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ABSTRACT

In the study of 4D Var data assimilation of atmospheric models, an important issue to address

is the case of incomplete observations in either the space or time dimension.

In an ideal setting 4-D Var data assimilation assumes the observation data field to be complete,

and if there are gaps in the data, these are being taken into account in the process of data

assimilation.

To assess the impact of incomplete observations on the 4D Var data assimilation, we carried

out some assimilation experiments with a model consisting of the dynamical core of FSU GSM by

reducing the number of observations in both the space and time dimensions respectively.

The impact of the Jb background error covariance term on problem of incomplete observations

in either time or space direction has been investigated using the new FSU GSM consisting of a

T126L14 global spectral model in a parallel environment using MPI version of its adjoint model.

Numerical experiments aimed at assessing impact of incomplete observations on 4-D Var data

assimilation were carried out as follows: first, a twin experiment with observations available at

every model grid point (thereafter referred to complete observations) was carried out using the

dynamic core of FSU GSM and its adjoint model to ensure that the assimilation system is well
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constructed. For such an experiment, one knows in advance the exact solution, and the minimum

value of the cost function is zero. We then reduced the available observations to every 2, 4 or 8

spatial grid points, respectively. We also carried out another set of experiments with data holes

where all the observations were missing, e.g. at ocean grid points locations. We then carried out

experiments reducing the number of time instants where observations are available only every 2,

4 or 8 time steps in the window of assimilation .

The results obtained show that spatial incomplete observations lead to a slow down in the cost

functional minimization. Although the decrease rate of cost function with incomplete observations

where observations are available only at every 2, 4 or 8 observation grids exhibited a similar

pattern, the impact(degree) of reasonable retrieval initial data strongly depends on the density

of observations. The impact of incomplete observations is even more pronounced for experiments

where no observations were available over oceans, in which case the lack of fit between a control

run and the aforementioned could not be reduced.

In contrast to above results, experiments involving reduction of the number of time instants

where observations are available in the assimilation window allowed a successful retrieval of the

initial data. The results obtained were insensitive to whether observational data was available

only every 2,4 or 8 time steps versus that of the full observation.

To sum-up, the lack of the observations in grid space strongly affect the results of the mini-

mization and retrieval of initial data, while that in time dimension or some variables will have no

significant affection on the results.

Impact of various scenarios of incomplete observations on ensuing forecasts, and root mean

square error were investigated for 24-72h forecasts for cases when the cost functional included

and/or excluded the background covariance term.

To further investigate the issue of incomplete observations, we carried out another set of
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experiments by adding a background term Jb to the cost function. Background state propagates

information from observations at early times into the data holes. By considering an assimilation

with a single observation, it can be shown that the background error covariance matrix controls

the way in which information is spread from that observation to provide statistically consistent

increments at the neighboring grid points.

1 Introduction

The purpose of data assimilation is to generate an analysis that represents the present state of

the atmosphere. The analysis should be as close to the truth as possible.

Data assimilation provides, for a given time period,the widow of assimilation, an estimate of

the system evolution which is optimally adjusted to fit both the observations and the model. It

allows a historical analysis of the behavior of the system, the location of specific behavior, etc.

It is also a relevant tool for testing physical assumptions and for sensitivity studies. The aim of

4-D Var is to estimate the current best state of the system using all past and present information.

Only the current state is optimal. This approach is widely used in operational forecasting methods

in meteorology. It consists in finding, using informations provided by a field of observations over

a period, a model solution which is as close as possible to the observations in order to provide

accurate initial conditions (or boundary conditions) for the following forecast.

4-D Var data assimilation assumes the observation data to be complete, nevertheless, if there

are gaps in the data,both in the spatial or temporal dimensions, these can be taken into account

in the variational data assimilation.

A way of overcoming this problem is to fill the gaps in the data using an adequate interpolation

method. If the gaps are not too large, the differences in the results using the original and the

interpolated data set should be small.
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In the southern hemisphere, and tropics and most of the surface is covered by oceans, which

lack the density of conventional wind-profile data coverage and uniform distribution available over

the the Northern hemisphere.

Current forecast model, data assimilation systems and the development of space-based and

other advanced observing systems have led to a slow, albeit steady reduction in short- and medium-

range forecast error over the past few decades.

However, despite these advances, it is still clear that a major component of forecast error is due

to analysis error in relatively poorly sampled regions such as the mid-Pacific Ocean, the tropics

and the southern oceans.

