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Abstract. Necessary and sufficient conditions are given for when a sequence of finite
dimensional subspaces (Xn) can be blocked to be a skipped blocking decompositon (SBD).
These are very similar to known results about blocking of biorthogonal sequences. A sep-
arable space X has PCP, if and only if, every norming decomposition (Xn) can be blocked
to be a boundedly complete SBD. Every boundedly complete SBD is a JT-decomposition.

1. Introduction

Skipped blocking decompositions (SBD), collections of finite dimension subspaces (Xn) of
a Banach space X with additional properties (Definition 2.1), were introduced by Bourgain
and Rosenthal [3] to explore RNP, the Radon-Nikodym Property, and the weaker PCP, the
point of continuity property. The standard Mazur product construction (Proposition 2.5),
basically a global gliding hump, shows that every separable Banach space X has an SBD.
This construction has a great deal of flexibility. Properties of the underlining space X can
often be transfered to the constructed sequence. For example, Bourgain and Rosenthal [3]
showed the existence of a boundedly complete SBD (Definition 5.1) implied PCP. Ghoussoub
and Maurey [7] using results form Edgar and Wheeler [5] showed a converse, separable
spaces with PCP have a boundedly complete SBD. Other examples are in [14], [6], [1] and
[2]. Having a boundedly complete SBD implies the existence of decompositions with stronger
properties. Ghoussoub, Maurey and Schachermayer [9] showed such spaces must have a JT-
decompostion (Definition 6.1). Like many techniques, SBD existed in the literature before
the technique was named. For example, the proof that each separable X has a subspace Y
so that both Y and X/Y have FDD [12] (see [13] page 48), is essentially blocking a norming
biorthogonal sequence into a SBD.

Our unifying theme is the question: “can one strengthen the existence of a (nice) de-
composition to the universal all decompositions (are nice)?” There is a trivial obstruction,
one might need to block the decomposition, the sequence (Xn), in order to make it skipped
blocking or make the the decompositon boundedly complete. We introduce the notion of
DDD (Definition 2.1) which are the sequences (Xn) that might be blockable to be a SBD.
The DDD property is studied without a name in [3] and called a decomposition with no
adjectives in [14]. Also DDD generalize the well known notation of a biorthogonal sequence.
In fact, DDD are nothing more than blockings of biorthogonal sequences. Our general ques-
tion becomes: “when can every DDD (with perhaps additional properties) be blocked to be
a SBD (perhaps with additional properties)?”

The ordering of the sequence (Xn) doesn’t matter in the definition of DDD. Thus the
collection of DDD include permutations of conditional basic sequences, which can be very
ill behaved. Theorem 3.9 states that DDD can be blocked to be a SBD exactly when the
predecomposition space Y ⊂ X∗ is c-norming for some c. One can renorm X to improve
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to make the c-norming constant 1 (Proprosition 3.13). The space Y is independent of the
ordering on (Xn). If (Xn) is DDD, then the dual system (X∗

n) can be blocked to be a SBD
(Proposition 3.2).

A number of examples are given that illustrate these results. Example 2.3 shows not
every DDD can be blocked to be a SBD. Example 3.4 shows that the dual sequence (X∗

n)
of a DDD need not be a SBD. Example 4.2 is a permutation of a basis for James space
J and provides a SBD that has badly behaved partial sum projections no matter how the
decomposition is blocked. Example 4.4 shows the subspace Xn can be far from the the
quotient X/[Xm]m6=n.

We have two complete solutions for the boundedly complete SBD case, or equivalently for
separable spaces X with PCP. The point of continuity property, PCP, states every bounded
set has a point of weak to norm continuity. Theorem 5.2 shows every norming DDD in a
space with PCP can be blocked to be a boundedly complete SBD.

A JT-decomposition (Definition 6.1) is a boundedly complete skipped decomposition with
additional properties like those of the predual of JT, James tree space. The fact that PCP
implies the existence of a JT-decomposition was proved in [9] using results from sequence
of previous papers [7], [8]. Their construction of JT-decomposition added more conditions
to the Mazur product construction from the earlier boundedly complete SBD construction.
We strengthen this result by showing that each boundedly complete SBD is already a c-
norming JT-decomposition (Theorem 6.2) for some c < ∞. Theorem 6.3 shows if X has
the PCP then every DDD with a c-norming predecompostion spae can be blocked to be
a c-norming JT-decomposition and the space X can renormed so that the blocking is a
1-norming JT-decomposition.

The name SBD and its adjectives are somewhat unwieldy. The name boundedly complete
SBD applies property “boundedly complete” only to skipped subsequences and not to the
global decomposition. The term DDD doesn’t demystify a defining-phrase or stand for
anything, but we wanted to reserve “decomposition” with no adjective for informal use.

