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Abstract

Using techniques from computational differential geometry, we present a new approach to
the algorithmic study of planar curves, with applications to shape and image analysis. The
main idea is to construct spaces of curves satisfying constraints suited to specific problems and
exploit the geometric structure of these spaces to quantify and analyze properties of contours and
solve optimization and inference problems. Applications include: (i) new geometric algorithms
for the estimation of contours and appearances of partially occluded objects in images; (ii) the
development of a novel multi-resolution, algorithmic approach to statistical shape analysis using
progressive localization in the frequency domain; (iii) algorithms for computing planar elasticae
with enhanced performance and speed.
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1 Introduction

The detection, recognition and classification of objects in images are central problems in computer
vision, whose study is motivated by numerous applications such as medical image analysis and
recognition of objects using X-ray or infrared images. The past decade has seen significant advances
in modeling appearances of objects in images, but the methods have been applied to recognition
and classification only with limited success. This is due, in part, to difficulties related to partial
occlusions of objects that are frequently present in images and to the high variability of observed
pixel values caused by factors such as illumination, pose, scale and noise. Thus, it is important to
take into account additional global features of objects such as shapes of contours and their variations
in order to develop high performance image analysis algorithms. This motivates a geometrical
approach to the representation and statistical analysis of planar curves for applications in computer
vision.

In this paper, using techniques of differential geometry, we present a novel framework for the
algorithmic study of planar curves and apply the methodology developed to obtain new algorithms
for the completion of partial occlusions of contours in images and for multi-resolution shape analysis.
Curves are treated as continua and discrete formulations are used only at the implementation level.
Thus, representations of curves often involve infinitely many degrees of freedom, which lead us to
the study of the geometry of both finite and infinite-dimensional manifolds. In our approach,
a fundamental element is a space of constrained curves, referred to as SCC henceforth. As an
example, if we are interested in analyzing closed curves that outline objects in images, the closure
condition provides a constraint. Many other constraints on curves that arise naturally in image
understanding are investigated in this paper. We emphasize that although some spaces of curves
considered are finite dimensional, most SCCs are nonlinear, infinite-dimensional manifolds, whose
elements are the individual curves of interest.

A typical SCC is a smooth manifold equipped with a Riemannian structure; that is, a manifold
with an inner product on each tangent space that varies smoothly along the space. Once such
structure is available, geometric quantities such as the length of a curve, geodesic distances and
curvatures can be defined and calculated in an intrinsic manner. For example, if M is a Riemannian
manifold and α : I → M is a curve on M , the usual expression

∫
I

√
〈α′(t), α′(t)〉 dt can be used

to define the length of α. We exploit the geometry of SCCs for an algorithmic study of geodesic
and gradient flows on these Riemannian manifolds and apply the techniques developed to the
solution of optimization and statistical inference problems associated with a variety of cost functions
and probability models on these spaces. Kendall’s shape spaces [12], constructed from landmark
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representations of contours, can be viewed as finite-dimensional precursors to SCCs. Of particular
historical significance is the fact that Kendall’s spaces motivated the study of statistics in general
finite-dimensional Riemannian manifolds [16, 27, 6].

Active contours, which are essential components of many image analysis algorithms, have been
the subject of numerous studies since the introduction of “snakes” in [11]. In this approach,
dynamical contours are typically driven by data and smoothness energies, and their evolution is
governed by partial differential equations (PDEs). Level-set methods form the basis of another
widely used PDE-based approach to the algorithmic analysis of contours (see e.g. [25, 2]). Given
the past success of PDE-based approaches to dynamical contours, why introduce new methodology?
The study of the geometric structure of SCCs provides new insights and solutions to problems
involving planar contours and problems in quantitative shape and image analysis, as demonstrated
in many applications investigated in this paper (see also [14, 9, 20]). An important characteristic
that distinguishes the present treatment of curves from those employed in previous algorithmic
studies of “geometry-driven flows” [23] is that there is a well-defined, structured space of curves
on which optimization and inference problems can be formulated and statistical models developed.
In our approach, both the geometry of curves and the geometry of spaces of curves are utilized.
The dynamics of active contours is modeled on vector fields on SCCs, which are constructed and
integrated numerically using geometrical properties of SCCs. This reduction of curve evolution
to the integration of vector fields leads to algorithms with improved computational efficiency, as
exemplified by our algorithm for computing planar elasticae, discussed in more detail below. As
further evidence of the benefits of this approach to the study of planar curves, the geometry of
SCCs was used in [14, 20] to construct probability models, define means and covariance operators
in infinite-dimensional shape spaces; only rarely have these quantities received a formal treatment
in previous studies of statistics in non-linear, infinite-dimensional manifolds. Statistical studies of
planar curves using PDE methods have been undertaken in [3, 18, 4], but developments in this
direction are still incipient.

We should also point out the main limitations of the proposed approach to the analysis of edges
and contours in images. One drawback is that curve evolution cannot handle changes in topology,
which is one of the key features of level-set methods; a SCC is purposely designed to not allow
components of a curve to branch or merge. Secondly, this formulation does not extend easily to the
analysis of surfaces in 3D space or hypersurfaces in n-dimensional Euclidean space. Despite these
limitations, the proposed methodology leads to powerful new geometric algorithms for the analysis
of planar curves as demonstrated in many applications.

We now give a brief description of several SCCs that are investigated in this paper along with
problems in shape and image analysis that motivate their study.

1.1 Completion of Contours with Elasticae

The estimation of contours of partially occluded objects in images is, in general, a difficult problem.
The elastica model for the completion of visible edges was introduced in computer vision in [8], but
the study of the elastic energy of curves dates back to Euler [7]. This model yields particularly good
results when occlusions are fairly small or not very rich in geometric features, as exemplified by the
oranges in Fig. 1(a). The estimation of illusory contours in images such as the well-known Kanizsa’s
triangle [10], shown in Fig. 1(b), involves problems of similar nature [21, 30]. However, elasticae do
not satisfactorily resolve occlusions such as those shown in Figs. 1(c) and 1(d). Mumford [21] gave
an stochastic interpretation to elasticae as the most likely curves according to a probability model
based on length and (bending) elastic energy. In [29, 1], it was argued that scale-invariant models are
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(a) (b) (c) (d)

Figure 1: Examples of partially occluded and illusory contours in images. Hidden boundaries in
(c) and (d) have more geometric features than in (a) making the estimation more difficult.

more natural in vision problems and the notion of scale-invariant elastica was introduced. Further
studies of elasticae and associated stochastic completion fields were carried out by Williams and
Jacobs [30, 31], but calculations were computationally very intensive. Algorithmically efficient
approximations were investigated in [26] by Sharon et al. under the simplifying assumption that
elasticae could be described as graphs of functions. More recently, Mio et al. [19] developed an
efficient geometric algorithm to compute general elasticae in arbitrary Euclidean spaces. In [13],
Kimia et al. investigated completions of contours with Euler spirals.