The deployment of dropsondes from aircraft or the more recently available unmanned aerial

vehicles(UAVs) have made it possible to sample these poorly observed regions. However, such

developments are costly, and only make sense if it can be determined in advance where such

observations are likely to have the most positive impact on subsequent forecasts. Fortunately,

there are now several objective techniques ideally suited for this problem.

Zou et al.[3] studied the incomplete observation in space and time dimension with a shallow

water equation model, they showed that the case of insufficient data can lead to rather large

changes in the pattern of behavior of minimizing the objective function, and suggested to add an

additional term of penalization in the objective function in order to improve the conditioning of

the Hessian of the objective function.

Zhu et al.[16] used an adjoint model of a finite-element shallow-water equation model to study

the impact of different resolution of the model to the minimization of the cost function, which shows

the coarse-mesh resolution model exhibited a faster convergence rate than the one corresponding

to the fine-mesh model.

In this paper, we use a new MPI-based parallel version of FSU global spectral model to study
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the incomplete observations in space and time dimension. The results show that for incomplete

observation in space dimension, the convergence rate is slowed down and the effectiveness of

optimized initial data with incomplete observation in space strongly depends on the density of

observations in space dimension.

In order to investigate the impact of background error covariance in the 4-D Var data assimi-

lation, we added the background covariance term to the cost function.

There are two main reasons for using the background term. The first reason is that it is vital to

have a background term in data sparse areas or data void areas. The background state propagates

information from observations at earlier times into the data holes. The background term is also

necessary for information spreading and balance constraints. By considering an assimilation with

a single observation, it can be shown that the background error covariance matrix controls the way

in which information is spread from that observation to provide statistically consistent increments

at neighboring grid points. The background error covariance matrix can also be used to ensure

that observations of one model variable provide dynamically consistent increments in other model

variables, by enforcing balance constraints such as geostrophic balance.

There are 3 basic ways to specify the background error covariances: In data dense areas, ob-

servational or Hollingsworth-Lonnberg method (Hollingsworth and Lonnberg(1986)). The method

assumes separability and homogeneity to calculate correlation functions. A histogram of empirical

data correlations is found, and curves are fitted using the method of least squares. A variety of cor-

relation functions were examined in Julian and Thiebaux(1975). These climatological covariance

matrices do not take into account any synoptic dependence.

The NMC method (Parrish and Derber(1992)) uses the differences between forecasts and anal-

yses verifying at the same time, to specify the background error covariance matrices.

To obtain more flow-dependent background error covariances, Kalman filter techniques can be
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used. The Kalman filter data assimilation method propagates the background error covariances

explicitly in time(Ghil and Malanotte-Rizzoli (1991)). However, in 4D Var, the error covariances

are propagated implicitly. This means that the 4D Var background error covariance matrices are

also flow dependent as shown in studies by Thepaut et al.(1996). By performing single observation

studies it is possible to examine the structure functions ( correlations) at the end of a 4D Var

assimilation window (Thepaut et al.(1993 )).

The problem is in the specification of the background error covariance matrix at the beginning

of the assimilation time window. In theory, it is possible to fully transfer information from the

previous assimilation time window to the next via the background term (Li and Navon(2001)).

This allows the specification of the background error covariance matrix at the beginning of the

assimilation window. By combining the Kalman Filter with 4D Var it would be possible to specify

the B , however, this is not feasible computationally.

The structure of this paper is as follows. In section 2, we present the basic description of parallel

version of FSU GSM. In section 3,we briefly introduce the adjoint of FSU Global Spectral Model.

In section 4 we describe the experiments related to incomplete observations in the spatial and

temporal domains, their impact on ensuing forecast skill and the role played by the background

error covariance term. The significance of the numerical results is then further discussed. Finally

in 5 the summary and conclusions are presented.

2 Description of parallel version of FSU GSM

2.1 Model description

The FSUGSM is a global hydrostatic primitive equation model. The prognostic variables are

vorticity, divergence, virtual temperature, moisture and log surface pressure. The model uses the

spectral technique in the horizontal direction, and second order finite difference in the vertical.
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The wave number truncation used here is T126 for real time forecasts. Higher resolutions may be

used for research purposes. A σ coordinate is used in the vertical. The model physics include long

and shortwave radiation, boundary layer processes, large scale precipitation, shallow and deep

cumulus convection.