The author would like to acknowledge the help of a referee of an earler version of the paper.
For both some connections with biorthogonal sequences and for the examples about total
vs norming vs c-norming. These appear at the end of Section 3, starting with Proposition
3.10.

2. Notation, Preliminaries, DDD and SBD

We start the notation about DDD and skipped-blocking decompositions, SBD in this
section. Besides notation, we explored the theory with simple examples and observations
some of which are known. Also in this section is a well-known preliminary proposition.
Every paper on skipped-blocking decompositions seems to have a proof based on the Mazur
product construction and Proposition 2.5 is ours.

Our notation generally follows [13] or [10], the first chapter of [11]. In particular, [Xn]kn=1

is the closed linear span of ∪k
n=1Xn and [Xn] = [Xn]∞n=1. If m ≤ k are integers, we will write

X[m,k] for [Xn]kn=m and X[m,∞) for [Xn]∞n=m. If (m(i)) is a strictly increasing integer
sequence with m(0) = 0, then we will say (X[m(i− 1) + 1,m(i)]) is a blocking of (Xn). We
use the dual pair notation 〈x, y〉 for y(x) or x(y).

Definition 2.1. We will say that (Xn), a sequence of finite dimensional subspaces, is a
skipped-blocking decomposition (SBD) for a Banach space X provided (1)–(3) hold. If
only (1) and (2) hold we will say (Xn) is a DDD.
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(1) X = [Xn]. Sometimes this property is called total.
(2) For each n, Xn ∩ [Xm]m6=n = {0}. Sometimes this property is called minimal.
(3) For sequences (n(i)) and (m(i)) with n(i) < m(i) + 1 < n(i + 1) (X[n(i),m(i)])∞i=1 ,

is FDD for [X[n(i),m(i)]].
Given an DDD (Xn) we define the projections pn, Pn and Rn as follows:
(4) The projection pn : X → X with kernel [Xm]m6=n and range Xn.
(5) The projection Pn : X → X given by Pn =

∑n
i=1 pi.

(6) The projection Rn : [Xm]m6=n → [Xm]m6=n which is the restriction of Pn−1 or Pn.
The more general skipped projections Rm,k for m ≤ k, which is the restriction of
Pm on the space X[1,m − 1] ⊕ X[k + 1,∞). We have ‖Rn,j‖ ≤ ‖Rm,k‖ whenever
n ≤ m ≤ k ≤ j.

(7) The constants K = sup ‖Rn‖, K∞ = lim sup ‖Rn‖, and K∞,∞ = limm limk ‖Rm,k‖
Equation (3) is equivalent to K < ∞. Equation (2) implies that the projections in
(4)–(6) are bounded. The monotone estimate in (6) implies that the limit K∞,∞
exists.

Definition 2.2. We will call the constant K in (7), the SBD-constant, and the constant
K∞, the asymptotic SBD-constant. Sometimes the constants of a SBD can be improved by
blocking, the constant K∞,∞ is the limiting asymptotic constant, a DDD can be blocked to
be a SBD, if and only if, K∞,∞ < ∞.
Remark. The sequence (Xn) is an FDD exactly if the projections (Pn) are uniformly bounded
which would imply that the projections (pn) are also uniformly bounded. Conversely, since
Pn = Rn+1(I − pn+1), if (pn) are uniformly bounded and (Xn) is a SBD, then (Xn) is an
FDD. On the other hand, the principal of uniform boundedness says if ‖Pn‖ is unbounded,
then there is an x ∈ X with ‖Pnx‖ unbounded. We will see later (Example 4.2), there are
SBD (Xn) and x where no subsequence of (Pnx) is bounded. The projections (Pnx) can be
very far from x.
Example 2.3. A DDD of one-dimensional subspaces in Hilbert space that is not a SBD,
nor can it be blocked to be a SBD.

Construction. The sequence (Xn) where Xn = [e1 +en+1/n] in Hilbert space with orthonor-
mal basis (en) satisfies both (1) and (2) but not (3), so it is a DDD but not a SBD. Since
e1 + en+1/n → e1, the sets [Xm]m6=n = [em]m6=n+1 and so the space X∗

n = [en+1] (see (9)
below). No blocking of (Xn) is a SBD, but (X∗

n) is a FDD for its closed linear span. Since
∩nX[n,∞) = [e1] 6= {0}, the span of (X∗

n) is not all of the dual. Thus the DDD is not sepa-
rating (Definition 3.8). The projections pn(x) = e∗n+1(x)(ne1 + en+1) and hence pn(e1) = 0
for all n. On the other hand x =

∑
en+1/n has pn(x) = e1 + en+1/n and ‖Pnx‖ > n.