As an application of SCCs, in this paper, we develop a higher performance algorithm for the
calculation of elasticae in the plane R2. Not only we achieve improved computational efficiency and
simplify the algorithm of [19] by restricting the analysis to the 2D case, but the algorithm can be
modified to compute a new type of elasticae that we introduce in this paper, namely, local elasticae
with curvature functions localized in the frequency domain, as discussed below. We will focus the
discussion on scale-invariant elasticae, but the algorithm can be easily modified for calculations of
other types of elasticae, as in [19]. Here, the relevant SCC consists of all curves with prescribed
first-order boundary conditions; that is, curves with prescribed position and direction at the initial
and terminal points. The Riemannian structure on this infinite-dimensional manifold and precise
assumptions on the regularity of curves will be discussed later. The goal is to find the curve C that
minimizes the scale-invariant elastic energy defined as

(1.1) E(C) =
L

2

∫
C

κ2
C(s) ds ,

where L is the length of C and κC the curvature of C. The minimization problem is solved with a
gradient search on the SCC.

1.2 Localization, Completion of Contours and Appearances

The curve completions with elasticae discussed in Sec. 1.1 are based solely on the minimization of
the scale-invariant elastic energy and first-order boundary conditions. As such, they disregard a
substantial amount of geometric data available and it seems natural to seek completions that use
more information from the visible parts of contours, especially in situations where some geometric
pattern is observed. We propose to constrain the search to curves whose curvature functions are
localized in the frequency domain, with just enough harmonics to be able to reproduce the main
visible patterns. The underlying idea is that using localization of curvature functions to their
lower harmonics, the main observed geometric features will propagate to the parts to be estimated
without a high elastic energy expenditure. We investigate two types of completions using curves
with curvature functions localized in the frequency domain. First, we consider a new type of
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completion with local elastica; that is, with a curve of minimal elastic energy satisfying prescribed
first-order boundary conditions. We then study finer Bayesian estimations of the full contour using
available data and an elastic energy prior. Whereas frequency localization of curvature may be
difficult to achieve in a level-set or “snakes” approach, our methods allow us to construct SCCs
of curves with localized curvature functions where the above inference problems are formulated
and solved. Completions with curves whose curvatures are localized in the frequency domain yield
better estimations of contours exhibiting periodic patterns such as those in Figs. 1(c) and 1(d).

Completion of contours of imaged objects will be complemented with texture analysis-synthesis
techniques developed in [32, 28, 17] to extend observed patterns of pixel values to the newly dis-
covered regions. This fusion of shape and texture analysis techniques provides new methodology
for estimations of the full appearance of partially occluded objects. Many existing in-painting al-
gorithms are developed in a level-set framework and rely on PDE methods; the reader may consult
the survey article [2] for recent results in this direction. Our approach differs significantly from the
viewpoint of techniques employed as it involves a combination of methods of differential geometry
of infinite-dimensional Riemannian manifolds for the study of contours and decompositions of im-
ages into their spectral components using bandpass filters for analysis and synthesis of textures.
The methods developed in this paper allow us to resolve fairly large occlusions with non-trivial
geometry and texture patterns, as demonstrated in several experiments.

1.3 Frequency Localization and Shape Analysis

In [14], using geometric representations of closed contours by angle or curvature functions, Klassen
et al. introduced and developed a new statistical theory of continuous, planar shapes. The main tool
employed is a geometric algorithm for the calculation of geodesics in shape space. Geodesics and
geodesic distances are used to quantify shape dissimilarities, interpolate and extrapolate shapes,
define mean shapes, covariance operators and develop statistical models in shape space. The
techniques developed in [14] were applied to shape clustering, learning and hypothesis testing in
[9] and to recognition and detection of shapes in images with noise and partial occlusions in [20].
In practice, it is often the case that one wants to classify or identify imaged objects as belonging
to certain known classes of objects adopting shape as a criterion. In order to optimize the balance
of performance and efficiency in shape analysis algorithms, we develop a multi-resolution analogue
of the representation and analysis of shapes of [14], using localization of angle functions in the
frequency domain. The goal is to be able to tune shape representations to specific problems
using just enough harmonics to capture sufficient geometric information about shapes of interest.
To illustrate the idea, the leftmost panel in each row of Fig. 2 shows a shape extracted from a
natural image. The other panels show representations of the shape, at various different resolutions,
obtained using a frequency localization procedure described in Sec. 6. Dotted lines represent the
original shapes and localized shapes are drawn as solid lines.

An algorithm to compute geodesic paths between shapes localized in the frequency domain will
be described in Sec. 6, so that the algorithmic methods of statistical shape analysis of [14, 9, 20]
can be adapted to shape representations at arbitrary resolutions.

2 Representation of Planar Curves

We study planar curves presented in parametric form and traversed with constant speed. More
precisely, we consider curves α : I → R2 parameterized over the unit interval I = [0, 1] with ‖α′(s)‖
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Figure 2: Shapes extracted from natural images are represented at various different resolutions.

constant. Thus, if the length of α is L, ‖α′(s)‖ = L, for every s ∈ I. A continuous function
θ : I → R is said to be an angle function for α if α′(s) = Lejθ(s), for every s, where j =

√
−1. Here,

we are identifying R2 with the complex plane C in the usual manner. Notice that angle functions
are only defined up to the addition of integer multiples of 2π. Moreover, they are invariant to
uniform scalings and translations of the curve; the effect of a rotation is to add a constant to θ.
The rotation index of α, which measures the total number of turns made by the tangent vector
α′(s) as the curve α is traversed, is defined as

(2.1) ı(α) =
1
2π

(θ(1)− θ(0))

and is independent of the angle function chosen. The rotation index of a closed curve α with
α′(0) = α′(1) is an integer, with the sign depending on the orientation of the curve. If, in addition,
α is a simple curve (i.e., with no self-intersections other than the end points) the rotation index is
known to be ± 1 (see e.g. [5]).

Associated with α, there is a normalized unit-speed curve β : I → R2 obtained by scaling α
to have unit length; i.e., β(s) = α(s)/L. If α′(s) = Lejθ(s), then β′(s) = ejθ(s). Thus, any angle
function for α is also an angle function for β and κ(s) = θ′(s) is the curvature function of β. Since
curvature scales inversely, the curvature of α at s is κ(s)/L.

In applications involving the elastic energy, we must restrict allowable curves to those having
square integrable curvature functions. Thus, we only consider angle functions θ : I → R that can be
expressed as integrals of square integrable functions. In more technical terms, we assume that angle
functions are absolutely continuous (see e.g. [24] for a precise definition) with square integrable
first derivatives. The space of all such functions equipped with the inner product

(2.2) 〈f, g〉1 = f(0)g(0) +
∫ 1

0
f ′(s)g′(s) ds,

is denoted H1. This inner product – introduced by Palais in [22] – is a variant of the Sobolev
inner product

∫ 1
0 f(s)g(s) ds +

∫ 1
0 f ′(s)g′(s) ds. The usual L2 inner product

∫ 1
0 f(s)g(s) ds is not

appropriate in this context, since the elastic energy involves the L2-norm of κ(s) = θ′(s).