2.2 Governing equations

The original governing equations of FSU GSM are as follows.

the vorticity equation:

∂ζ

∂t
= −∇ · (ζ + f)V − k · ∇ × (RT∇q + σ̇

∂V

∂σ
− F) (1)

the divergence equation:

∂D

∂t
= k · ×(ζ + f)V −∇ · (RT∇q + σ̇

∂V

∂σ
− F) −∇2(φ +

V · V
2

) (2)

the thermodynamic equation:

∂Tv

∂t
= −∇ ·VTv + TvD + σ̇γ − RTv

Cp
(D +

∂σ̇

∂σ
) + HT (3)

the continuity equation:

∂ ln ps

∂t
= −D − ∂σ̇

∂σ
− V · ∇ ln ps (4)

the hydrostatic equation:

σ
∂φ

∂σ
= −RTv (5)

the moisture equation:

∂S

∂t
= −∇ · VS + SD − σ̇

∂S

∂σ
+ HT − HM − [

RT

Cp
− RT 2

d

εL(Td)
] [D +

∂σ̇

∂σ
− σ̇

σ
] (6)

The spectral technique in the horizontal direction was used. For details we refer to [4].
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2.3 Vertical discretization

Suppose there are N vertical levels in the FSU GSM, they are defined as σ = σn = (2n − 1)/2N ,

1 ≤ n ≤ N . σN+1 = 1. The variables U, V, ζ , D, φ and P are carried on these levels. The vorticity

equation and divergence equation are applied at these levels. q, φs and Ws are carried on σN+1

level.

The variables T̃ ,S̃ , ˜̇σ and W̃ are defined on levels intermediate to the levels of the geopotential,

which are defined as σ̃n =
√

σnσn+1 . The tilde notation is used to denote the variables which are

carried in the layers (σ = σ̃n).

It is convenient to define dn = ln(σn+1/σn) and vertical increments δ̃n = σ̃n+1 − σ̃n, 1 ≤ n ≤
N − 2. For the top and bottom increments δ̃0 = σ̃1 and δ̃N−1 = 1 − σ̃N−1.

In the program, we use the spectrum coefficients {ξ, D, P, q, S}m
l of the grid variables as the

basic variables.

2.4 Parallelization of the FSU GSM

In this section we begin by first discussing first the organization of the FSU global spectral model.

Initially, the spectral prognostic variables and their derivatives are transformed to the Gaussian

grid, one latitude at a time. One routine computes the nonlinear dynamical tendencies for each

grid point, while another routine computes the physical tendencies. Each of these routines are

designed to operate on a single latitude at a time. The main physics routine calls a number of

other routines which may act either on a single vertical column, or on a latitude band. When

the tendencies have been computed, they are spectrally analyzed, again one latitude band at a

time. These tendencies are accumulated from one band to the next. The spectral and grid point

calculations are thus done in one large loop across the latitudes. Once the spectral tendencies
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have been summed up, they are then used by the semi-implicit algorithm to obtain the prognostic

spectral variables at the next time step. The process is then repeated until the forecast is complete.

Since the Legendre transform is rather slow, it can easily be done one latitude at a time.

Given the band structure of the model, and that the calculations for each band are independent

of each other, it is straightforward to parallelize the model by dividing the latitude bands across

processors. Once the calculations are carried out for all processors, a reduction is done to obtain

the total spectral global tendencies. The semi-implicit scheme is fast, so there is no need to

implement it in parallel.

After the main latitude loop, a reduction is done by the master task, and the semi-implicit

scheme is solved on a single processor. To achieve optimal load balance, any latitude band can

be assigned to any processor. The main latitude loop is consecutively partitioned across logical

latitudes, each of which may be mapped to any physical latitude by a mapping function.

Parallelization on distributed memory architecture is done by running a copy of the model on

each processor and using Message Passing Interface (MPI) for communication. Each processor

only operates on its portion of the latitude bands, which is determined at the beginning of the

program execution. When all processors have completed their latitude calculations, a reduction

is done using the MPI allreduce routine. Thus all processors have a copy of the total spectral

tendencies, and each solves the semi- implicit scheme to obtain the global spectral variables at the

next time step. While this computation is redundant, it is fast and minimizes communication.