Having ∩nX[n,∞) = [e1] 6= {0} is the only way a DDD can fail to be a SBD in Hilbert
space. �

Example 2.4. A SBD of one-dimensional subspaces in Hilbert space that is not a FDD.

Construction. Let (en) be an orthonormal basis, let Xn be the one dimensional [en] when
n is odd and the one dimensional [en−1 + en/n] when n is even. Eventually, ‖p2n‖ = 2n,
and ‖Rn‖ = 1. Thus (Xn) is not a FDD but is a SBD with constant one. This also shows
even when the Xn are one dimensional in a SBD there need not be a bound on ‖pn‖. This
is, of course, the standard example that can be found in many places. Clearly the blocking
given by m(i) = 2i improves this SBD to a FDD. �
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Proposition 2.5. If X is separable, then X has a SBD (Xn) whose asymptotic constant is
one.

Outline of Proof. Let εn > 0 so that
∏

(1+εn) < ∞. Let (xn) be dense in X. Let X1 = [x1]
and let W0 be a finite set of norm one elements of X∗ so that X = X1 ⊕ W⊥

0 Inductively
pick (Xn) ⊂ X and finite subsets Wn of the unit sphere of X∗ so that

(i) Wn ⊃ Wn−1.
(ii) For x ∈ X[1, n] ‖x‖ ≤ (1 + εn) sup{|〈x, y〉| : y ∈ Wn}.
(iii) If xn+1 = u + v with u ∈ X[1, n] v ∈ W⊥

n−1 and v 6= 0, then there is y ∈ Wn with
〈v, y〉 6= 0.

(iv) Xn+1 ⊂ W⊥
n−1 so that both W⊥

n−1 = Xn+1 ⊕ W⊥
n and v ∈ Xn+1. We have X =

X[1, n + 1]⊕W⊥
n .

The proof is now clear. But to belabor the point, note (ii) implies ‖Rn+1‖ ≤ 1 + εn and
(iii) implies X = [Xn]. �

Example 2.6. A SBD which cannot be blocked to be a FDD.

Construction. Let X be a Banach space without the Approximation Property, so in partic-
ular it cannot have a FDD. Since X has a SBD by Proposition 2.5, this SBD of X cannot
be blocked to be a FDD. �

Proposition 2.7. For any basis (ei) of X and and permutation π the sequence of one
dimensional spaces defined by Xn = [eπ(j)]nj=n is a DDD. Furthermore, (Xn) is SBD, if and
only if, (eπ(n)) is a basis.

Proof. The definition of DDD is invariant under permutations. Since (ei) is a basis, xn =
e∗π(n)(x)eπ(n) = pn(x) is uniformly bounded in norm. The remark before Example 2.3
shows if (Xn) is a SBD then (Xn) is an FDD, and hence (eπ(n)) is a basis. The converse is
formal. �

3. Duality and the Predecomposition Space

Continuing the list of notation, given an DDD (Xn) we define the quotients Zn and Zm,k

with quotient maps qn, and qm,k and subspaces X∗
n and Y (the predecomposition space) in

the dual, X∗. The quotient maps yield good estimates, unlike the projects (Pn) or (pn) as
Example 4.2 and 4.4 show.

(8) The quotient map qn : X → Zn = X/[Xm]m6=n. And the more general quotients
qm,k : X → Zm,k = X/(X[1,m − 1]⊕X[k + 1,∞)). We have ‖qm,k(x)‖ ≥ ‖qn,j(x)‖
whenever m ≤ n ≤ j ≤ k.

(9) The subspaces X∗
n = [Xm]⊥m6=n ⊂ X∗. Clearly X∗

n is isometric to Z∗n via the injection
q∗n. Also X∗

n is the range of the projection p∗n. Finally, Z∗m,k = [X∗
n]m≤n≤k.

(10) X∗⊥
n = [Xm]m6=n, for each n.

(11) X∗
n ∩ [X∗

m]m6=n = {0}, for each n.
(12) p∗n is a projection on X∗ (and Y ) with range X∗

n and kernel X⊥
n ⊃ [X∗

m]m6=n.
Remark. Each DDD (Xn) is a blocking of a biorthogonal sequence (xi, x

∗
i ) obtained by

combining the biorthogonal sequences for the finite dimensional space pairs (Xn,X∗
n). The

converse is also clear, each grouping of a biorthogonal sequence yields a DDD.
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Definition 3.1. Given a DDD (Xn) let Yn = X∗
n and let Y = [Yn] = [X∗

n] ⊂ X∗. We will
say Y is the predecomposition space of (Xn). Clearly (Yn) is a DDD for Y by equation (11).
Note that (9) implies that any blocking of (Xn) has the same predecomposition space Y .
Proposition 3.2. Any DDD (Xn) can be blocked to (X[m(i−1)+1,m(i)]) so that resulting
dual DDD (Y [m(i− 1) + 1,m(i)]) is a SBD for the predecomposition space Y .