2.1 A Manifold of Constrained Curves

We begin the discussion of SCCs by considering the space of all planar curves with square integrable
curvature function, fixed rotation index, and given first-order boundary conditions. Thus, we
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prescribe the endpoints p0, p1 ∈ R2 and angles θ0, θ1 ∈ R that determine the tangent directions at
the endpoints. Our goal is to construct a SCC, denoted A, consisting of all curves α of rotation
index (θ1 − θ0)/2π satisfying α(i) = pi and α′(i)/‖α′(i)‖ = ejθi , for i = 0, 1.

Using a logarithmic scale for the length, write L = e`. If θ is an angle function for α, the
velocity vector can be written as α′(s) = e`ejθ(s). Thus, curves of length L satisfying α(0) = p0

can be expressed in the form

(2.3) α(s) = p0 + e`

∫ s

0
ejθ(σ) dσ.

Let d = (d1, d2) = p1 − p0 be the desired total displacement of α. Then, the condition α(1) = p1

can be written as e`
∫ 1
0 ejθ(s) ds = d1 + jd2, or equivalently, as the following conditions on the total

horizontal and vertical displacements of α:

(2.4) e`

∫ 1

0
cos θ(s) ds = d1 and e`

∫ 1

0
sin θ(s) ds = d2.

Hence, there is a one-to-one correspondence between elements of A and pairs (`, θ) ∈ R × H1

satisfying θ(0) = θ0, θ(1) = θ1 and (2.4). These four constraints define a codimension-4 submanifold
of R×H1; i.e., a submanifold of R×H1 whose normal space at each point is four dimensional. We
are assuming that the ambient space R×H1 is equipped with the inner product

(2.5) 〈(v, f), (w, g)〉 = v · w + 〈f, g〉1 ,

where (v, f), (w, g) ∈ R × H1. See Fig. 3(a) for a schematic illustration of the local structure of a
SCC.

Before proceeding with the calculations, we describe the space A as a level set, as this will shed
some light on its geometric structure. Define a function F : R×H1 → R4 by:

F 1(`, θ) = e`

∫ 1

0
cos θ(s) ds ; F 2(`, θ) = e`

∫ 1

0
sin θ(s) ds ;

F 3(`, θ) = θ(0) ; F 4(`, θ) = θ(1).
(2.6)

Then, A is the level set F−1(d1, d2, θ0, θ1). Note that F 3 and F 4 are linear functionals on R×H1

and can be expressed in terms of the inner product 〈 , 〉 as F 3(`, θ) = 〈(`, θ), (0, 1)〉 and F 4(`, θ) =
〈(`, θ), (0, 1 + s)〉, where 1 and s denote the constant function 1 and the function s 7→ s, respectively.

2.2 The Normal Bundle of A

We will exhibit an explicit basis for the normal space to the level sets of F at any regular point
(`, θ) ∈ R × H1; that is, at any point where the derivative dF : T(`,θ)A → R4 is an onto mapping.
Here, T(`,θ)A is the tangent space of A at the point (`, θ). The derivative of F at (`, θ) in the
direction of the vector (v, f) ∈ R×H1 is given by:

dF 1(v, f) =
〈
(v, f),

(
F 1(`, θ), e`h1

)〉
; dF 2(v, f) =

〈
(v, f),

(
F 2(`, θ), e`h2

)〉
;

dF 3(v, f) = 〈(v, f), (0, 1)〉 ; dF 4(v, f) = 〈(v, f), (0, 1 + s)〉 ,
(2.7)

where h1, h2 : I → R are characterized by h′′1(s) = sin θ(s), h1(0) = h′1(0) = 0 and h′′2(s) =
− cos θ(s), h2(0) = h′2(0) = 0. This means that the gradient of F i, 1 ≤ i ≤ 4, is:

∇F 1(`, θ) =
(
F 1(`, θ), e`h1

)
; ∇F 2(`, θ) =

(
F 2(`, θ), e`h2

)
;

∇F 3(`, θ) = (0, 1) ; ∇F 4(`, θ) = (0, 1 + s) .
(2.8)
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Hence, a vector (v, f) is tangent to the level set of F at (`, θ) if and only if it is orthogonal to the
subspace of R × H1 spanned by

{
∇F i(`, θ), 1 ≤ i ≤ 4

}
. We thus have constructed a basis of the

normal space to the level set of F at any regular point (`, θ). An orthonormal basis can be obtained
using the Gram-Schmidt process.

In applications, the calculation of normal structures will be useful in the computation of the
gradient of energy functionals on A. We usually proceed in two steps: first, calculate the gradient
of the energy as a functional on R×H1, which is often an easier task. Then, subtract the normal
component to A to obtain the gradient as a functional on A.

(a) (b)

Figure 3: (a) The local structure of a SCC. (b) A SCC is a level set; points are projected onto the
SCC by displacing them orthogonally to other level sets until the SCC is reached.

2.3 Projection onto A

In numerical simulations of the flow associated with vector fields on A, we use a variant of Euler’s
method, as follows. Infinitesimally, first flow in the ambient linear space R × H1 in the direction
of the vector field. The new point typically falls off of A due to its nonlinearity, so we devise a
mechanism to project the point back onto A to iterate the procedure – see Fig. 3(b). Higher-order
integration methods can be modified similarly.

Let (`, θ) ∈ R×H1. The residual vector r(`, θ) = (d1, d2, θ0, θ1)− F (`, θ) ∈ R4 is zero precisely
at points (`, θ) ∈ A. Thus, ε(`, θ) = ‖r(`, θ)‖2 gives a measurement of how far off (`, θ) is from
A and ε achieves its minimum value 0 at points in A. We project (`, θ) onto A by following the
negative gradient flow on R×H1 associated with the functional ε. The gradient of ε is given by

(2.9) ∇ε(`, θ) = −
4∑

i=1

ri(`, θ)∇F i(`, θ),

with r = (r1, r2, r3, r4) and ∇F i as in (2.8). Hence, the projection of a point (`∗, θ∗) ∈ R×H1 onto
A is obtained by asymptotically following the solution of the initial value problem

(2.10) ( ˙̀, θ̇) =
4∑

i=1

ri(`, θ)∇F i(`, θ), `(0) = `∗, θ(0) = θ∗.

Alternatively, one can use a version of Newton’s method to search for the zeros of r, in order to
project points (`, θ) ∈ R×H1 onto A, as in [14, 19].
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Algorithm 1 [Projection onto A]: Given a pair (`, θ) ∈ R × H1, we present an algorithm to
project it onto A, for a given d1, d2, θ0 and θ1. Choose ε, δ > 0 small.

1. Compute F (`, θ) using Eqn. 2.6 and the residual vector r(`, θ) = (d1, d2, θ0, θ1) − F (`, θ). If
‖r(`, θ)‖ < ε, then stop. Else, continue.

2. Compute ∇F i(`, θ), for i = 1, . . . , 4, according to Eqn. 2.8.

3. Compute ( ˙̀, θ̇) according to Eqn. 2.10.

4. Update (`, θ) = (`, θ) + δ( ˙̀, θ̇). Return to Step 1.

Shown in Fig. 4 are three examples of projections onto A of curves represented by pairs (`, θ).