3 Variational data assimilation problem

The cost function for 4-D variational data assimilation will assume the form :

J(X0) =
1

2

R∑

r=0

(HX(tr) − Xobs(tr))
TR−1(HX(tr) −Xobs(tr)) (7)
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where X0 is the control variable, a vector of dimension N representing the initial state of the

model; X(tr) is a vector of dimension N containing all the model variables; Xobs(tr) represents

observational data used for the assimilation purposes; H is a transformation matrix that maps

the model variables to the observations; R is an N × N diagonal matrix which represents the

covariance matrix of the observation errors. The values of the elements are usually determined by

the dimensional scaling of various variables, relative importance and quality of the data set and

other considerations.

3.1 Background error term

One of the main issues in data assimilation is the specification of the background error covariance

matrix. In recent years, a number of research efforts was dedicated to the study of what is known

as the background error denoted by Jb term. That is, the term given

Jb(X) = (X− Xb)
TB−1(X −Xb).

Zou et al.[3] shows that for linear case, it can be proved that the minimization process with

incomplete observation can still guarantee uniqueness in some cases, while for non-linear case,

there is no theorem to guarantee the uniqueness, and experiments show that the minimization

fails for the incomplete observation in space dimension.

In this case, the cost function J assumes the form

J(X0) =
1

2
(X0 − Xb)TB−1(X0 −Xb)

︸ ︷︷ ︸
+

1

2

R∑

r=0

(HX(tr) − Xobs(tr))
TR−1(HX(tr) − Xobs(tr))

︸ ︷︷ ︸
Jb Jo

(8)

The first term on the RHS of the equation is the background term, X0 − Xb represents the

departures of the model variables at the start of the analysis from the background field Xb. B is

an approximation to the covariance matrix of background error.
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With the background term, we can prove the uniqueness of the solution of minimizations

process with incomplete observation for linear case(see Appendix).

Zou et al.(1992)[3] proved that for some particular case, one can derive sufficient conditions

for the uniqueness of the solution. However in the general case, there is no general rule to provide

for sufficient conditions.

With background term, no matter which form to give the projection operator H assumes, we

still can guarantee the uniqueness of the solution.

For the nonlinear case, one can not derive sufficient conditions guaranteeing uniqueness of the

solution.

3.2 Construction of background covariance matrix

It is not possible to completely specify the background error covariance matrix, B , in full and

various approximations are necessary due to its high dimensionally. Some of these assumptions

are:

Separability Assume that [B] can be simplified into horizontal and vertical parts. [B] =

[BHorizontalBV ertical] .

Homogeneity The structure is spatially homogeneous if the error depends only on the relative

displacement rather than on the absolute locations. In this case the diagonal elements of

[B] are all equal.

Stationarity This is the temporal analogue of spatial homogeneity. [B] is only a function of the

time difference and not the absolute times.

Isotropy For a single observation, the correlation with other grid points is independent of the

direction, only the distance between them.
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The problem of using the background matrix B directly is that the inverse of B cannot be

calculated due to its huge dimensions. Instead we define a simple form of B−1. Based on the

above assumption, following Bennett(2002), define:

B−1 ≈ w0I + w2∇2∇2 (9)

where w0 and w2 are chosen so that the power spectrum is similar to that of the Gaussian corre-

lation function(Daley,1991[1]:

Bij = e
−

1

2
(
xi − xj

l
)2

(10)

where xi − xj is the distance between grid points and l is the correlation length scale.

Figure 1 shows distributions of a column of the covariance matrix B and a relevant part of the

inverse matrix of B−1 along latitude −45◦,the relative point is at longitude 90◦). It is seen that

their distribution is very similar.
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Figure 1: Distribution of a column of B and a relevant part of the inverse matrix of B−1

4 Numerical experiments with incomplete observations

4.1 Description of the experiments

A twin experiment was carried out using the dynamic core of FSU global spectral model and its

adjoint model with complete observations which served as a control run.

The data assimilation window was set to 6 hours from 06UTC Oct. 2, 2002 to 12UTC Oct. 2,

2002.

The observation data were generated by integrating the forward model 6 hours from the ini-

tialized ECMWF analysis at 06UTC Oct. 2, 2002, and were available at every timestep and each
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Gaussian grid point.

The initial guess of the initial condition was taken from the initialized ECMWF analysis at

00UTC Oct. 2, 2002, which is 6 hours prior to the initial time level.

A suitable choice of the background state Xb is important, since it will strongly affect the

retrieved initial data. In our experiments, the data which were generated by integrating the

forward model 6 hours at the initial time 00UTC Oct. 2, 2002, when is 6 hour prior the initialtime

of data assimilation window.

