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Abstract

We provide mathematical justification of the emergence of large
scale coherent structure in a two dimensional fluid system under small
scale random bombardments with small data assumptions. The analy-
sis shows that the large scale structure emerging out of the small scale
random forcing is not the one predicted by equilibrium statistical me-
chanics. But the error is very small which explains earlier successful
prediction of the large scale structure based on equilibrium statistical
mechanics.
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1 Introduction

One of the ubiquitous features of geophysical flows is the existence and per-
sistence of large scale coherent structures such as the meandering jet stream
in the atmosphere, gulf streams in the oceans. The most dramatic example is
perhaps the Great Red Spot on Jupiter which has persisted for hundreds of
years. We are naturally interested in understanding the mechanism behind
the emergence and persistence of such large scale coherent structures.

Due to the relative fast rotation for geophysical flows, two dimensional
models are suitable for the study of such large scale coherent structures. In
the inviscid, unforced environment, the emergence of large scale coherent
structures may be explained via equilibrium statistical mechanics, and their
persistence via nonlinear stability theory (see for instance Majda and Wang
2004b, Pedlosky 1978, Salmon 1998 among others). However, such equilib-
rium statistical theories are restricted to the idealized inviscid unforced case,
and the statistical predictions (mean field) are derived under certain ad hoc
maximum entropy principles. Realistic fluid problems are always under the
influence of various forcing and damping mechanism. The damping and forc-
ing becomes important in long time behavior (such as statistical behavior) in
particular. This leads to the question of whether various equilibrium statis-
tical theories are still applicable in a damped forced environment. Of course,
one shouldn’t expect to extend applicability of the equilibrium statistical
theory without restriction. But it would make sense to test if the statis-
tical theories can be applied to the weakly forced and damped case where
the situation is close to the case of inviscid/unforced environment, and the
flow is in a quasi-equilibrium state. This hypothesis has been tested through
comparison of numerical experiments and equilibrium statistical predictions
in a series of papers (Majda and Holen, 1997, Grote and Majda, 1997, 2000,
DiBattista et al, 2001).

As in many realistic situations, the external forcing is of relative small
scale and is usually un-resolved in the large scale geophysical model. For
instance, Jupiter’s weather layer (where we observe the Great Red Spot) is
under constant bombardment of very small scale thermal plumes, the earth’s
atmosphere is subject to intense small scale forcing due to convective storms,
and the oceans are subject to the influence of unresolved baroclinic instabil-
ity processes. These small scale bombardments appear to be random in
nature (related to turbulent behavior of the inner core of Jupiter and the
atmosphere) which suggests that the weak small scale forcing may be taken



as random. It then seems appropriate to include viscosity since small scale
structures are involved.

Next we consider an extremely simplified (idealized) situation of a two
dimensional fluid system in a square under the influence of random small
scale vortices mimicking the above situations, in the presence of a (small)
viscosity. More precisely, we consider the two dimensional Navier-Stokes
system in a square with free-slip boundary condition and impulse forcing of
small scale

%—FVLQ/}'V(] = vAq+ F, (1)
¢ = Ay (2)

equipped with initial condition
qli=0 = qo (3)

and no-penetration, free-slip boundary condition

1 =q=0,0on 0Q (4)

where the fluid occupies the square
Q@ =[0,7] x [0,7]. (5)

The random small scale forcing is given by

o0

F = 08(t—jAt) Aw, (T — 7)) (6)

j=1

where A is the amplitude of the small scale bombardment, Z; is the (random)
center, the small scale vortex w, takes the form,

- 1—3_3'27"22, 7?2 <r?
wr(x):{( ‘0|/ ) If}2;r2 (7)

and the center of the small vortices, Z;, satisfies a uniform distribution on
Qry = [ro, ™ — 10| X [ro, ™ — 7¢] Where ro(> r) is a fixed constant (see figure
1). Since w, is piecewise smooth with compact support and it is C*, we see
that

w, (& — 7;) € Hy(Q) (8)
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Figure 1: Left panel: the region of bombardment; Right panel: graph of a small
vortex w, centered at the center of the domain.

with norm independent of j. In fact, w,(Z — Z;) € W32(Q).

Here we used ¢ as the notation for vorticity instead of the standard w.
This is because w is a standard notation for point in probability space which
is needed in our stochastic treatment in section 3, and ¢ is the standard
notation for potential vorticity in GFD which reduces to the usual vorticity
in our classical fluid setting. Hopefully this will avoid some confusion instead
of creating one.