Figure 4: Examples of curves (dashed lines) and their projections (solid lines) onto A using Algo-
rithm 1.

3 Scale-Invariant Planar Elasticae

Let (`, θ) ∈ A represent a curve α : I → R2 of length L = e` and let κ(s) = θ′(s). The (bending)
elastic energy of α is the integral of the square of the curvature function κ/L with respect to the
arc-length parameter. Since the arc-length element is Lds, the elastic energy of α can be expressed
as E(`, θ) = 1

2L

∫ 1
0 κ2(s) ds. The scale-invariant elastic energy of α [1], which is the product of E

and the length L, is given by

(3.1) Esi(`, θ) =
1
2

∫ 1

0
κ2(s) ds.

3.1 The Elastic Energy Flow

The main goal of this section is to develop an efficient algorithm to calculate curves of least scale-
invariant elastic energy with prescribed rotation index and first-order boundary conditions; these
curves are known as scale-invariant elasticae. Equivalently, we wish to minimize the functional Esi

on the manifold A. From (3.1), the differential of Esi (as a functional on R×H1) at the point (`, θ)
evaluated in the direction (v, f) is

(3.2) dEsi(v, f) =
∫ 1

0
f ′(s)θ′(s) ds = 〈(v, f), (0, θ − θ0)〉 .

Thus, ∇R×H1Esi(`, θ) = (0, θ − θ0). Using the calculation of normal spaces to A carried out in
Sec. 2.2, we project this vector orthogonally onto the tangent space T(`,θ)A to obtain ∇AEsi(`, θ).
Flow lines of the negative gradient vector field on A associated with Esi approach scale-invariant
elasticae, asymptotically. For an analytical study of this flow in the case of closed curves, the reader
may consult [15].
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3.2 Algorithms and Experimental Results

Algorithm 2 [Finding Elasticae]: Given boundary conditions (d1, d2; θ0, θ1), find the corre-
sponding scale-invariant elastica. Initialize (`, θ) with a straight line segment between the end
points.

1. Project (`, θ) onto A using Algorithm 1.

2. Compute ei ≡ ∇F i(`, θ), for i = 1, . . . , 4, according to Eqn. 2.8. Obtain an orthonormal basis
using the Gram-Schmidt process:

for i = 1 : 4
for j = 1 : i− 1

ei = ei − 〈ei, ej〉 ej ;
end
ei = ei/

√
〈ei, ei〉;

end

3. Compute the gradient vector (0, θ − θ0) and project it onto the tangent space using:

(d`, dθ) ≡ (0, θ − θ0)−
4∑

i=1

〈(0, θ − θ0), ei〉 .

If ‖(d`, dθ)‖ < ε, stop. Else, continue.

4. For a step size δ > 0, perform the update: (`, θ) = (`, θ) + δ(d`, dθ). Return to Step 1.

Fig. 5 shows an application of this geometric algorithm to the calculation of a scale-invariant
elastica for a given set of boundary conditions. Several stages of the curve evolution are shown,
as well as a plot of the evolution of the scale-invariant elastic energy. Fig. 6 shows several other

1 2 3 4 5 6 7 8 9 10
20

30

40
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70
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Figure 5: Evolution of a curve under the elastic energy flow. The last panel shows the corresponding
evolution of energy.

examples of planar, scale-invariant elasticae. Elasticae with different rotation indexes are shown in
Fig. 7.

Examples of partial occlusion of contours in natural images resolved with scale-invariant elasti-
cae are shown in Fig. 8. The curves drawn as solid lines are elasticae computed with the algorithm
developed in this section. For comparison purposes, dashed lines show hand-drawn contours.

Completion of contours of imaged objects with elasticae can be complemented with texture
analysis-synthesis techniques developed in [32, 28, 17] to extend observed patterns of pixel values
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Figure 6: Examples of scale-invariant planar elasticae.

Figure 7: Examples of scale-invariant elasticae of different rotation indexes.

to the newly discovered regions. This fusion of shape and texture analysis techniques provides new
methodology for estimations of the full appearance of partially occluded objects. Two examples of
contour-appearance completions are shown in Fig. 9.

4 Localization of Curvature and Angle Functions

In this section, we study a SCC of curves of fixed rotation index, localized curvature functions, and
prescribed first-order boundary conditions. By localization, we mean that curvature functions will
be restricted to some subspaces of L2 such as subspaces spanned by certain dominant harmonics.
This space of curves will be used in the computation of a new type of elastica, which we refer to
as local elastica. We carry out several experiments with localization in the frequency domain, but
the discussion is more general.

4.1 V -Local Curves

All curves will have the same initial position p0 ∈ R2 and initial value θ0 of the angle function.
Thus, it suffices to consider angle functions of the form θ(s) = θ0 + ϕ(s), where ϕ : I → R satisfies
ϕ(0) = 0. As before, the curve associated with (`, θ) ∈ R×H1 is given by

(4.1) α(s) = p0 + e`

∫ s

0
ejθ(t) dt.

We wish to localize curvature functions and consequently angle functions, as well. What sub-

11



++

Figure 8: Examples of partial occlusions in natural images resolved with scale-invariant elasticae
are shown as solid lines. Dashed lines are hand-drawn completions for comparison purposes.

spaces are we going to restrict angle functions to? This is equivalent to asking what restrictions
the function ϕ should satisfy. We formulate the restrictions on ϕ in terms of the H1 inner product.

Since 〈ϕ, 1〉1 = ϕ(0), functions ϕ ∈ H1 satisfying ϕ(0) = 0 are those orthogonal to constant
functions. They can written as ϕ(s) =

∫ s
0 ϕ′(ξ) dξ. Hence, we localize angle functions as follows:

pick a finite-dimensional subspace W ⊂ L2, with orthonormal basis {σ1, . . . , σn}; this is to be
interpreted as localizing κ(s) = θ′(s) = ϕ′(s) to W . If

(4.2) ϕi(s) =
∫ s

0
σi(t) dt,

we restrict ϕ to the subspace V = span {ϕ1, . . . , ϕn} of H1. In this paper, we only consider local-
ization to finite-dimensional subspaces, but the construction can be extended to other subspaces.

Example. Let W ⊂ L2 be the subspace spanned by the truncated Fourier basis{
1,
√

2 cos(2πs), . . . ,
√

2 cos(2kπs),
√

2 sin(2πs), . . . ,
√

2 sin(2kπs)
}

.

If {σi}2k+1
i=1 are these basis elements, use (4.2) to obtain a basis {ϕi}2k+1

i=1 of V . This choice of W
corresponds to localizing curvature functions to the first 2k + 1 harmonics. �

We restrict our attention to V -local angle functions; that is, angle functions of the form

(4.3) θ(s) = θ0 + x1ϕ1(s) + . . . + xnϕn(s),

where x = (x1, . . . , xn) ∈ Rn. Thus, curves of length L = e`, localized angle functions, and given
first-order initial conditions can be represented by pairs (`, x) ∈ Rn+1 via

(4.4) α(s) = p0 + e`

∫ s

0
ej(θ0+

Pn
i=1 xiϕi(τ)) dτ.