Proof. Suppose (Xn) is a DDD. Let ε > 0 be given with ε < 1. Once m(k) is selected,
consider the quotient Z = Z1,m(k) and subspace of Y given by W = q∗1,m(k)(Z

∗). We can
find a finite subsets {zi}N

1 and {wi}N
1 of the unit sphere of Z and W so that 〈zi, wi〉 = 1

and {wi}N
1 is an ε-net for the sphere of W . Since span∪Xn is dense we can find xi so that

1 ≤ ‖xi‖ < 1+ε and q1,m(k)(xi) = zi. Finally select m(k+1) so that {xi}N
1 ⊂ X[1,m(k+1)].

So if y ∈ [X∗
n]n>m(k+1) and w is in the sphere of W , then by the construction above we

can find wi with ‖w−wi‖ < ε and clearly, y(xi) = 0. Hence ‖w + y‖ ≥ ‖wi + y‖−‖w−wi‖
and ‖wi+y‖ ≥ |(wi+y)(xi)|/‖xi‖ ≥ 1/(1+ε). So we have ‖w+y‖ ≥ (1−ε)(1+ε)−1‖w‖ and
the Rm(k)+1,m(k+1) projection onto [X∗

n]n≤m(k) with kernel [X∗
n]n>m(k+1) has norm bounded

by (1 + ε)/(1 − ε). �

Question 3.3. If (Xn) is a SBD, is the dual DDD (X∗
n) already a SBD?

Example 3.4. A DDD (Xn) for `2, where (X∗
n) is not a SBD for Y = [X∗

n] = `2.

Construction. Let (ei) be a conditional basis for `2 and let π be a permutation so that
(eπ(n)) is not a basis. Thus the coefficient functionals (e∗π(n)) are also not a basis. Letting
Xn = [eπ(j)]nj=n, Proposition 2.7 says (X∗

n) is not a SBD. �

Corollary 3.5. For any basis (en) and permutation π, the sequence (eπ(n)) can be blocked
to be a SBD.

Proof. Apply Proposition 3.2 to the coefficient functions (e∗π(n)). �

Lemma 3.6. Suppose (Xn) is a DDD, then the following estimates hold:
(a) If w ∈ X[1, k − 1] and j ≥ k, then ‖w‖ ≤ ‖Rk,j‖‖q1,j(w)‖ and in particular,

‖w‖ ≤ ‖Rk‖‖q1,k(w)‖.
(b) If x ∈ X, and δk = dist(x,X[1, k − 1]) then ‖x‖ ≤ ‖Rk‖‖Pkx‖+ δk(1 + ‖Rk‖).
(c) If (Xn) is a SBD, then for all x ∈ X,

‖x‖ ≤ K∞ lim sup ‖Pnx‖ and ‖x‖ ≤ K lim inf ‖Pnx‖
.

(d) If w ∈ X[1, k − 1], and j ≥ k, then there is yj ∈ [X∗
i ]j1 with ‖yj‖ = 1 and ‖w‖ ≤

‖Rk,j‖|〈w, yj〉|.
(e) The predecomposition space Y separates points in X, if and only if, ∩nX[n,∞) =

{0}.
Proof. Parts of this proof are essentially stolen from the proofs of Lemma I.15 and Lemma
I.12 of [9].

Let w ∈ X[1, k−1] and let z ∈ X[j+1,∞), and note ‖w‖ = ‖Rk,j(w+z)‖ ≤ ‖Rk,j‖‖w+z‖.
Hence ‖w‖ ≤ ‖Rk,j‖‖q1,j(w)‖ which proves (a).

Let x ∈ X, ε > 0 and δk = dist(x,X[1, k−1]). Find w ∈ X[1, k−1] with ‖w−x‖ < δk +ε.
We have w = Pkw, q1,k(x) = q1,k(Pkx) and hence ‖q1,k(w) − q1,k(Pkx)‖ = ‖q1,k(w − x)‖ ≤
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δk + ε. Putting the pieces together,

‖q1,k(Pkx)‖+ δk + ε ≥ ‖q1,k(w)‖ ≥ ‖w‖/‖Rk‖
‖Rk‖‖Pkx‖+ ‖Rk‖(δk + ε) ≥ ‖w‖ ≥ ‖x‖ − δk − ε

Which completes (b).
If (Xn) is not a SBD, then the inequalities in (c) are ambiguous, as Example 2.3 shows

that K = K∞ = ∞ and Pkx = 0 for some x and all k. The usual convention 0 · ∞ = 0
gives the wrong result for general DDD. Since δk is monotonically decreasing to zero we can
derive the first part of (c) from (b) by picking k with ‖Rk‖ ≈ lim sup ‖Rk‖. We derive the
second part of (c) from (b) by picking k with ‖Pkx‖ ≈ lim inf ‖Pkx‖.

