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ABSTRACT. We generalize a Hardy-Littlewood inequality for Lp-norms of conjugate
harmonic functions to horizontal components of quasiregular mappings on Carnot groups.

1. Introduction

In [1], Hardy and Littlewood proved the following result.

Theorem 1.1 If u+ iv is analytic in a disk D centered at z0, then there exists a constant
C, depending only on p, 0 < p, such that∫
D

|u− u(z0)|p dxdy ≤ C

∫
D

|v|p dxdy. (1)

A natural generalization of analytic functions to n-dimensional Euclidean space are
quasiregular mappings.(See [2] and [3].) An analogue of Theorem 1.1 for quasiregular
mappings in John domains in Euclidean space appeared in [4]. Recently the analytical
tools used in the proof of this result have been generalized to Carnot groups. We give
an account of some of these advances and obtain an analogue of Theorem 1.1 in this
context. A Carnot group is a connected, simply connected, nilpotent Lie group G of
topological dimG = N ≥ 2 equipped with a graded Lie algebra G = V1 ⊕ · · · ⊕ Vr so
that [V1, Vi] = Vi+1 for i=1,2,...,r-1 and [V1, Vr] = 0. This defines an r-step Carnot group.
As usual, elements of G will be identified with left-invariant vectors fields on G. We
adopt when possible the elegant notation from [5]. We fix a left-invariant Riemannian
metric g on G with g(Xi, Xj) = δij. We denote the inner product with respect to this
metric, as well as all other inner products, by 〈, 〉. We assume that dimV1 = m ≥ 2
and fix an orthonormal basis of V1 : X1, X2, ..., Xm. The horizontal tangent bundle of
G, HT , is the subbundle determined by V1 with horizontal tangent space HTx the fiber
span[X1(x), ..., Xm(x)]. We use a fixed global coordinate system as exp : G → G is a
diffeomorphism (since G is simply-connected and nilpotent). We extend X1, ..., Xm to an
orthonormal basis X1, ..., Xm, T1, ..., TN−m of G. All integrals will be with respect to the
bi-invariant Harr measure on G which arises as the push-forward of the Lebesque measure
in RN under the exponential map. We denote by |E| the measure of a measurable set E.
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We normalize the Harr measure so that the measure of the unit ball is one. We denote by
Q the homogeneous dimension of the Carnot group G defined by Q =

∑r
i=1 i dimVi. The

dual basis of G is denoted by dx1,...,dxm,τ1,...,τN−m with the pairing 〈, 〉 : Tx × T ∗
x → R.

Notice 〈Xj, dxi〉 = 〈Tj, dxi〉 = δij, and 〈Xj, τi〉 = 〈Tj, dxi〉 = 0. Also a vector field X is
called horizontal if 〈X, τi〉 = 0 for all i = 1, ..., N − m. We write |v|2 = 〈v, v〉, d for the
distributional exterior derivative and δ for the codifferential adjoint. We use the following
spaces where U is an open set in G :

ΛkT : k-forms in the tangent bundle of G,
C∞

0 (U, Λk): infinitely differentiable compactly supported k-forms in U ,
Lp(U, Λk): k-forms with coefficients in Lp(U), p > 0,
W 1,p(U, Λk) : Sobolev space of k-forms u ∈ Lp(U, Λk) such that du ∈ Lp(U, Λk−1),
HW 1,p(U) : horizontal Sobolev space of functions u ∈ Lp(U) such that the distribu-

tional derivatives Xiu ∈ Lp(U) for i = 1,...,m.
When u is in the local horizontal Sobolev space HW 1,p

loc (U) we write the horizontal
differential as d0u = X1udx1 + ... + Xmudxm. ( The horizontal gradient ∇0u = X1uX1 +
...+XmuXm appears in the literature. Notice that |d0u| = |∇0u|.) The family of dilations
on G, {δt : t > 0}, is the lift to G of the automorphism δt of G which acts on each Vi

by multiplication by ti. A path in G is called horizontal if its tangents lie in V1. The
(left-invariant) Carnot-Carathéodory distance , dc(x, y) , between x and y is the infimum
of the lengths, measured in the Riemannian metric g, of all horizontal paths which join
x to y. A homogeneous norm is given by |x| = dc(0, x). We have |δt(x)| = t|x|. We write
Br(x) = {y ∈ G : |x−1y| < r} for the ball centered at x of radius r. Since the Jacobian
determinant of the dilatation δr is rQ and we have normalized the measure, |Br| = rQ.
For σ > 0, we write σB for the ball with the same center as B and radius σ times that of
B. As references for Carnot groups we mention [6],[7],[8] and [9].