It is then easy to see that there are two different stages in the dynamics,
a stage of pure decay from (jA#)™ to ((j +1)At)™, governed by the decaying
Navier-Stokes system

0
a—z + Vi -Vg = vAg, 9)
g = Ay, (10)
and a stage of instantaneous forcing
¢((GA)T) = q((GAL) ") + Aw (& — F;). (11)

Numerical simulation in the regime of weak forcing and weak damping
(Grote and Majda 1997, 2000, and figures 2, 3 and 4 in the present paper)
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Figure 2: Upper left panel: correlation between the vorticity g (or w) and the
ground mode sinz siny; Upper right panel: evolution of the Dirichlet quotient of
the flow; Lower panel: evolution of the energy.

indicates the emergence and persistence of a large coherent structure. More
precisely, numerical experiments demonstrate that the flow field reaches a
quasi-equilibrium state in terms of energy (figure 2), enstrophy, circulation
etc, and the contour plot of the vorticity field looks like a large vortex plus
small (random) perturbation ( see figures 3 and 4). For the special case of
zero initial data, such a phenomenon is termed spin-up from rest (Grote and
Majda 1997, Majda and Wang 2004). This large coherent structure resembles
very much the ground state mode of the Laplace operator, i.e., sin(x)sin(y),
with a correlation between the vorticity field ¢ and sin(z)sin(y) above 0.97
(see figure 2).

The ground state mode is in fact the predicted most probable mean field
of equilibrium statistical mechanics theory utilizing energy and enstrophy
as conserved quantities (see for instance Majda and Wang 2004). Thus the



Figure 3: Contour plot of the vorticity field.

numerical evidence can be viewed as evidence toward applicability of equilib-
rium statistical mechanics in this damped driven case. If one applies a more
sophisticated equilibrium statistical theory such as the point vortex energy-
circulation theory which leads to a sinh-Poisson type mean field equation (see
for instance Grote and Majda 1997, Majda and Wang 2004 among others),
one gets better prediction which is not too much a surprise since we have
more parameters with the sinh-Poisson equation and we recover the linear
energy - enstrophy theory in the small amplitude limit. Moreover, Grote and
Majda (1997) devised a so-called crude closure algorithm where they devel-
oped a simple algorithm for the time evolution of the energy and circulation
without any detailed resolution of the Navier-Stokes equations. One then
recovers the flow field via equilibrium statistical theory with energy and cir-
culation as the conserved quantities (via solving the sinh-Poisson equation).
Surprisingly, the Grote-Majda crude closure worked extremely well.

The purpose of this paper is to provide a rigorous theoretical under-
pinning of such success. More precisely, we will show, under appropriate
assumptions on the small parameters (viscosity v, time step At, amplitude A,



Figure 4: Surface plot of the vorticity field.

radius of small forcing vortex r), that the long time dynamics is that of a large
coherent vortex ¢° which is close to (but not equal to) the ground state mode
sin(x)sin(y), plus small random fluctuations. Such a result indicates that
neither the energy-enstrophy statistical theory (which predicts the ground
state mode) nor the point vortex energy-circulation statistical theory ( which
predicts a sinh-Poisson type mean field equation not satisfied by ¢°) predicts
the exact statistical equilibrium. However the error is so small (less than 2%)
which establishes the practical applicability of these equilibrium statistical
mechanics theories to this damped driven situation.

The rest of the paper is organized as follows. In section 2 we consider a
naive deterministic approach and derive time uniform bounds for the Dirich-
let quotient and energy. The uniform bound on Dirichlet quotient indicates
control of the small scales. However the bound we derived here is not close
to the first eigenvalue of the Laplace operator which is the lowest value of the
Dirichlet quotient corresponding to the ground state mode. Such a discrep-
ancy is due to the deterministic approach where we must perform a worst
scenario analysis. In section 3 we take a stochastic approach to the problem.
We first observe that the random forcing can be decomposed into a mean field



and a small fluctuation field under a natural assumption on the amplitude A
in (6) which agrees with the existence of a quasi-equilibrium state. Utilizing
an infinite dimensional version of Donsker’s invariance principle, the external
forcing can then be modeled formally as the sum of a deterministic forcing
plus a small parameter times the time derivative of an infinite dimensional
Gaussian process. We then prove under appropriate assumptions, that the
mean field of the flow is captured by the Navier-Stokes equation forced by
the deterministic part of the forcing. The asymptotic behavior of the mean
field is derived under a further smallness assumption. The validation of the
mean field equation is justified in several ways including almost sure path-
wise convergence for finite time, expectation of the second moment of the
difference, random attractor and invariant measures. All these support the
applicability of appropriate equilibrium statistical theories. In the last sec-
tion, i.e. section 4, we provide concluding remarks and present some issues
that need to be resolved for physically more interesting cases.