For (d) one uses (a) and the fact Z∗1,j = [X∗
i ]j1 isometrically. So there is a yj ∈ Z∗1,j with

‖yj‖ = 1 and 〈w, yj〉 = ‖q1,j(w)‖.
The statement (e) is almost immediate. If x 6∈ X[n+1,∞), then q1,n(x) 6= 0. So there is a

x∗ ∈ Z∗1,n ⊂ Y with 〈x, x∗〉 6= 0. Thus Y separates the points of X when ∩nX[n,∞) = {0}.
Conversely, if there is a non-zero x ∈ ∩nX[n,∞) then 〈x, x∗〉 = 0 for x∗ ∈ X∗

m and any m.
So x is zero on a dense subset of Y . Thus Y doesn’t separate the point x from 0. �

Definition 3.7. Let c < ∞, space Y ⊂ X∗ is said to c-norms X, if all x ∈ X,

c−1‖x‖ ≤ ‖x‖Y = sup{|〈x, y〉| : y ∈ Y, ‖y‖ ≤ 1} ≤ ‖x‖
Definition 3.8. A DDD is said to be separating, if the predecompostion space Y separates
the points of X or equivalently if ∩X[n,∞) = {0}.

A DDD is said to be norming, if the predecomposition space Y is c-norming for some
c < ∞.
Theorem 3.9. If (Xn) is a DDD then the predecomposition space Y c-norms X for c =
K∞,∞. Conversely if for some c < ∞, Y c-norms X then the DDD can be blocked to be a
SBD with asymptotic constant ≤ c.

Proof. Let ε > 0 be given. If K∞,∞ = ∞ there is nothing to prove. Otherwise, by blocking
(Xn) by m(i) we can assume ‖Rm(i−1)+1,m(i)‖ < K∞,∞+ε. Lemma 3.6d shows Y K∞,∞+ε-
norms X. Since Y is independent of the blocking, and ε is arbitrary, Y c-norms X.

To show the converse, we need a blocking (m(i)) so that the projections Rm(i−1)+1,m(i)

are uniformly bounded. Let m(0) = 0, m(1) = 1 and suppose m(k) has been selected. Let
ε > 0 be given. We can find unit vectors wj which are an ε-net in the sphere of X[1,m(k)].
We can find unit vectors yj in Y so that |〈wj , yj〉| > c−1 − ε. Using the denseness of
span∪X∗

n in Y , select vj ∈ span∪X∗
n so that ‖vj − yj‖ < ε. Pick m(k + 1) so that each

vj ∈ [X∗
n]m(k+1)

1 . Let z ∈ X[1,m(k)] have norm one, select j so that ‖z−wj‖ < ε. We have

〈z, vj〉 = 〈wj, yj〉+ 〈z − wj , yj〉+ 〈z, vj − yj〉
|〈z, vj〉| > c−1 − 3ε

And since 〈u, vj〉 = 0 if u ∈ X[m(k + 1) + 1,∞), ‖z + u‖ > (c−1 − 3ε)‖z‖ and so
‖Rm(i−1)+1,m(i)‖ < c/(1− 3εc). �

Proposition 3.10. If X is separable and Y a separating subspace in X∗, then there is a
DDD (Xn) with predecomposition space Y .

Proof. The usual construction of a biorthogonal sequence (xn, x∗n) ([13] page 43), is flexible
enough to produce sequences so that X = [xn] and Y = [x∗n]. Then letting Xn = [xi]i=n,
we have a DDD of one dimensional spaces with predecomposion space Y . �
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Example 3.11. There is a separating DDD that can’t be blocked to be a SBD.

Construction. Each non-quasi-reflexive space X has a separable subspace Y of the dual
which is separating but non-norming [10]. �

Example 3.12. There is a c-norming predecomposition space Y that isn’t one 1-norming.

Construction. Let the norm one φ ∈ X∗∗ satisfy 0 < dist(φ,BX) < 1 where BX is is the unit
ball of X as a subspace of X∗∗. Let Y = ker φ ⊂ X∗. If x has norm one and ‖x−φ‖ = γ < 1,
for norm one x∗ ∈ Y |x∗(x)| = |x∗(x− φ)| ≤ γ < 1, so at best Y can only γ−1-norm X. �

Proposition 3.13. If DDD (Xn) can be blocked to be a SBD for X, then in the equivalent
norm ‖ · ‖Y , (Xn) is still a DDD with the same predecompostion space Y but now it is
1-norming and (Xn) can be blocked to have asymptotic constant 1.