The limited-memory quasi-Newton method of Liu and Nocedal(1989)(L-BFGS) [14] was used

to carry out the unconstrained minimization process to obtain ti he optimal initial data.

Then, we reduced the number of observations in the space and the time dimension respectively

and carried out the minimization process related to 4-D Var data assimilation.

We first reduced the number of observations in the space dimension, namely observation were

available only every 2, 4 or 8 grid points respectively.

In order to investigate the impact of incomplete observations over data void areas, i.e. observa-

tion data was subtracted over such areas, we carried out an experiment on incomplete observations

over the ocean where data were missing, specially, the observations over all grid points located

over oceans of South hemisphere were subtracted.

In another experiment we reduced the observation in time dimension to be available only every

2, 4 or 8 timesteps. The case of observation being available only the initial time and at the end

of the window of data assimilation were also investigated.

The incomplete observation experiments were divided to two parts, one with the cost function

including the background term, the other without the background term, in order to investigate and

assess the impact of background term on the incomplete observation of 4D Var data assimilation.
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4.2 Incomplete observations experiments without background term

Figure 2 shows the decrease of the cost function for the minimization with both complete and

incomplete observations in the space dimension versus number of minimization iterations. we

observe that the decrease in cost functional in the cases of incomplete observations in space

dimension is slowed down and decrease by roughly 3 orders of magnitude and could not be decreases

any further, while in the case of complete observations, the decrease in the cost functional was by

about 4.5 orders of magnitude and could decrease further with additional minimization iterations.

The figure also shows that the density of incomplete had only a minor impact in the minimization

process, i.e. there were only slight differences as the numbers of grid points where observations

were available was varied from every 2 to every 8 grid points.
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Figure 2: Normalized cost function for the incomplete observation in space versus number of
iterations

Figure 3 shows the decrease of the normalized gradient of cost functional versus number of

minimization iterations. It also shows that the decrease rate of the cost functional for the case

of incomplete observations in space dimension displays a slowdown and cannot decrease beyond

a certain threshold, while that for the case of complete observations continues to decrease as the

number of minimization iterations increase.
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Figure 3: L2-norm of normalized gradient of the cost functional for the incomplete observation in
space dimension vs. number of iteration

For comparison, we also plotted the height field at 500 hPa and the difference between height

fields at 500 hPa corresponding to the model generated observation and the runs by perturbed

initial data after 12 hours of model integration.

Figure 4 shows the height field of model generated observations after 12 hours of integration

from initial time, Figure 5 shows the height field after 12 hour of integration from the retrieved

initial data for the case of complete observation.
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Figure 4: Height field of model generated observations at 500 hPa after 12 hours from initial time
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Figure 5: height field at 500hPa after 12 hour integration starting from retrieved initial data with
complete observations

Figure 6 shows the difference between the height fields at 500 hPa corresponding to the runs

by using the unperturbed and perturbed initial data after 12 hours integration. For the perturbed

initial data, the forecast field follows a different trajectory.
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Figure 6: Difference between the height fields at 500 hPa corresponding to the runs by using
unperturbed and perturbed initial data after 12 hours integration

When we employed the retrieved initial data with complete observations, the forecast fields

follow to the same trajectory as observation, the difference between the height fields at 500 hPa

after 12 hours integration was reduced from 18m to below 1m after 40 minimization iterations(see

Figure 7).
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Figure 7: Difference between the height fields at 500 hPa corresponding to the runs by using
unperturbed and retrieved initial data after 12 hours integration

The forecast fields follow a different trajectory when the initial data are obtained by the

minimization with incomplete observations in space dimension. Figure 8 shows the difference

in the height fields at 500 hPa between unperturbed initial conditions and initial data obtained

by incomplete observations available at every 2 grid points. Although the errors decrease in the

minimization process, the difference cannot be reduced beyond a given threshold level after 40

minimization iterations.
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Figure 8: Difference between the height fields at 500 hPa corresponding the runs by using un-
perturbed initial conditions and the initial data obtained by incomplete observations available at
every 2 grid points after 12 hours integration

For incomplete observations available at every 4 grid points, the difference cannot be reduced

beyond same threshold even after 100 minimization iterations.(see Figure 9).
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Figure 9: Difference between the height fields at 500 hPa corresponding to the runs by using
unperturbed initial conditions and initial data obtained by incomplete observations available at
every 4 grid points after 12 hours integration