Example 1.2 Euclidean space Rn with its usual Abelian group structure is a Carnot
group. Here Q = n and Xi = ∂/∂xi.

Example 1.3 Each Heisenberg group Hn, n ≥1, is homeomorphic to R2n+1. They form
a family of noncomutative Carnot groups which arise as the nilpotent part of the Iwasawa
decomposition of U(n, 1), the isometry group of the complex n-dimensional hyperbolic
space. Denoting points in Hn by (z, t) with z = (z1, ..., zn) ∈ Cn and t ∈ R we have the
group law given as

(z, t) ◦ (z′, t′) = (z + z′, t + t′ + 2
n∑

j=1

Im(zj z̄
′
j)). (2)

With the notation zj = xj + iyj, the horizontal space V1 is spanned by the basis

Xj =
∂

∂xj

+ 2yj
∂

∂t
(3)

Yj =
∂

∂yj

− 2xj
∂

∂t
. (4)

The one dimensional center V2 is spanned by the vector field T = ∂/∂t with commuta-
tor relations [Xj, Yj] = −4T . All other brackets of {X1, Y1, ..., Xn, Yn} are zero. The
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homogeneous dimension of Hn is Q = 2n + 2. A homogeneous norm is given by

|(z, t)| = (|z|4 + t2)1/4. (5)

Example 1.4 A Generalized Heisenberg group, or H-type group, is a Carnot group with
a two-step Lie algebra G = V1⊕V2 and an inner product 〈, 〉 in G such that the linear map
J : V2 → EndV1 defined by the condition

〈Jz(u), v〉 = 〈z, [u, v]〉, (6)

satifies

J2
z = −〈z, z〉Id (7)

for all z ∈ V2. For each x ∈ G, let v(x) ∈ V1 and z(x) ∈ V2 be such that x = exp(v(x) +
z(x)). Then

|x| = (|v(x)|4 + 16|z(x)|2)1/4 (8)

defines a homogeneous norm in G. For each m ∈ N there exist infinitely many generalized
Heisenberg groups with dimV2 = m. These include the nilpotent groups in the Iwasawa
decomposition of the simple rank-one groups SO(n, 1), SU(n, 1), Sp(n, 1) and F−20

4 .

See [10] for material about these groups.

2. Subelliptic equations

We use the fact that the horizontal components of quasiregular mappings on Carnot
groups satisfy a certain nonlinear subelliptic equation.

Definition 2.1 An, a.e. x ∈ G continuous map Ax : Λ1HTx → Λ1HTx is a Carathéodory
function if

x 7→ Ax(ω(x)) (9)

is a measureable section of the horizontal cotangent bundle HT ∗ = Λ1HT whenever ω
is and there exists 1 < α < ∞ and ν > 0 such that

〈Ax(ξ), ξ〉 ≥ ν−1〈ξ, ξ〉α/2 (10)

and

|Ax(ξ)| ≤ ν|ξ|α−1 (11)

for a.e. x ∈ G and all ξ ∈ Λ1HTx.
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Given such a map Ax ,we say that a function u ∈ HW 1,α
loc (U) is a solution to

δAx(d0u) = 0 (12)

in U if

∫
U

〈Ax(d0u), d0η〉 = 0 (13)

for all η ∈ C∞
0 (U).