2 Deterministic Estimates

Recall that numerical evidence suggest that the long time asymptotic of the
flow is that of a large coherent vortex close to the ground state mode sin x sin y
plus small random fluctuations (see figure 2 and 3). One of most important
and useful quantities in the analysis of fluid problems is the Dirichlet quotient

AR P
I EORZIE0 (12)

which is the quotient of the enstrophy (€ = $||A¢||?) over the energy (E =
sIlV4|?). Recall that the Dirichlet quotient controls the small scales in
the flow. Indeed, the Dirichlet quotient attains its minimum, the first eigen-
value of the Laplace operator allowed by the geometry, if and only if the
flow attains the maximum scale structure allowed by the geometry, i.e. the
ground states. This is exactly what our numerics indicated: Dirichlet quo-
tient close to the first eigenvalue (see figure 2). Moreover, flows with pre-
dominant small structures are characterized by large Dirichlet quotient, while
flows with predominant large structures are characterized by small Dirichlet
quotient. Therefore, an upper bound on the Dirichlet quotient for the flow
is a partial justification for the emergence of the large scale structure. Such
an upper bound on the Dirichlet quotient is the goal of this section.

A(t)

)
)



In general, a flow governed by the quasi-geostrophic dynamics may not
be able to maintain large scale structure under random small scale bombard-
ments. Indeed, it is easy to construct a flow of the form ¢, + £q; where
g, is a large coherent structure (thus with small Dirichlet quotient), ¢ is a
small structure (thus with large Dirichlet quotient) and ¢ is a small param-
eter so that ¢, dominates the flow. The bombardment of this flow by the a
large vortex —gqp results in the cancellation of the relatively large structure
and leads to the extremely small structure g; with a much higher Dirichlet
quotient. This is supported by the numerical results. However, due to the
special setting of the spin-up problem, we will see that the vorticity field will
be non-negative for all the time due to a maximum principle. Such a positive
vorticity field cannot be annihilated by the positive small scale bombardment
and this is the main ingredient in the success in deriving an upper bound for
the Dirichlet quotient.

There are two stages in the dynamics: a free decay stage and an instanta-
neous forcing stage. It is easy to see that the Dirichlet quotient is a monotonic
decreasing function of time in the free decay stage from (9) (Chapter 3 of
Majda and Wang, 2004). Thus it is only necessary to establish that the
instantaneous forcing stage can not increase the Dirichlet quotient without
bound.

Here we consider the special case of non-negative initial vorticity, i.e., ¢ >
0. One special feature of the external forcing given in (6) is positivity. When
this positivity is combined with the positivity of the initial vorticity we obtain
the positivity of future vorticity via a simple maximum principle argument as
we may view (1) as a advection-diffusion equation for the vorticity g. Hence
we have, see for instance Evans (1998),

q(Z,t) > 0, for all £ > 0. (13)

As for the stream function, it can be solved from via the Poisson equation
together with the zero boundary condition specified in (4). The maximum
principle for Poisson equation (see for instance Evans (1998)) implies that
the stream function is strictly negative inside the box ¢ unless ¢ =0

Y(Z,t) <0, for all ¢t > 0. (14)

Next we look into the evolution of the energy E, enstrophy £ and circu-
lation I' = f o ¢ It is easy to derive, after multiplying the quasi-geostrophic



(Navier-Stokes) equations (1) by —t (¢ or 1 respectively) and integrating

over the square (),
dE 9
- _ — 15
i = et [eF (15)

& 9
= — Val? + F 1
d V/| ql /q ) (16)

dl’
— 17
0q

where 21 represents the normal derivative of the vorticity with respect to the
unit outer normal at the boundary of the box (). Since the vorticity is positive
inside the box (13), the normal derivative of the vorticity is non-positive, i.e.