The results are even worse for the case when the observations over ocean are missing. Figure 10

shows the difference between the height fields at 500 hPa corresponding the runs by using the

unperturbed initial conditions and the initial data obtained by the minimization of incomplete

observations over ocean after 12 hours integration. It is clearly seen that the lack of fit over ocean

cannot beyond a given threshold.
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Figure 10: Difference between the height fields at 500 hPa corresponding to the runs by using
unperturbed initial conditions and the initial data obtained by incomplete observations missing
over the location of ocean after 12 hours integration

The variations of the normalized cost function and the L2 norm of the normalized gradient of

cost functional can also be seen in Figures 2 and 3 respectively.

In contrast to the incomplete observations in space dimension, incomplete observations in time

dimension can still retrieve the initial data.

Figures 11 and 12 shows the decrease of the log of the normalized cost function and L2 norm

of log of gradient of cost functional with incomplete observations available only at every 2, 4, 8

time steps respectively.
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Figure 11: Log of the normalized cost function for the incomplete observation in time vs the
number of minimization iterations
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Figure 12: L2 norm of log of Gradient of the cost functional for the incomplete observation in
time vs the number of minimization iterations

It is seen that a good convergence is obtained and that the minimization of the cost functional

allows a good retrieval of real initial data(see Figure 13).
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Figure 13: Difference between the height fields at 500 hPa corresponding to unperturbed initial
conditions and the initial data obtained by incomplete observations available at every 2 time-step
after 12 hours integration

Figure 14 provides the RMS errors of height field at 500 hPa, calculated between fields of

model generated observations and the one obtained by integrating the optimized initial data with

incomplete observation after 40 minimization iterations. It shows that for incomplete observations

in space dimension, the error reduction obtained by the minimization process with incomplete

observations depends on the density of the observations in space dimension. For observations

available at every 2 grid points, though the decrease rate of the cost function is slowed down,

it still can retrieve the initial data to certain degree, while for observations available only at

every 4 or 8 grid points, the errors increase to a unacceptable degree. The sparser the density of
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the observations, the larger the departure from the observation is obtained with minimization of

the incomplete observation, i.e. observations available at every 2,4 or 8 grid points respectively.

This is more evident in the case where void area is concerned, e.g., over the Southern hemisphere

ocean. In this case practically was no retrieved initial data. For incomplete observation in the time

dimension, the retrieved initial data is almost identical to the one obtained by the minimization

process with complete observation.

Figure 14: Time evolution of RMS of the height field at 500 hPa for the incomplete observation

There was no significant change when we increased the the number of minimization iteration

steps. Figure 15 provides the same figure as figure 14 but the number of minimization iteration
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step is 100. It shows only a slight amount of error reduction for the case of incomplete observation

in space dimension. But the same conclusion remains. It also can be seen, for either the complete

observations case or for the incomplete observation in time dimension, that the RMS errors retain

a low value even after a 72 hours forecast integration (below 0.5 for iteration step 40, below 0.25

for iteration step 100). The values of RMS of height field at 500 hPa remains almost flat, while

for the case of incomplete observations in space dimension, the RMS errors of height field at 500

hPa are always increasing after 15 hours of model integration.

Figure 15: Time evolution of RMS of the height field at 500 hPa for the incomplete observations
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4.3 Impact of background term on the experiments of incomplete ob-
servation

Since the background error term will provide some informations of the initial data, we carried out

a number of experiments on the incomplete observations in space dimension with a background

error term. The results show that the behavior of the minimization process with background

covariance term are quite different from the one without background covariance term.

Figure 16 shows the variations of the total cost function(em i.e.J = Jb + Jo) with complete

observations vs number of iteration. In order to investigate whether the retrieved initial data were

forced to the observations or the background field, we plotted both Jo and Jb. It clearly show that

the Jo decreased faster than Jb, which may means, for complete observations, the retrieved initial

data follows to the observations. The decrease of the total cost function J was much slower than

the one without background error covariance term.
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Figure 16: Variation of the total cost function J , observation cost function Jo and background
cost function Jb vs number of minimization iterations

Figure 17 shows the variation of the cost function J , Jo and Jb with the observations available

only every 2 grid points. The solution shows the decrease rate was not smooth as the one without

background error covariance term. It is seen that the characteristic variations of Jo and Jb with the

number of minimization iteration were totally reversed, i.e. when Jo exhibits a faster decrease,

Jb exhibits slower decrease, vice versa, when the decrease of Jb exhibits a faster decrease, the

decrease of Jo exhibits a slower rate. This means, for incomplete observation, during some stages

of minimization process, the retrieved initial data follows the observation, while at other stages,
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the retrieved initial data follows the background field. For the case of incomplete observations in

space dimension where the observations are available only every 2 grid points, the retrieved initial

data finally follows the background field.