Proof. The condition on (Xn) implies Y c-norms X for some c < ∞. Thus ‖ · ‖Y is an
equivalent norm on X. Clearly being a DDD or a SBD is invariant under isomorphic norms.
Since

‖x‖Y = lim
k
‖q1,k(x)‖ = lim

k
dist(x,X[k + 1,∞))

The quotient spaces Z1,k obtained for the original norm and the new ‖ · ‖Y are isometric. It
follows that the predecomposition spaces are identical and the norms are isometric. Clearly
Y 1-norms (X, ‖ · ‖Y ). The result now follows from Theorem 3.9. �

4. Structure of SBD

Basically this section shows the relationship between a SBD (Xn) and X is not very
strong in general. The quotient spaces (Zn) might have more importance.
Proposition 4.1. If (Xn) is a DDD for X and x ∈ X, then there is a subsequence (m(i))
and wi ∈ X[m(i− 1) + 1,m(i)] so that Pm(i)x + wi+1 → x.

Proof. Let x ∈ X be given and suppose (Xn) is DDD and m(k) has been found. Let
M = ‖Pm(k)‖. We can find w ∈ span∪Xn so that ‖x − w‖ < 2−k/M . We have ‖Pm(k)x−
Pm(k)w‖ < 2−k and so we can let wk+1 = w − Pm(k)w and

‖x− (Pm(k)x + wk+1)‖ ≤ ‖x− w‖+ ‖Pm(k)w − Pm(k)x‖ < 2 · 2−k.

Finally we select m(k + 1) large enough so that wk+1 ∈ X[m(k) + 1,m(k + 1)]. �

Example 4.2 shows that (‖Pm(i)x‖) and hence (‖wi‖) can be unbounded even when the
DDD is a SBD.
Example 4.2. A SBD of James space J and a x so that no subsequence of (Pnx) is bounded.

Construction. James space J , can be written as the set of null sequences (an) with finite
norm given by ‖(an)‖2 = sup

∑ |an(i+1)−an(i)|2, over all increasing finite integer sequences
(n(i)). The usual unit basis (en) is a shrinking conditional basis which is not boundedly
complete. Let (fn) be the coefficient functionals. Let wk =

∑{en : 2k−1 < n ≤ 2k} and let
x = e1 +

∑
k>0 wk/k. Eventually, ‖x‖ = 1.

Let π be the permutation that reorders the integers in alternating blocks of evens and
odds in the order:

1, 2, B2, B3, A2, B4, A3, . . . , Bk, Ak−1, Bk+1, Ak . . .
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Where Ak = {n odd : 2k−1 < n ≤ 2k} and Bk = {n even : 2k−1 < n ≤ 2k}. Let (Xn) be
any blocking of ([eπ(i)]) that is a SBD.

Let’s estimate the norm of zn =
∑n

1 fπ(i)(x)eπ(i) and assume π(n) is in Ak−1 or Bk+1. This
means fj(zn) = 0 for j ∈ Ak and fj(zn) = 1/k for j ∈ Bk. Thus ‖zn‖ ≥

√
2k/k2. It follows

that every subsequence of (Pnx) is unbounded no matter how ([eπ(i)]) was blocked. �

Lemma 4.3. If (Xn) is a DDD and x ∈ X, then lim qn(x) = 0

Proof. Let x ∈ X and ε > 0. Since span (Xn) is dense in X we can find N and y ∈ X[1,N ]
so that ‖x−y‖ < ε. Since x−(x−y) = y is in X[1,N ], qn(x) = qn(x−y) and ‖qn(x−y)‖ < ε
for n > N . �

Example 4.4. A SBD (Xn) and x ∈ X so that (pn(x)) has no bounded subsequence. In
particular, the isomorphisms qn|Xn : Xn → Zn have inverses with norms that blow up. Thus
Xn and Zn can be far apart.

Construction. This is a continuation of Example 4.2. For k > 3, let Xk = [ei : i ∈ Bk∪Ak−1].
The same x, has ‖pk(x)‖ ≥

√
2k/k2, while qk(x) = qk(pk(x)) → 0 by the lemma. �

5. Y ∗ and Boundedly Complete SBD

Definition 5.1. If xn ∈ Xn and (‖∑n
1 , xi‖) bounded implies that

∑
xi converges in norm,

then we call (Xn) is boundedly complete. A boundedly complete SBD is one where all the
skipped decompositions (X[n(i),m(i)]) in equation (3) are boundedly complete. (Note that
the whole sequence (Xn) is not required to be boundedly complete.)