12



Figure 9: Each row shows an image of several fruits, the visible part of one of the partially occluded
fruits, a completion of its contour with a scale-invariant elastica, and an analysis-synthesis extension
of observed pixel values.

If fa =
∑n

i=1 xiϕi(s) and fb =
∑n

i=1 yiϕi(s), then 〈fa, fb〉1 = x1y1 + . . . + xnyn. Thus, the inner
product 〈(v, fa), (w, fb)〉 defined in (2.5) can be expressed in terms of the pairs (v, x), (w, y) as the
standard Euclidean inner product

(4.5) (v, x) · (w, y) = vw + x1 y1 + . . . + xn yn

in Rn+1.

As in Sec. 2, we are interested in curves with prescribed rotation index and first-order boundary
conditions. Therefore, analogous to the constraints on pairs (`, θ) imposed by the function F ,
defined in (2.6), we consider the map G : Rn+1 → R3 given by:

(4.6) G1(`, x) = e`

∫ 1

0
cos θ(s) ds ; G2(`, x) = e`

∫ 1

0
sin θ(s) ds ; G3(`, x) = θ(1) ,

with θ as in (4.3). Note that, in this representation, the value θ(0) is fixed to be θ0, so the
condition on θ(0) is automatically satisfied. The relevant SCC of V -local curves is the iso-set
AV = G−1(d1, d2, θ1), where d = (d1, d2) ∈ R2 is the desired total displacement d = p1 − p0. For
almost all choices of V , AV is a smooth (n− 2)-dimensional submanifold of Rn+1.

As in Sec. 2, a computation of the normal structure to level sets of the mapping G is needed
for projections of points and vector fields in the ambient space Rn+1 onto AV . The mechanism is
identical to that discussed earlier, so we just provide expressions for ∇Gi, 1 ≤ i ≤ 3. Differentiating
(4.6) and using (4.3), one obtains:

∇G1(`, x) =
(

G1(`, x),−e`

∫ 1

0
ϕ1(s) sin θ(s) ds, . . . ,−e`

∫ 1

0
ϕn(s) sin θ(s) ds

)
;

∇G2(`, x) =
(

G2(`, x), e`

∫ 1

0
ϕ1(s) cos θ(s) ds, . . . , e`

∫ 1

0
ϕn(s) cos θ(s) ds

)
;

∇G3(`, x) = (0, ϕ1(1), . . . , ϕn(1)) .

(4.7)

Algorithm 3 [Projection onto AV ]: Given a curve representation (`, x) ∈ Rn+1, we present an
algorithm to project it onto AV , for a given d1, d2, and θ1. Choose ε, δ > 0 small.
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1. Compute G(`, x) using Eqn. 4.6 and the residual vector r(`, x) = (d1, d2, θ1) − G(`, x). If
‖r(`, x)‖ < ε, then stop. Else, continue.

2. Compute ∇Gi(`, x) ∈ Rn+1, for i = 1, 2, 3, according to Eqn. 4.7.

3. Compute ( ˙̀, ẋ) according to: ( ˙̀, ẋ) =
∑3

i=1 ri(`, x)∇Gi(`, x).

4. Update (`, x) = (`, x) + δ( ˙̀, ẋ). Return to Step 1.

4.2 V -Local Elasticae

If (`, x) ∈ Rn+1 represents a V -local curve α with angle function θ(s) = θ0+x1ϕ1(s)+. . .+xnϕn(s),
then

κ(s) = θ′(s) = x1σ1(s) + . . . + xnσn(s).

Since {σi, 1 ≤ i ≤ n} ⊂ L2 is an orthonormal set, the scale-invariant elastic energy of α defined in
(3.1) reduces to

(4.8) Esi(`, x) =
1
2

(x2
1 + . . . + x2

n) .

Thus, ∇Rn+1Esi(`, x) = (0, x1, . . . , xn). Subtracting normal components, we obtain the gradient
field ∇AV

Esi on AV associated with the scale-invariant elastic energy. Flow lines of the negative
gradient vector field approach V -local elasticae asymptotically.

Algorithm 4 [Finding Local Elastica]: Given boundary conditions in the form (d1, d2, θ1) and
a subspace V , find a local elastica satisfying the given boundary conditions. Initialize (`, x) with a
straight line between the end points.

1. Project (`, x) onto AV using Algorithm 3.

2. Using Eqn. 4.7, compute ei ≡ ∇Gi(`, x), for i = 1, 2, 3, and make them orthonormal in Rn+1

using Gram-Schmidt.

3. Compute the gradient vector (0, x1, . . . , xn) and project it onto tangent space using:

(d`, dx) ≡ (0, x1, . . . , xn)−
3∑

i=1

〈(0, x1, . . . , xn), ei〉 ei .

If ‖(d`, dx)‖ < ε, stop. Else, continue.

4. For a step size δ > 0, perform the update: (`, x) = (`, x) + δ(d`, dx). Return to Step 1.

Fig. 10 shows various scale-invariant elasticae computed with this algorithm. Each panel dis-
plays several elasticae with the same rotation index and first-order boundary conditions, but local-
ized to different subspaces in the frequency domain. The subspace W ⊂ L2 is chosen to suppress
all but a few fundamental harmonics in a Fourier representation of κ.
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Figure 10: Each panel shows several examples of scale-invariant elasticae with the same boundary
conditions and angle functions localized to different subspaces V .

5 Discovery of Contours and Appearances

As pointed out in Sec. 1, resolving partial occlusions of contours of objects in images with elasticae
only yields good results in situations where hidden contours are small or not very rich in geometric
features. This is because elasticae only take first-order boundary information into account and are
designed to minimize the bending elastic energy. If additional contextual knowledge is unavailable,
the problem of discovering shapes of hidden contours is very challenging. In such generality, it might
be difficult to develop meaningful quantitative criteria to measure the “goodness” of a proposed
completion.

We propose to use localization, in a Bayesian framework, to produce completions that take into
consideration more information about the global geometry of visible contours. The basic idea is to
restrict the search to curves whose curvature (or angle) functions contain just enough harmonics to
capture the geometry of the visible portions, so that observed geometric patterns will propagate to
the parts to be estimated without high energy costs. Several examples will illustrate the fact that,
in the presence of periodic patterns, this technique leads to improved contour estimations. As in
Sec. 3.2, estimations of contours will be combined with texture analysis and synthesis techniques
to extend observed patterns of pixel values to the newly discovered regions.

5.1 A Manifold of Localized Closed Curves

To simplify the discussion, we assume that the visible portion of the contour of an imaged object
has been extracted and consists of a single arc. Hence, we work under the hypothesis that the data
is presented as a parametric curve γ. In addition, we suppose that the length of the part of the
contour to be estimated is known, but the model can be modified to relax these assumptions.

Given an open curve γ : [0, L0] → R2, L0 > 0, with unit-speed parameterization, we would like
to find an optimal “completion” of γ to a closed curve α of rotation index 1 and length L > L0.
For the problem to be interesting, we assume that L > ‖γ(L0)−γ(0)‖+L0. We let θγ : [0, L0] → R
be an angle function for the curve γ, θ0 = θγ(0), and p0 = γ(0).