Figure 17: Variation of the log of total cost function J , observation cost function Jo and background
cost function Jb with the number of minimization iterations

Figure 18 shows the variation of the cost function J , Jo and Jb with the observation available

only at every 8 grid point. This time, the optimized initial data follows background field immedi-

ately, since the case of incomplete observations being available only every 8 grid point causes the

term Jo the cost functional to have a lesser impact compared to Jb than for the case of incomplete
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data being available every 2 grid points.

Figure 18: Variation of the total cost function J , observation cost function Jo and background
cost function Jb with the number of minimization iteration

Figure 19 shows the variation of the cost function with incomplete observations where data

were missing over the ocean region in the southern hemisphere. In contrast to the aforementioned

cases of incomplete observations where observations were available only every 2 or 8 grid points,

here the optimized initial data follows the observations for ocean data void area.
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Figure 19: Variation of the total cost function J , observation cost function Jo and background
cost function Jb for the case of ocean data void area with number of minimization iteration

The results are qualitatively different for the case when the observations are incomplete in

time dimension.

Figure 20 shows the variation of the cost function with the observations being available only

every 2 timesteps. Since the density of the observation in time is high, the retrieved initial data

follows the observation. However for the case when observations are available every 4 timesteps,

the retrieved initial data appears to swing from the background field to observation field. It

first follows the background field then after a number of iterations it follows a trajectory that

34



is in between the background field and observation field, and finally ends up by following the

observation field(see Figure 21).

Figure 20: Variation of the total cost function J , observation cost function Jo and background
cost function Jb
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Figure 21: Variation of the total cost function J , observation cost function Jo and background
cost function Jb

These results show that with the inclusion of the background error covariance term in the cost

functional, the retrieved initial data strongly depend on the size of term Jb compared that of Jb.

For the case of complete observations, the impact of Jo is dominant, so the retrieved initial data

follows observation field. For the case of incomplete observations, the impact of Jo is reduced, when

the size of Jo becomes comparable with the size of Jb, the retrieved initial data will swing from

observation field to background field or vice versa. When the amount of available observations

continues to be reduce, the impact of the Jb term becomes dominant, so the retrieved initial data
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will follow the background field.

It should be pointed out, that although the retrieved initial data appears to follow either the

observation or the background fields, this does not mean that the retrieved initial data will be

close to either field, due to the existence of the other term (either Jo or Jb), the retrieved initial

data will follow a trajectory between the trajectories determined by either the observations or the

background term.

5 Summary and conclusions

Using the new MPI version of FSU Global Spectral Model, we developed tangent linear and

adjoint models of the dynamical core of FSU model in a framework of MPI parallel processing

computation. The correctness of tangent linear and adjoint of the model were fully tested.

The adjoint model was applied to carry out the experiments on the impact of the background

error term on incomplete observations in the framework of 4-D Var data assimilation.

Results show that for the incomplete observations in the space dimension, in absence of the

background term, the minimization process fails to retrieve the initial data, while for incomplete

observations in time dimension or in variables, the minimization process can still retrieve the

initial data.

We also carried out the experiments on the impact of background term,

Acknowledgements

The authors thank T.N. Krishnamurti who gave us useful help, thanks also go to Steven Cocke

who provided the new MPI version of FSU GSM code.

37



Appenix

A The uniqueness of solution

In order to ensure the uniqueness of the solution of minimization of (8), we need to show that the

cost functional J is strictly convex, i.e.,if ∀U, V ∈ Rn

J(λU + (1 − λ)V ) < λJ(U) + (1 − λ)J(V ), λ ∈ [0, 1] (11)

If J is not strictly convex, i.e. the equality may exist for some U, V and λ

J(λU + (1 − λ)V ) = λJ(U) + (1 − λ)J(V ), λ ∈ [0, 1] (12)

then the minimum is not necessarily unique and the function J may have no minima. J may also

have stationary points which are not minima, but rather maxima or saddle points.