0q
— < ; 1
8n_0’ at 0Q (18)

This implies that the Newtonian dissipation decreases the circulation. This
is of course consistent with the intuitive idea of dissipation. A simple con-
sequence of the equations (15,16, 17) together with (14) is the fact that the
positive external forcing F increases energy, enstrophy and circulation. This
partially justifies the notation of spin-up.

The dynamics of the Dirichlet quotient A(t) = % can be calculated
easily using the dynamics of the energy and enstrophy. Indeed we have (see
for instance Foias and Saut 1984, Majda, Shim and Wang 2000, Majda and

Wang 2004, Montgomery et al, 1992, among others)

dA(t) 1. :
- —_ﬂﬂwm—AwEm>
vl = AT ARTE | Jola + AMOY)F

- - 0 E(t) : (19)

Since the sign of ¢ + A(t)1 is not definite, we are not sure if the positive ex-
ternal forcing increases or decreases the Dirichlet quotient. In fact numerical
experiment suggests that it could be both ways.

Our goal here is to derive a time uniform bound on the Dirichlet quotient.
The bound would imply that not much small scale structures are created even
though the system is under constant bombardment of small scale vortices.
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We introduce the notation

wi=wr(@—35), b5 =ATwj, (20)
and
1 1,
Ej=—3 ijwj, =3 QT (21)

We see immediately, thanks to (11), the positivity of ¢ and w;, and the
negativity of ¢ and 1,

2E(t; ) + 2E; > E(t])

28(t7) +2&; > E(t])

E(t;) + £}, (22)

>
> E(t7)+&;, (23)

where t; = j At. We also have, by the definition of Dirichlet quotient and
the instantaneous forcing effect (6),
E(t;) + A [oa(ty)w; + A%,

M) = Bay = AT, a0, + A7

It is clear from our choice of w; in (7) that there exists a constant A; such
that

(24)

E.
—- < )y, for all j. (25)
E;

In order to derive a uniform in time bound on the Dirichlet quotient, it
is enough to prove the following claim

Claim: There exists a constant Ay such that
w; < —Ag1pj, for all j. (26)

We observe that with the validity of the claim we have

5(75]'_)'*‘14/ q(t; Jwj + A%E; < E(t})—)\gA/q(t;)d)j—i-)\lAQEj
Q Q

J

VAN

M(E(@E) - A /Q 970y + AE),

where B
)\j = maX{AtTa )\Qa )‘1}a (27)

11



and hence -
A < Ay (28)
J

Notice that during the pure decay stage t;_1 < t < t;_1 + At = t; the
Dirichlet quotient is monotonically decreasing (see (19)) so we have

A- <A .
t; =y

When this is combined with (28), (27) and a simple iteration we deduce

Ayt < M < A=A el max{Ag, A2, A1} (29)
J
where £(g0)
90
Ay = ) 30
°= Fa) (30)

This proves a uniform in time bound on the Dirichlet quotient.

It remains to prove the claim (26). By the special choice of our random
forcing (6) and the small scale vortex (7) we see that the support of w; always
overlaps with the interior region Q,, = (1o, m—1¢) X (19, T —7¢) of @ since the
center of w; lies in this subregion Qg (. This implies that there exist finitely
many boxes B;,7 = 1,---, N, such that B, C Q,, for all 7, there exists a
constant C; and for each w; there exists a B; satisfying

w; > CiXi, (31)
where o
Xi() :{ (1) ft}fefwligsié (32)
is the indicator function of the set B;.
Let ¢; be the solution of
Adi=xi,  9ilag = 0. (33)
By a standard comparison principle we have
—; > —C1¢;. (34)
By Hopf’s strong maximum principle (Evans (1998)) we have
(Zd;: > 0, (35)

12



at the boundary 0@} away from the four corners. More precisely, there exists
a constant Cy such that
09

on

> Cy, (36)

provided
- 1 R 1 . 1 . 1
|.’L‘—(O, 0)' > ZTOa |$—(0,7T)‘ > ZTOa |.’L'—(7T,O)| > ZTO: |$_(7T,7T)‘ > ZTO- (37)

When this combined with the negativity of ¢; in the interior of the box @)
and the choice of w; (7), we have

—¢; > Caw;, for all i, and j. (38)

This combined with (34) yields the claim with
Ao = C Cs. (39)

To summarize, we have the following result:

Theorem 1 For the Navier-Stokes system (1) with random kick forcing spec-
ified in (6) together with boundary conditions (4), there is a constant Ny which
depends on the non-negative initial data qy, and the small scale random vortex
w, such that

A(t) < A = max{A(q), max A(w;), Ao}, (40)

for all time, provided that the initial vorticity s non-negative, i.e. qo > 0.