The subspace map φ : Y → X∗ yields by duality a quotient map φ∗ : X∗∗ → Y ∗. The
restriction of φ∗ to the image of X in X∗∗ is the duality given by 〈y, φ∗x〉 = 〈x, y〉 for
y ∈ Y . The adjoint of quotient maps qm,k : X → Zm,k given by (7), factors through
Y as the subspace injections Z∗m,k ⊂ Y ⊂ X∗ so the double adjoint quotient map q∗∗m,k :
X∗∗ → Z∗∗m,k = Zm,k factors through Y ∗. Similarly we can identify Xn in Y ∗ (as a set with
perhaps a different norm) as the range of the projection p∗∗n = φ∗(Xn). Note that φ∗ is an
isomorphism exactly when Y is norming. Theorem 3.9 implies φ∗ is an isomorphism exactly
when the DDD (Xn) can be blocked to be a SBD. Note further that φ∗ is an isometry if X
has PCP or if (Xn) is shrinking.

On the unit ball, BY ∗ , of Y ∗ there are several differently defined weak topologies which
are the same. There is σ(X∗∗,X∗)-topology on BX∗∗ which the quotient map φ∗ induces on
BY ∗ which must be the σ(Y ∗, Y )- topology by compactness and weak-star continuity. Also
this is the same as the σ(Y ∗,∪Yn), also because of compactness. In this topology, BY ∗ is a
compact metric space.

For G a finite subset of ∪Yn and ε > 0, let

V (x,G, ε) = {y∗ ∈ Y ∗ : | < y∗ − x, g > | < ε,∀g ∈ G}.
it follows that the collection of V (x,G, ε) is a basis for the σ(Y ∗, Y )-topology on Y ∗. We use
the term elementary to describe σ(Y ∗, Y )-open sets of the form V (x,G, ε) with G ⊂ ∪Yn.
Theorem 5.2. If X has PCP then each norming DDD can be blocked to be a boundedly
complete SBD.

Proof. Let (Xn) be a DDD with a c-norming predecomposition space for X. Renorming via
Proposition 3.13 if necessary, we can assume the predecomposition space Y is 1-norming.
By blocking if necessary we can assume that (Xn) is already a SBD. We pick (m(k)) by
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induction so that m(0) = 0 and (X[m(k− 1)+1,m(k)]) is a boundedly complete SBD. Our
mode of proof is to make slight modifications to the existence proof in [7].

The PCP property (Lemma II.3 [7]) implies that Y ∗\X = ∪Kn for some increasing
sequence (Kn) of σ(Y ∗, Y )-compact sets. While the cited lemma constructs a particular Y ,
any 1-norming subspace of X∗ will satisfy the proof.

Suppose m(k) has been selected. For each x in the unit ball of X[1,m(k)] there is an
elementary σ(Y ∗,∪Yn)-open V with V ∩Kk+1 = ∅. By compactness we can assume only a
finite number of the open sets Vi = V (xi, Gi, εi) are needed. Let m(k + 1) be large enough
so that Y [1,m(k + 1)] contains all the vectors in Gi and also 1 + 1/k-norms X[1,m(k)].

The claim is that the SBD (X[m(k − 1) + 1,m(k)])k is also a boundedly complete SBD.
Suppose xk ∈ X[m(k−1),m(k)] with xk = 0 infinity often. Let n(i) be the sequence defined
so that xn(i) 6= 0 but xn(i)+1 = 0 and si =

∑n(i)
1 xk be so that ‖si‖ ≤ 1 uniformly. Let

s ∈ Y ∗ be the σ(Y ∗, Y )-limit of (si).
If s ∈ Y ∗\X then s ∈ Kj for j ≥ N for some N . Let k = n(i) > N so that xk+1 = 0.

Then there is V = V (w,G, ε) so that si ∈ V and V ∩Kk+1 = ∅. Since G ⊂ Y [1,m(k + 1)],
< xi, g >= 0 for i > k +1. Since xk+1 = 0 This means sj ∈ V for all j ≥ i, so s ∈ V ∩Kk+1

a contradiction.
Therefore s ∈ X, and we need to show si converges in norm to s. Let ε > 0 be given.

Find k = n(j) and w ∈ X[1,m(k)] so that ‖s − w‖ < ε and xk+1 = 0. For i ≥ j Find
y ∈ Y [1,m(n(j) + 1)] with ‖y‖ = 1 and y almost norms si − w. In particular 〈y, si − w〉 ≤
‖si − w‖(1 + 1/i)−1. Since 〈y, xn〉 = 0 for n > n(i), we have 〈y, s − w〉 = 〈y, si − w〉. Thus
‖si − w‖ ≤ ‖s− w‖(1 + 1/i) and ‖si − s‖ ≤ 3ε. Thus (si) norm converges to s. �

6. JT-decompositions

Definition 6.1. The boundedly complete SBD (Xn) is called a c-norming-JT-decomposition
for X provided

(A) For each x∗∗ ∈ X∗∗, with lim inf ‖q∗∗n (x∗∗)‖ = 0, there is x ∈ X with ‖x‖ ≤ c‖x∗∗‖
and for all n, p∗∗n (x∗∗) = pn(x).