When J is second order differentiable, the convexity of cost function J is equivalent to that

the Hessian matrix H being positive semi-definite: ∀X ∈ Rn, XTHX ≥ 0 and J is strictly convex

if H is positive definite, i.e. ∀X ∈ Rn, XTHX > 0.

Suppose we have a nonlinear forecasting model:

Xk+1 = MkXk (13)

where Mk is an nonlinear operator.

The tangent linear model of (13) is given by

X′
k+1 = MkX

′
k (14)

where Mk is a linear operator.

Then the solution of (13) can be written as

Xk+1 = MkXk = MkMk−1Xk−1 = · · · = MkMk−1 · · ·M0Xt0 = M̄tX0 (15)
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where M̄t = MkMk−1 · · ·M0 is a nonlinear operator.

Then the solution of (14) can be written as

X′
k+1 = MkXk = MkMk−1X

′
k−1 = · · · = MkMk−1 · · ·M0X

′
t0

= M̄tX
′
0 (16)

where M̄t = MkMk−1 · · ·M0 is defined as TLM operator.

Thus the cost function J of (8) can be written as

J(X0)=
1

2
(X0 − Xb)TB−1(X0 −Xb)

+
1

2

R∑

r=0

(HM̄trX0 − Xobs(tr))
TR−1(HM̄trX0 − Xobs(tr))

(17)

In order to prove that J is strictly convex, we use the increment δx = (X0 −Xb) as variable.

Since B is symmetric and positive definite, it can be constructed by using its square root:

B =
√

B
√

B

Then the inverse of B can be constructed as

B−1 =
√

B−1
√

B−1

Now introducing the following variable transformation:

Z =
√

B−1δx

then

X0 =
√

BZ + Xb

and

Xtr = M̄tX0 = M̄t(
√

BZ + Xb)
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Adopting the method of Courtier et al.(1994)[9] and Courtier(1997)[12], the cost function can be

written as

J(Z)=
1

2
ZTZ

+
1

2

R∑

r=0

(HM̄tr

√
BZ − dtr)

TR−1(HM̄tr

√
BZ − dtr)

(18)

where for linear case

dtr = Xobs(tr) − HM̄tr

√
BXb

Thus the cost functional J becomes a function of Z.

We will use (18) to demonstrate the strictly convexity of J .

Following the idea of [2], it is easy to obtain the gradient of the cost function J

∇J(Z) = Z +
R∑

r=0

√
B

TM̄T
t HTR−1(HM̄tr

√
BZ − dtr) (19)

where

M̄T
t = M̄T

0 MT
1 · · · M̄T

tr

is the adjoint of M̄t.

Thus the Hessian of cost functional J can be derived as

H = ∇2J(Z) = I +
R∑

r=0

√
B

TM̄T
trH

TR−1HM̄tr

√
B (20)

The solution is unique if the Hessian of the cost function is positive definite. i.e.

XTHX > 0, ∀X ∈ Rn

Now for X ∈ Rn,

XTHX = XTX +
R∑

r=0

XT
√

B
TM̄T

trH
T R−1HM̄tr

√
BX

= XTX +
R∑

r=0

(HM̄tr

√
BX)TR−1(HM̄tr

√
BX)

(21)
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Since R is the observation error covariance matrix, by the definition, R symmetric and positive

definite. So as its inverse R−1.

Defining a R-norm:

‖ · ‖R = (R−1·, ·) = (·)T R−1(·)

The above equation (21) can be written as:

XTHX = ‖X‖2 +
R∑

r=0

‖(HM̄tr

√
B)X‖R (22)

The second term of (22) is a summation of series R-norm, and P is positive definite, it should

be non-negative, and

‖(HM̄tr

√
B)X‖R = 0 if and only if (HM̄tr

√
B)X = 0

.

The first term of (22) is a L2-norm, it is always positive as long as X 
= 0.

Consequently,

XTHX = 0 if and only if X = 0

This demonstrate the Hessian of the cost function with background term is positive definite, and

the uniqueness of the solution of minimization is guaranteed.

It should be pointed out that without background term, Hessian matrix has the form of

H = ∇2J(Z) =
R∑

r=0

M̄T
trH

TR−1HM̄tr (23)

and

XTHX =
R∑

r=0

‖(HM̄tr)X‖p (24)

Since H is the projection(related to the incomplete observation), one cannot guarantee that

R∑

r=0

‖(HM̄tr)X‖p 
= 0 when X 
= 0
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