Remark As we mentioned earlier, such a uniform in time bound on the Dirich-
let quotient of the flow is non-trivial and indicates some control of the small
scales in the flow. Roughly speaking, no scales smaller than the initial small
scale or the small scale determined by the forcing could emerge later on.
The bound is optimal by considering the special case of zero forcing and
the special case of zero initial condition. On the other hand, the bound is
not very useful since it is not close to the minimum value of the Dirichlet
quotient in our geometry (2). This is somehow expected since we haven’t
taken dissipation into consideration (we only used the part that the Dirich-
let quotient is non-increasing during the decay stage), and we are doing a
worst scenario analysis for a stochastic problem. This prompts us to take a
stochastic approach in the next section.
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3 Stochastic Estimates

Recall that the numerically observed emergence of large scale coherent struc-
ture is under the bombardment of random small scale forcing. The analysis in
the last section was not sufficient since it is a worst scenario analysis not tak-
ing into consideration possible random effects. In this section we will study
the problem from a probabilistic perspective. We will start with appropriate
approximation of the random kick forcing.

It is easy to see that the random kick can be decomposed into a mean
part and a random fluctuation part as

wr (T — Tj) =@, + w, (5), (41)
where the mean part is defined as
(I)r = Ewr(f — l—"]) (42)

with E being the mathematical expectation operator over the random center,
Z;. It is easy to see that, thanks to (8),

@ € Hy(Q), w.(j) € H;(Q). (43)
E(w.(5)) = 0, (44)
E(|Aw,()F2) = E(Aw (@ — Z))l7:) + E(|Ad,]|7,)
» / A E(Aw, (7 — ,)) < o (45)
Q

This means that the {w.(j)}s are H3(Q) valued i.i.d. random variables.
Next we consider the cumulative effect of the forces. Notice at time t,
the flow has been bombarded by

4
L_
At
number of small scale random vortices. Thus the deterministic part of the
cumulative forcing effect takes the form

U

Since we are in a non-trivial quasi-equilibrium state, it is natural to expect
the deterministic part of the forcing to be of order one. This implies that

14



the amplitude A should scale like the time step At between forcing. We thus
impose the following
Forcing Scaling Assumption:

A = CAAt (46)

where c4 is now a derived parameter. In the rigorous analysis, we will make
the additional smallness assumption on c4 as noted elsewhere in the remain-
der of this paper. The balance in (46) further implies that the deterministic
part of the cumulative forcing converges to

t
/ F— cat,
0

and thus the deterministic instantaneous forcing may be approximated by

F = calo, (47)

which is a steady state forcing.

We now consider the fluctuation part. The cumulative forcing up to time
t for the fluctuating part takes the form, thanks to the amplitude time step
scaling assumption (46)

L wi (1) + - +wlx]) [1
/ Fo= A 1 <
0 | Azl
w1+ +wr(lx))
V12l

= cacG(?) (48)

= CAp¢€

where we have applied an infinite dimensional version of Donsker’s invariance
principle!, and G(t) denotes an infinite dimensional Gaussian process and

e=VAt (49)

'We are not able to locate a reference for this infinite dimensional version of Donsker’s
invariance principle. However such an infinite dimensional version is expected and can be
verified via appropriate modification of the finite dimensional version provided we have
enough decay ( in Fourier spaces) and enough smoothness of the fluctuation wj,

15



is a small parameter. This further implies that the fluctuating part of the
random forcing may be modeled as

dG
fl = CA&?E (50)
It is not hard to check, thanks to (45) and the invariance principle, that the
Gaussian process G(t) is H*(Q)( H; (Q) valued. Indeed, assume that the

infinite dimensional Gaussian process G takes the form

G(Z,t,w) Zl)~e,C 7) Bz (t,w) (51)

where {ez()} is an orthonormal basis for L*(Q) given by ez = % sin(kz) sin(k2y)
and the {f;(t,w)}s are standard one dimensional Brownian motions. These
Brownian motions are not necessarily independent ( in fact many of them are
dependent). It is then easy to verify that, using a Galerkin approximation if
necessary,

E(|AG@®)I72) = D tlk|*bz* < tE(|Aw, (1)]17). (52)

E

With the two approximations of the forcing introduced above, we may
model the original problem as a stochastic partial differential equation in the
following form.