In Sec. 4, V -local curves were represented by pairs (`, x) ∈ Rn+1. Since we are assuming that
the length L of the contour to be estimated is known, we can fix ` and work only with the variable
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x ∈ Rn. An n-tuple x = (x1, . . . , xn) represents the constant-speed curve

α(s) = p0 + L

∫ s

0
eiθ(t) dt .

Here, θ : I → R is the angle function θ(s) = θ0 +
∑n

i=1 xiϕi(s), with ϕi as in (4.2). The curvature
function of α is κ(s) = (1/L)

∑n
i=1 xiσi(t), where σi(s) = ϕ′i(s).

The SCC of interest can be thought of as a slice of the manifold AV of Sec. 1.3 consisting of
all elements representing curves of the desired (fixed) length. The constraints that x ∈ Rn should
satisfy are analogous to those in (4.6), but the expressions are simpler because ` is fixed. Let
H : Rn → R3 be the map

(5.1) H1(x) =
∫ 1

0
cos θ(s) ds ; H2(x) =

∫ 1

0
sin θ(s) ds ; H3(x) = θ(1)− θ0 ,

with θ(s) = θ0 +
∑n

i=1 xiϕi(s). The relevant SCC of V -local curves can be described as HV =
H−1(0, 0, 2π). Elements of HV represent curves α with angle function θ satifying: (i) α(0) = γ(0);
(ii) θ(0) = θ0; (iii) θ(1) = θ0 + 2π. The gradient of H i, 1 ≤ i ≤ 3, is given by:

∇H1(x) = −
(∫ 1

0
ϕ1(s) sin θ(s) ds, . . . ,

∫ 1

0
ϕn(s) sin θ(s) ds

)
;

∇H2(x) =
(∫ 1

0
ϕ1(s) cos θ(s) ds, . . . ,

∫ 1

0
ϕn(s) cos θ(s) ds

)
;

∇H3(x) = (ϕ1(1), . . . , ϕn(1)) .

(5.2)

As before, this calculation allows us to implement projections of points and vector fields in Rn onto
HV and solve optimization problems on HV using gradient methods.

Algorithm 5 [Projection onto HV ]: Given a vector x ∈ Rn, we present an algorithm to project
it onto HV . Choose ε, δ > 0 small.

1. Compute H(x) according to Eqn. 5.1 and the residual vector r(x) = (0, 0, 2π) − H(x). If
‖r(x)‖ < ε, then stop. Else, continue.

2. Compute ∇H i(x), for i = 1, . . . , 3, according to Eqn. 5.2.

3. Compute ẋ according to: ẋ =
∑3

i=1 ri(x)∇H i(x).

4. Perform the update: x = x + δẋ. Return to Step 1.

5.2 Bayesian Estimation of Contours

We take a Bayesian approach to the estimation of contours. We adopt a model having the scale-
invariant elastic energy E(x) = 1

2

∑n
i=1 x2

i as prior energy and data likelihood energy

F (γ|x) =
1
2

∫ ζ0

0
(θ(t)− θγ(Lt))2 dt ,

where ζ0 = L0/L. The functional F (γ|x) quantifies the consistency of θγ with the angle function
represented by x ∈ Rn over the interval [0, L0]. For each λ, 0 < λ < 1, the posterior energy is
proportional to the functional

(5.3) Eλ(x|γ) = λ F (γ|x) + (1− λ)E(x).
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We refer to a maximum-a-posteriori (MAP) estimation of the contour according to Eλ as a V -local
λ-completion of γ. Equivalently, a λ-completion of γ is a curve represented by x ∈ HV ⊂ Rn that
minimizes the posterior energy Eλ on the (n− 3)-dimensional manifold HV .

The estimation of V -local λ-completions requires that we solve an optimization problem on
HV , which we approach with gradient methods. To simulate the negative gradient flow of Eλ on
HV , we need to compute the partial derivatives of Eλ. For each x ∈ Rn, let Wx(s) = θ(s)− θγ(Ls),
0 ≤ s ≤ ζ0 = L0/L. Then,

(5.4)
∂F

∂xi
=

∫ ζ0

0
Wx(s)ϕi(s) ds and

∂E

∂xi
= xi.

Thus,

(5.5) ∇RnEλ(x) = λ

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
+ (1− λ) (x1, . . . , xn).

Projecting this vector orthogonally onto the tangent space TxHV , we obtain ∇HV
Eλ(x). Flow lines

of the negative gradient field on HV associated with Eλ approach λ-completions of γ asymptotically.

5.3 Algorithms and Experimental Results

Algorithm 6 [Finding V -Local Completions of Contours]: Given the visible curve γ and a
basis {ϕi} of V , find a local closed curve that minimizes the posterior energy. L0 is the length of
γ and L is the chosen length of its completion. Initialize x ∈ Rn.

1. Project x onto HV using Algorithm 5.

2. Compute ei ≡ ∇H i(x), for i = 1, 2, 3, and make them orthonormal in Rn using the Gram-
Schmidt procedure.

3. Compute the gradient vector ∇RnEλ(x) using Eqn. 5.5 and project it onto the tangent space
using:

dx ≡ ∇RnEλ(x)−
3∑

i=1

〈∇RnEλ(x), ei〉 ei .

If ‖dx‖ < ε, stop. Else, continue.

4. For a step size δ > 0, perform the update: x = x + δ dx. Return to Step 1.

Fig. 11 shows a contour estimation obtained with this algorithm. The part of the contour of
the starfish shown as a dotted line was hand extracted and represents the curve γ. To obtain a
coarse estimation of the subspace V , we truncated the Fourier expansion of θγ keeping only the
dominant harmonics and used the same fundamental harmonics to choose V . The first seven panels
show the evolution of the curve during the gradient search and the last panel on the second row
shows the MAP estimation of the contour. The first panel on the third row shows a plot of the
angle function of γ and that of the estimated contour. The last panel displays the evolution of the
posterior energy during the gradient search.

To illustrate the influence of the length on the MAP estimation, we carried out several other
experiments with the same data. Fig. 12 shows several different V -local MAP contours obtained
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Figure 11: Various stages of a MAP estimation of the contour of a starfish. The hand-extracted
data is shown as a dotted line. The first panel on the 3rd row shows a plot of the angle functions
of the initial arc and the estimated contour. The last panel shows the evolution of the posterior
energy.

Figure 12: MAP estimations of various different lengths of the contour of a starfish. The length
decreases from left to right.

with the same value of λ and subspace V , and decreasing values of L from left to right. The results
indicate that the inference process is quite robust to variations of length. As pointed out above,
the optimal choice of L can be automated by incorporating the length as a variable in the model.

The result of a similar Bayesian contour estimation experiment with an image of a flower is
shown in Fig. 13. Results of experiments with estimations of full (shape-texture) appearances on
three synthetic images are shown in Fig. 14.