For example when Ax(ξ) = |ξ|p−2ξ , (12) is the sub-p-harmonic equation

δ(|d0|p−2d0u) = 0 (14)

which is the sublaplacian
∑m

i=1 X2
i u = 0 when p = 2. A solution, u, to (2.1) enjoys the

following three properties. The first in a version of a Poincaré-Sobolev inequality found
in [12] (see also [13]): For 0 < p < ∞ there exists a constant C1 such that(

1

|Br|

∫
Br

|u− uBr |p
)1/p

≤ C1r

(
1

|Br|

∫
Br

|d0u|p
)1/p

. (15)

Second is a Caccioppoli estimate (see [5]) : There exists a constant C2 such that, for the
exponent α in Definition 2.1,(

1

|Br|

∫
Br

|d0u|α
)1/α

≤ C2

r

(
1

|Br|

∫
2Br

|u|α
)1/α

. (16)

Third are the so-called weak reverse Hölder inequalities (see [5] and [4]) : For 0 < s, t < ∞,
there exists a constant C3 such that(

1

|Br|

∫
Br

|u|s
)1/s

≤ C3

(
1

|Br|

∫
2Br

|u|t
)1/t

. (17)

3. Quasiregular mappings

Definition 3.1 Suppose that f : U → G is in W 1,1
loc (U) ( so that the formal derivative

f∗ : Tx → Tf(x) exists a.e.). We say that f is a (generalized) contact map if

f∗V1 ⊂ V1 (18)

a.e. (So for each X ∈ HTx, f∗(x)X ∈ HTf(x) a.e.)

Writing τ = τ1 ∧ · · · ∧ τN−m and f ∗τ for the pullback of the form τ under f we see that
Definition 3.2 is equivalent to the existence of a function λ in U such that

f ∗τ = λτ. (19)
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This coincides with other definitions of a contact map on a contact manifold. In the basis
X1, ..., Xm, T1, ..., TN−m the matrix of f∗ has the form(

Hf∗ ?
0 A

)
(20)

where Hf∗ is the map f∗|HTx → HTf(x) with (f∗)ij = Xjfi and detA = λ with λ as
above. We use the following notation:

|Hf∗(x)| = max
ξ∈HT∗,|ξ|=1

|Hf∗(x)ξ| (21)

and

`[Hf∗(x)] = min
ξ∈HT∗,|ξ|=1

|Hf∗(x)ξ| (22)

Definition 3.2 A quasiregular map is a continuous (generalized) contact map f : U → G
in W 1,N

loc (U) which satisfies:

|Hf∗(x)|Q ≤ K det f∗(x) (23)

and

det f∗(x) ≤ K`[Hf∗(x)]Q (24)

for some K < ∞ and a.a. x ∈ U .

For some constructions of quasiregular mappings and rigidity results in Carnot groups,
see [11] and [5].

We Assume throughout this section that f : U → G is K-quasiregular. Notice that

|d0fi(x)| ≤ K2/Q|d0fj(x)| (25)

for a.e. x ∈ U and i, j = 1, ...,m
Next define Âx : HTx → HTx by

Âx(ξ) = 〈Gx(ξ), ξ〉(Q−2)Gx(ξ), (26)

where

Gx(ξ) = [det f∗(x)]2/Q[Hf∗(x)]−1[Hf∗(x)]−1T

ξ, (27)

whenever det f∗(x) 6= 0 (so that Hf∗(x) is invertible), and Gx(ξ) = ξ otherwise. From
this we define Ax : Λ1HTx → Λ1HTx by Ax = γ1 ◦ Âx ◦ γ1 where γ1 is the linear map
which sends basis elements of HTx to those of Λ1HTx and γ1 = γ−1

1 . Notice that since f
is K-quasiregular, Ax is a Carathéodory function with p = Q and ν = K.

With Ax defined in this way we have the following result which appears as Corollary
3.20 in [5].

Theorem 3.3 The first m components of a quasiregular mapping f are solutions to

δAx(d0u) = 0 (28)

in U.
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4. The Hardy-Littlewood inequality and John domains

Definition 4.1 A bounded proper domain Ω ⊂ G is a δ-John domain, δ > 0, if there
exists a distinguished point x0 ∈ Ω such that each x ∈ Ω can be joined with x0 by a
curve γ = γ : [0, l] → Ω parametrized by arclength such that γ(0) = x, γ(l) = x0 and
dc(γ(t), Ωc) ≥ δt.