Navier-Stokes Equations with Continuous in Time Small Random Forcing

dq

dG
8t+VL¢ Vq = VAq+CAwr+CA5_:

dt
qg = Ay (54)

together with the initial condition (3) and no-penetration, free-slip boundary
condition (4). This is the Navier-Stokes equation with a random (white noise
type) forcing. The well-posedness of this type of problems (existence and
uniqueness of solution etc) is well-known ( see for instance, Bensoussan and
Temam 1973, Vishik and Fursikov 1988 ).

Here we are interested in the time asymptotic behavior of the solutions for
parameters lying in appropriate regimes. Similar problems of random small
perturbation of deterministic dynamical system have been studied mostly for
the case of stochastic differential equations utilizing large deviation theory
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( see for instance, Freidlin and Wentzell 1984 ). Our goal here is to show
that the eventual state is a large coherent structure similar to the ground
state mode sin(x)sin(y) plus small random fluctuations under appropriate
assumptions.

3.1 The Zero Noise Limit Problem and Coherent Struc-
ture

Since there is a small parameter € in the continuous version (53) of our
problem, we formally set ¢ to zero and deduce the following zero noise limit
problem.

dg° 1,0 0 0 -
— + V9" - V¢ = vAq + caby, (55)

at
¢ = Ay’ (56)

with the same initial/boundary condition. This is the usual deterministic
Navier-Stokes equation and we know that for small enough ¢4 ( which trans-
lates into small amplitude for individual random bombardments for fixed
viscosity v and size of random vortex r from (46)), the long time dynamics
is determined by the unique steady state (see for instance, Temam 1997)

VL -Vl = vAQ + cawy, (57)
oo = At (58)
together with the no-penetration / free slip boundary condition (4).

For even smaller relative amplitude c4, the mean field equation is approx-
imately linearized

—VvAQ, ~ i@, (59)
Uoo = A5, (60)
whose solution is given by
CA —1/-
&~ A -0) @) (61)

It is clear that @, is a constant within the sub-square Q., = [27¢, 27 —
2rg] X [2r9, 2m — 21¢] and it monotonically decreases to zero at the boundary
as Z moves to the boundary along outward normal direction. Thus @, is

17



approximately a constant on @Q in L? space and the order of the constant is
apparently related to r and can be estimated to be the order of 72, i.e.

Gy R T2 (62)
since
= 1 =2 r2
wy(Z) > 1 for |7]* < %,
we(T) <1 for |F]2 < r?

This further implies, for very small relative amplitude c4 and small rq (ry >

r),

0 car’ 1
&~ A () ). (63)
It is then interesting to calculate (—A)~!(1) and check if it is close to the
large scale coherent structure sin(z)sin(y) predicted by equilibrium statisti-
cal theory. A straight forward calculation shows

» B o0 16
=AW= h_%;_o w220 + 1) (2l + 1) (20 + 1) + (2l + 1)?)

(64)
It is then easy to check that there is an extremely strong correlation between
(—A)~!(1) and the ground state mode sin(z) sin(y)

corr(sin(x) sin(y), (—A) (1)) =~ 0.99, (65)
where the graphical correlation of two functions is given by

_ oty
[1f1zzllglle

Such a strong correlation would explain the success of the equilibrium sta-
tistical theory observed in numerical experiments provided the asymptotic
behavior is governed by the limiting scaling (63). Our numerical experi-
ments (see figure 5) strongly support our heuristic argument here. In figure
5, the top left panel is the graph of (—A)~*(1) which clearly looks like the
large scale coherent structure. The upper right panel is the correlation be-
tween the vorticity ¢ and (—A)~*(1) which is above 98% for large times. The

corr(f, g)

18
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Figure 5: Upper left panel: plot of (—A)~!(1); Upper right panel: correlation
between the vorticity field ¢ (or w) and (—A)~!(1); Lower left corner: L? error
of the (—A)~!(1)theory; Lower right panel: relative L? error of the (—A)~1(1)
theory.

bottom left panel is the L? norm of the component of the vorticity g which is
perpendicular to (—A)~!(1). This is the error of the heuristic prediction and
remains under 2.5% for large times. The bottom right panel is the relative
error of the heuristic prediction which is under 10% for large times.