6 Spaces of Localized Shapes

As discussed in Sec. 1.3, we wish to develop a framework for the multi-resolution analysis of closed,
planar shapes using localization of angle functions. To simplify the discussion, we only consider
localization in the frequency domain using truncated Fourier series, but the methods also apply to
wavelet and other representations of functions.
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Figure 13: A MAP estimation of the contour of a flower.

Figure 14: Joint contour-appearance estimations on synthetic data.

The shape of a planar contour is a property that is invariant under affine transformations of
the plane; that is, compositions of translations, rotations and uniform scalings. (Reflections are
treated separately, as explained below.) Thus, we seek representations of curves that are insensitive
to these transformations. Given a parametric curve α : I → R2 with constant speed and length L,
we represent α by an angle function θ : I → R, which is characterized by α′(s) = Lejθ(s), for every
s ∈ I. Angle functions are clearly invariant to translations and uniform scalings; the effect of a
rotation is to add a constant to θ. As in [14], to remove variability due to rotations, we represent
shapes using angle functions with fixed average, say, π. This corresponds to choosing a preferred
rotational alignment of curves representing shapes.

We view the round circle as the simplest closed shape and adopt it as a basic reference. Thus,
all spaces of localized angle functions will contain the angle function θc(s) = 2πs associated with
the standard parameterization α(s) = (cos(2πs), sin(2πs)) of the unit circle. For a given a positive
integer n, we consider angle functions with average π whose deviations from θc are localized to the
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first 2n Fourier components; they are of the form

(6.1) θ(s) = 2πs +
n∑

k=1

xk
sin(2kπs)√

2
+

n∑
k=1

yk
cos(2kπs)√

2
,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. (The constant term in this truncated Fourier
representation is zero because both θ and θc have average π.) Thus, we represent θ with the pair
(x, y) ∈ R2n. We are primarily interested in angle functions representing closed curves; that is,
those satisfying

∫ 1
0 ejθ(s) ds = 0. Thus, analogous to the map H of Sec. 5.1, we let J : R2n → R2 be

given by

(6.2) J1(x, y) =
∫ 1

0
cos θ(s) ds and J2(x, y) =

∫ 1

0
sin θ(s) ds,

with θ as in (4.3). Define the pre-shape space Pn ⊂ R2n as the level set Pn = J−1(0, 0), which is
an (2n− 2)-dimensional submanifold of R2n consisting of pairs (x, y) associated with closed curves
with localized angle functions.

As in [14], we refer to elements of Pn as pre-shapes. This terminology is adopted because a
shape may have multiple representatives in Pn due to the variability in the choice of the initial
point of the curve. Notice that once the initial point is fixed, so is the parameterization of the
curve since we are assuming that α has constant speed. For each closed curve, there is a circle
worth of possible initial points or parameterizations. Hence, changes of initial point may be viewed
as an action of the unit circle S1 on Pn. The shape space Sn is the quotient space Pn/S1 by the
re-parameterization group S1.

Again, we need two projection mechanisms for the manifold Pn: projections of vectors (v, w) ∈
R2n onto the tangent space T(x,y)Pn and projections of points (x, y) ∈ R2n onto Pn. As before,
these can be derived from a calculation of the gradient vectors

(6.3) ∇J i =
(

∂J i

∂x1
, . . . ,

∂J i

∂xk
,
∂J i

∂y1
, . . . ,

∂J i

∂yk

)
, i = 1, 2.

Therefore, we compute the partial derivatives of J i explicitly:

∂J1

∂xk
= − 1√

2

∫ 1

0
sin θ(s) sin(2kπs) ds ;

∂J1

∂yk
= − 1√

2

∫ 1

0
sin θ(s) cos(2kπs) ds ;

∂J2

∂xk
=

1√
2

∫ 1

0
cos θ(s) sin(2kπs) ds ;

∂J2

∂yk
=

1√
2

∫ 1

0
cos θ(s) cos(2kπs) ds .

(6.4)

6.1 Localization of Pre-Shapes

Given an angle function θ ∈ L2 with average π representing a closed curve α, let

(6.5) θ(s)− 2πs =
∞∑

k=1

ak
sin(2kπs)√

2
+

∞∑
k=1

bk
cos(2kπs)√

2
,

be the Fourier expansion of the deviation of θ from θc(s) = 2πs. Truncating this expansion, we
obtain the angle function

(6.6) θ̄n(s) = 2πs +
n∑

k=1

ak
sin(2kπs)√

2
+

n∑
k=1

bk
cos(2kπs)√

2
.
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The pair (a, b) ∈ R2n associated with this truncated function (or equivalently, θ̄n) might not
represent a closed curve. To close the curve, we project (a, b) onto Pn to obtain (xn

θ , yn
θ ) ∈ Pn, which

represents a localized pre-shape via Eqn. 4.3. This construction yields a localization procedure,
namely, θ 7→ (xn

θ , yn
θ ).

Frequency localization of shapes is illustrated in Fig. 2. Each row shows a shape extracted from
a natural image and the corresponding localizations at n = 5, 10, 15 and 20, respectively. As the
resolution increases (from left to right), localized shapes get closer to the original contour. Similar
examples are shown in Fig. 15.

Figure 15: Shapes extracted from images are localized using 2n Fourier harmonics. The panels
show localizations at n = 5, 10, 15 and 20, with resolution increasing from left to right.

6.2 Geodesics in the Shape Space Sn

We conclude our discussion of shapes with a description of an algorithmic procedure to calculate
geodesics between any given pair of localized shapes. Once this is available, the methods of [14, 9, 20]
can be readily adapted to yield techniques of multi-resolution, quantitative shape analysis. The
approach to geodesics is similar to that adopted in the computation of geodesics in full (non-
localized) shape space, but simpler and more efficient if the number of harmonics used is relatively
small. Therefore, we just present the main ideas and refer the reader to [14] for further details.

Recall that shapes are elements of the quotient of the pre-shape space Pn by the action of the
group S1 of re-parameterizations. If (x, y) ∈ Pn and z ∈ S1, then the pre-shape obtained by the
action of z on (x, y) is denoted z · (x, y). The S1-orbit of (x, y) is the set

(6.7) O(x, y) = {z · (x, y) | z ∈ S1} ⊂ Pn.

Suppose that the pre-shapes (x0, y0), (x1, y1) ∈ Pn represent shapes s0, s1 ∈ Sn, respectively. Then,
any other pre-shape in the orbit of (xi, yi), i = 0, 1, also represents si. The geodesic distance,
d(s0, s1), between s0 and s1 is defined as the infimum of the length of all paths in Pn connecting a
point in the orbit O(x0, y0) to a point in O(x1, y1).

It can be shown that the group S1 acts on Pn by isometries; i.e., preserving distances in Pn.
This implies that the geodesic distance d(s0, s1) can be computed as the infimum of the length of
all paths in Pn connecting (x0, y0) to a point in the orbit O(x1, y1); that is, it suffices to consider
paths with fixed initial point (x0, y0). Moreover, the distance d(s0, s1) is realized by a geodesic in
Pn with initial point (x0, y0), which is perpendicular to the S1-orbit of (x0, y0) and whose terminal
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point lies in O(x1, y1) – we refer to such geodesic as a geodesic in Sn. Given these facts, we employ
a shooting method to calculate geodesics in Sn, as discussed next.