We define Muckenhoupt weights. See [14].

Definition 4.2 We write w ∈ Aq
M(Ω), 1 < q < ∞, 1 ≤ M < ∞, when w ≥ 0 a.e. and

1

|B|

∫
B

w ≤ M

(
1

|B|

∫
B

1

w1−q

)1−q

(29)

for all balls B ⊂ Ω.

Muckenhoupt weights satisfy a reverse Holder inequality,∫
B

wβ ≤ C|B|(1−β)/β

∫
B

w (30)

for all balls B ⊂ Ω and some β > 1.
We now state the main result of this paper.

Theorem 4.3 Suppose that f = (f1, ..., fN) is K-quasiregular in a δ-John domain with
center z0, Ω ⊂ G, w ∈ Aq

M(Ω) and p > 0. There exists a constant C, independent of f ,
such that∫

Ω

|fi − fi(z0)|pw ≤ C

∫
Ω

|fj|pw (31)

for all i, j = 1, ...,m. Here C = C(δ, p, N,Q, M, K).

John domains in homogeneous spaces satisfy a Boman chain condition, see [15], which
allow the patching together of weak local Lp- estimates into global estimates. A proof
of the following result appears in [4] in the Euclidean case and the proof extends here
verbatim.

Theorem 4.4 Let 0 < p < ∞, σ > 1, w ∈ Aq
M(Ω) and let u and v be measurable functions

defined in a δ-John domain Ω. Suppose there is a constant A such that

inf
c∈R

∫
B

|u− c|pw ≤ A

∫
σB

|v|pw, (32)

for all balls σB ⊂ Ω. Then there is a constant B, independent of u and v, such that

inf
c∈R

∫
Ω

|u− c|pw ≤ B

∫
Ω

|v|pw. (33)
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Applying Theorem 4.4, we obtain the main result by proving the local result. The proof
is similar to that in [17]. We first prove an unweighted inequality. Combining (15),(25)
and (16),∫

2B

|fi − (fi)2B|α (34)

≤ C1r

∫
2B

|d0fi|α (35)

≤ C4r

∫
2B

|d0fj|α (36)

≤ C5

∫
4B

|fj|α. (37)

Next we use the Holder inequalities (17) to get the local weighted result (32) with σ = 8
as follows. (∫

B

|fi − (fi)2B|pw
)1/p

(38)

≤
(∫

B

wβ

)1/pβ (∫
B

|fi − (fi)2B|pβ/(β−1)

)(β−1)/pβ

(39)

≤ C6

(∫
B

w

)1/p

|B|−1/α

(∫
2B

|fi − (fi)2B|α
)1/α

(40)

≤ C7

(∫
B

w

)1/p

|B|−1/α

(∫
4B

|fj|α
)1/α

(41)

≤ C8

(∫
B

w

)1/p

|B|q/p

(∫
8B

|fj|p/q

)q/p

(42)

≤ C8

((∫
8B

w

)
|B|−q

(∫
8B

w1/(1−q)

)−1
)1/p(∫

8B

|fj|pw
)1/p

(43)

≤ C9

(∫
8B

|fj|pw
)1/p

. (44)

Because balls B ⊂ G are John domains, we obtain the following corollary. We use the
notations for the Hardy-Littlewood sharp maximal function and the sharp BMO norm in
an open set U :

M ]
p(u, µ)(x) = sup

B⊂U
x∈B

µ(B)−1/p inf
a∈R

[

∫
B

|u− a|pdµ]1/p, (45)

and

‖u‖BMO
U,µ = sup

x∈U
M ]

1(u, µ)(x). (46)

Here dµ = wdx for w ∈ Aq
M(U).
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Corollary 4.5 Suppose that f : U → G is a qusiregular mapping. Then

M ]
p(fi, µ)(x) ≤ CM ]

p(fj, µ)(x) (47)

for x ∈ U and

‖fi‖BMO
U,µ ≤ C‖fj‖BMO

U,µ (48)

for i, j = 1, ...,m where C is a constant independent of f .
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