Ghoussoub, Maurey and Schachermayer [9] have defined a JT-decomposition to be equiv-
alent to what we have called a 1-norming-JT-decomposition. Furthermore they show each
separable Banach space with PCP has a 1-norming-JT-decomposition. The following propo-
sition shows every boundedly complete SBD is a c-norming-JT-decomposition.
Proposition 6.2. If (Xn) is a boundedly complete SBD for X, then (Xn) is a K∞-norming-
JT-decomposition where K∞ is the asymptotic-SBD-constant of (Xn).

Proof. First note that if x ∈ X\{0}, then Lemma 3.6c implies for some n, pn(x) 6= 0. It
follows that if such an x ∈ X as in (A) exists, then it must be unique.

Let x∗∗ ∈ X∗∗ and let ε > 0 be given. Find m(1) so that ‖q∗∗m(1)(x
∗∗)‖ < ε/21 and let

w1 ∈ span∪Xn so that qm(1)(w1) = q∗∗m(1)(x
∗∗) and ‖w1‖ < ε/21. Suppose (wi)ki=1 and

(m(i))ki=1 have been chosen so that
(i) qm(i)(wi) = q∗∗m(i)(x

∗∗);
(ii) ‖qm(i)(wi)‖ < ε/2i;
(iii) qm(j)(wi) = 0 for j < i ≤ k;
(iv) wi−1 ∈ X[1,m(i) − 1] for i ≤ k; and
(v) wk ∈ span∪Xn.
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Let C = ‖I − pm(1)‖ ‖I − pm(2)‖ · · · ‖I − pm(k)‖ and pick m(k + 1) large so that wk ∈
X[1,m(k+1)−1] and ‖q∗∗m(k+1)(x

∗∗)‖ < ε/C2k+1. Find z ∈ span∪Xn so that ‖z‖ < ε/C2k+1

and qm(k+1)(z) = q∗∗m(k+1)(x
∗∗). Let wk+1 = (I − pm(1))(I − pm(2)) · · · (I − pm(k))z. Clearly

‖wk+1‖ < ε/2k+1 and qk(i)(wk+1) = 0 for i ≤ k. Therefore, writing w =
∑

wk,
(B) For each ε > 0 there is w ∈ X and (m(i)) so that ‖w‖ < ε and qm(i)(x∗∗ − w) = 0

for all i.
Now for each i, x∗∗ − w ∈ [Xn]⊥⊥n 6=m(i) = X∗⊥

m(i), hence

‖
∑m(i)−1

j=1
p∗∗j (x∗∗ − w)‖ = ‖Rm(i)(x

∗∗ − w)‖ ≤ ‖Rm(i)‖ ‖x∗∗ − w‖ ≤ K‖x∗∗ − w‖.
Since (X[m(i − 1) + 1,m(i)− 1])i is boundedly complete there is z ∈ X with

‖z‖ ≤ lim sup ‖Rm(i)‖ ‖x∗∗ − w‖ ≤ K∞‖x∗∗ − w‖
and pn(z) = p∗∗n (x∗∗ − w) for all n. Finally let x = z + w. We have pn(x) = p∗∗n (x∗∗) and

‖x‖ = ‖z + w‖ < ‖z‖+ ε ≤ K∞‖x∗∗ − w‖+ ε ≤ K∞‖x∗∗‖+ (K∞ + 1)ε.

The choice of x is independent of ε and so ‖x‖ ≤ K∞‖x∗∗‖. �

The following theorem summarizes our results for Banach space with PCP.
Theorem 6.3. The following are equivalent for a Banach space X:

(a) X is separable and has PCP.
(b) Each norming DDD (Xn) of X can be blocked to be a boundedly complete SBD.
(c) Each norming DDD (Xn) of X can be blocked to be a 1-norming JT-decomposition

in an equivalent norm.

Proof. (c)⇒(b) is formal. (b)⇒(a) is in Bourgain and Rosenthal [3]. (a)⇒(b) is Theorem
5.2. (b)⇒(c) uses Proprosition 3.13 to equivalently renorm X so that the predecomposition
space is 1-norming, Theorem 3.9 to block the DDD to a SBD with asymptotic constant 1
and finally Theorem 6.2 to show this blocking is a 1-norming JT-decompostion. �
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