matrix
forecast and replaced four smaller diagonal blocks (Mexico 15× 15, Nether-
lands 15× 15, Switzerland 20× 20, and France 21× 21) with separately esti-
mated substitutes. In general, making this replacement will force the cross-
market correlations to change in order to preserve positive semi-definiteness,
but, by optimizing as described in this paper, we can accomplish this “model
aggregation” at the cost of only about 0.021 RMS change in cross-market
correlations.

6 Conclusions

In this paper we have addressed two questions. First, how can we incorporate
one or more refined submarket risk models into a larger but coarser total risk
model, without violating positive semi-definiteness of the resulting covariance
matrix? Second, given that there are many ways to do this, how can we
choose a good way?

The first question is addressed by means of a linear change of variables of
the underlying factors (in practice usually close to the identity). The space of
all such changes of variables is identified as a product of orthogonal groups.

We answer the second question by posing it as a maximum likelihood
problem, and deriving an objective function for numerical optimization. The
objective function is defined on a product of orthogonal groups. The optimal
transformation will embed the local models while simultaneously preserving
positive semi-definiteness and minimizing the disturbance to the cross-market
correlations.

The optimization problem, as we have framed it, is unconstrained, but is
typically large and non-convex. However, the true global minimum has no
special properties: we win if we can practically improve on the default choice
at reasonable cost.

5Note that the average change is a little larger than results for the best single block up-
date, because successive updates tend to degrade a little the results of previously updated
blocks.
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With real world data, our numerical optimization tests show that, by
optimization, we can reduce the root mean square change forced on the cross-
block correlations by a factor of three to five. We view this improvement
to be sufficiently significant to justify implementing such optimization in
commercial models of total risk.

We have not yet attempted to solve the underlying numerical problem; it
is based on the Double Orthogonal Procrustes problem stated earlier, which
is apparently open.

Another promising approach to the numerical problem begins with the ob-
servation that the positive semidefinite matrices form a convex cone. Rather
than optimizing over a space of orthogonal groups, one could reformulate the
question as a constrained convex optimization problem, known as “semidef-
inite least squares”. See Malick (2004) for a good discussion of this.

7 Appendix: Proof of Theorem 2.3

It is straightforward to verify that if L = L(O) is given by (2.6) then Σ̃ =
LΣLT has the same diagonal blocks as Σ except that Θ is replaced by Θ̃.

Conversely, If L is a simple revising transformation it must have the
diagonal block form L = I ⊕ Λ⊕ I, where

ΛΘΛT = Θ̃,

or equivalently,
ΛΘ1/2(ΛΘ1/2)T = Θ̃.

We want to show that Λ = Θ̃1/2OΘ−1/2 for some orthogonal O.
A standard lemma of linear algebra (see, e.g., Strang (1988)) says that A

is symmetric positive definite if and only if there is a nonsingular matrix B
such that BBT = A, and if BBT = A then B = A1/2O for some orthogonal
matrix O. Hence, from above, ΛΘ1/2 = Θ̃1/2O for some orthogonal O, whence
the conclusion.
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Country Block Size
Currency 40
Australia 33
Brazil 29
Canada 30
France 21
Greece 23
Germany 27
Hong Kong 23
Indonesia 31
Japan 52
Korea 35
Malaysia 24
Mexico 15
Netherlands 15
New Zealand 11
South Africa 53
Singapore 27
Sweden 30
Switzerland 20
Thailand 41
Taiwan 35
United Kingdom 50
United States 65
TOTAL 730

Table 1: For illustration, this table reports the number of factors in each
of 22 single-country equity risk models that were used by Barra circa 2001.
(In each market, most of the factors are Industry factors.) Combined with
a 40-factor currency model, the resulting global model contains 730 factors
total. The corresponding 730 x 730 factor covariance matrix is too large for
direct estimation from time series.
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RMSE in cross-block correlations

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

Mexico Switzerland Netherlands France Greece Hong Kong Malaysia Singapore

Default Optimized

Figure 1: RMSE of cross-block correlations. Results are shown for gluing in
a single country block.
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