To describe the shooting method, we first introduce the exponential map. Let (x, y) ∈ Pn

represent a pre-shape and (v, w) ∈ T(x,y)Pn ⊂ R2n be a tangent vector to Pn at (x, y). Then, there is
unique geodesic Ψ(t;x, y, v, w) that starts at (x, y) and is tangent to (v, w); that is, Ψ(0;x, y, v, w) =
(x, y) and Ψ′(0;x, y, v, w) = (v, w). The exponential map

exp: T(x,y)Pn → Pn

is defined by exp(v, w) = Ψ(1; x, y, v, w). The map simply returns the position of the geodesic at
time 1. With this terminology in place, the geodesic in Sn from s0 to s1 can be constructed as
follows:

(i) Let (x0, y0), (x1, y1) ∈ Pn represent the shapes s0 and s1, resp., and let O⊥ be the subspace of
T(x0,y0)Pn consisting of all vectors orthogonal to the orbit O(x0, y0) at (x0, y0). Given a vector
(v, w) ∈ O⊥, calculate the geodesic Ψ(t;x0, y0, v, w) by integrating the differential equation of
geodesics in Pn, numerically. If exp(v, w) ∈ O(x1, y1) (i.e., the geodesic from (x0, y0) in the
direction (v, w) reaches the orbit of (x1, y1) in unit time), then Ψ(t;x0, y0, v, w), 0 ≤ t ≤ 1 is
the desired geodesic.

(ii) Otherwise, consider the function E : O⊥ → R given by

E(v, w) = inf
z∈S1

‖ exp(v, w)− z · (x1, y1)‖2.

The function E measures how far off the endpoint of the geodesic Ψ(t;x0, y0, v, w), 0 ≤ t ≤ 1, is
from the desired target. The goal is to find the direction (v, w) that minimizes (or equivalently,
annihilates) E. This minimization problem is solved using a gradient search on the subspace
O⊥ ⊂ T(x0,y0)Pn.

Remark. To take the action of reflections into consideration in the calculation of geodesics between
two shapes s0 and s1, one can simply find the geodesic between s0 and s1 and the geodesic between
s0 and some reflection of s1 and select the one with shortest length.

Fig. 16 shows geodesics morphing a flower into a duck at various different resolutions. The
original shapes are shown in Fig. 2 and the deformations are given by geodesic paths in Sn, for
n = 5, 10, 20. The results of a similar experiment are shown in Fig. 17 for the boot and tank
of Fig. 15. For the purpose of classifying and recognizing objects according to their shapes, an
analysis at a lower resolution may prove to be sufficient.
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tical Shape Knowledge into the Mumford-Shah Functional. International Journal of Computer
Vision 50 (2002), 295–313.

[5] Do Carmo, M.P: Differential Geometry of Curves and Surfaces. Prentice Hall, Englewood
Cliffs, NJ, 1976.

[6] Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Sons (1998).

23



[7] Euler, L.: Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive
Solutio Problematis Isoperimetrici Lattisimo Sensu Accepti. Bousquet, Lausannae e Genevae
E65A. O. O. Ser. I, vol. 24 (1744).

[8] Horn, B.P.K.: The Curve of Least Elastic Energy. ACM Trans. Math. Software 9 (1983),
441–460.

[9] Joshi, S., Srivastava, A., Mio, W., Liu, X.: Hierarchical Organization of Shapes for Efficient
Retrieval. In: Proc. 8th European Conference on Computer Vision. Prague, Czech Republic
(2004).

[10] Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger Scientific (1979).

[11] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal
of Computer Vision 1 (1988), 321–33.

[12] Kendall, D.G.: Shape Manifolds, Procrustean Metrics and Complex Projective Spaces. Bull.
London Math. Society 16 (1984), 81–121.

[13] Kimia, B.B., Frankel, I., Popescu, A.: Euler Spiral for Shape Completion. International Journal
of Computer Vision 54 (2003), 159–182.

[14] Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of Planar Shapes Using Geodesic
Paths on Shape Spaces. IEEE Trans. Pattern Analysis and Machine Intelligence26 (2004),
372–383.

[15] Langer, J., Singer, D.A.: Curve Straightening and a Minimax Argument for Closed Elastic
Curves. Topology 24 (1985), 75–88.

[16] Le, H.L., Kendall, D.G.: The Riemannian Structure of Euclidean Shape Spaces: a Novel
Environment for Statistics. Annals of Statistics 21 (1993), 1225–1271.

[17] Liu, X., Chen, R.: Independent Spectral Representations of Images for Recognition. J. Optical
Soc. of America 20 (2003).

[18] Maurel, P., Sapiro, G.: Dynamic Shapes Average. In: Proc. 2nd IEEE Workshop on Varia-
tional, Geometric, and Level-Set Methods in Computer Vision. Nice, France (2003).

[19] Mio, W., Srivastava, A., Klassen, E.: Interpolations with Elasticae in Euclidean Spaces. Quar-
terly of Applied Mathematics, in press.

[20] Mio, W., Srivastava, A., Liu, X.: Learning and Bayesian Shape Extraction for Object Recogni-
tion. In: Proc. 8th European Conference on Computer Vision. Prague, Czech Republic (2004).

[21] D. Mumford, Elastica and Computer Vision, in Algebraic Geometry and its Applications (West
Lafayette, IN, 1990), Springer, New York (1994), 491–506.

[22] Palais, R.: Morse Theory on Hilbert Manifolds. Topology 2 (1963), 299–340.

[23] Romeny, B.M., ed.: Geometry Driven Diffusion in Computer Vision. Kluwer Academic (1994).

[24] Royden, H.L.: Real Analysis. Prentice Hall, 3rd edition (1988).

[25] Sethian, J.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer
Vision, and Material Science. Cambridge University Press (1996).

24



[26] Sharon, E., Brandt, A., Basri, R.: Completion Energies and Scale. IEEE Trans. Pattern
Analysis and Machine Intelligence 15 (2000), 1117–1131.

[27] Small, C.G.: The Statistical Theory of Shape. Springer-Verlag (1996).

[28] Srivastava, A., Liu, X., Grenander, U.: Universal Analytic Forms for Modeling Image Proba-
bility. IEEE Trans. on Pattern Analysis and Machine Intelligence 28 (2002), 1200–1214.

[29] Weiss, I.: 3D Shape Representation by Contours, Computer Vision, Graphics and Image
Processing 41 (1988), 80–100.

[30] Williams, L.R., Jacobs, D.W.: Stochastic Completion Fields: A Neural Model of Illusory
Contour Shape and Salience. In: Proc. of the 5th Int. Conference on Computer Vision, Boston,
MA (1995) 408–415.

[31] Williams, L.R., Jacobs, D.W.: Local Parallel Computation of Stochastic Completion Fields.
Neural Computation 9 (1997), 837–858.

[32] Wu, Y.N., Zhu, S.C., Liu, X.: Equivalence of Julesz Ensembles and FRAME models. Interna-
tional Journal of Computer Vision 38 (2000), 247–265.

25