Strong correlation between the vorticity field ¢ and the heuristic predic-
tion (—A)~1(1), together with strong correlation between (—A)~!(1) and the
ground state mode (prediction of statical theory) implies strong correlation
between the vorticity field ¢ and the ground state mode sin(x)sin(y) which
further validates the equilibrium statistical mechanics theory. Indeed, we
have,

Lemma 1 Assume that the functions g1, go and g3 satisfy
corr(g1,93) > 1 — 6y, corr(ga, g3) > 1 — 0. (66)
Then
corr(gi, g2) > 1= (/61 + 1/62)? (67)
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Proof The proof is elementary.
Without loss of generality, we assume g1, go and g3 are unit vectors (their
L? norms equal to 1 ). This implies

(91, 93) = corr(g1, g3) > 1 — 4y,
(g2a 93) = COI'I'(gQ, 93) 2 1-—- 52-

Now consider the orthogonal decomposition of ¢g; and g, in the direction
parallel to g3 and the complementary direction perpendicular to g3, i.e.

g =rg3+9;, (91,93) =0,
go = T'203 + g;a (g;a 93) = 0.

Thus we have

(91,93) =71 > 1 -4y,
(g2,93) =192 > 1 — 09,

which further implies

lgill = /172 < /26, — 62,
lgall < /26, — .

(g1,92) = (r193 + 91,7293 + g5)
rira + (g1, 95)

Similarly,

Therefore,

> (1= 6)(1 - b) = [}l

> (1= 0)(1—8) — /(20— )20~ )
> 1—01 — 0y —24/0102

> 1= (Vo + Vo)

This ends the proof of the lemma.

In our particular application we have

corr(gq, (—A) (1)) > 1 —0.02
corr(sin(z) sin(y), (=A)~'(1)) > 1 —0.02
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which implies, thanks to the lemma,
corr(g, sin(z) sin(y)) > 1 — (2v/0.02)* = 0.92

which is very good although not as good as what the numerics suggest.

It is interesting to note that there is some discrepancy between the pro-
posed theory above and the numerical evidence. The amplitude of the forcing
in our numerical experiments is not small as required in the theory (we have
v =0.01,A = 1,At = 0.1). It seems that there are two possible explana-
tions to this numerical fact. First, the radius of the random forcing vortex,
r, is small (r = 1/64) and thus the deterministic part of the forcing, @, is
small (scale like 72, see (62)). Second, the long time dynamics is close to
¢, which is close to the first eigenmode sinzsiny. It is well known that
the first eigenmode is globally stable (see for instance Constantin, Foias and
Temam 1988, Marchioro 1986, Majda and Wang 2004 among others). It is
then expected that we have a less stringent condition for stability for a small
perturbation of the ground eigenmode when compared to Serrin’s stability
requirement for general profiles. We can also view this as a consequence of
the upper semi-continuity of global attractors .

Our goal now is to establish the validity of the zero-noise limit (55) in a
rigorous fashion whose long time limiting behavior at small relative amplitude
c4 and small radius of forcing vortex (r) is given by (63).

3.2 Justification of the Zero Noise Limit at Finite Times

Our first justification of the zero noise limit is in terms of finite time almost
sure pathwise convergence to the zero noise limit (55).

The idea is simple. The continuous time stochastic version (53) does
have a small random forcing term cA‘s%. But % is not a function but a
distribution (generalized function). In order to overcome this difficulty we
consider the following change of variable

G = q— caeG. (68)
It is easy to check that ¢ satisfies the equation
oa ~
a—z + VW) +caeATIG) - V(G + caeG) = VA + ca@, + veas AG(69)

g = Ay (70)
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Next we take the difference between the new unknown ¢ and the zero noise

solution ¢°

¢ =q—q". (71)

We then deduce, ¢’ satisfies the following equation

!

q =
ql|t:0 =

oq
ot

vAqG + veae AG,

Ay,

0=q'lag = ¥'|ag-

Multiplying the equation by ¢’ and integrating over ) we deduce

1d
2dt

which implies

—||I> + v[|Vd')?

d
allq'llhr v||Vd'|I°

14l

t=0

+

<

IN

cavel| VG|Vl

+eae | VY| VG| oo |
+4E|VEATIGN (VG e ld|]

IV 1V | ool

+cael[ VEATGN V|l ool

v A 1

LIV + 2 AEVGIE + Sl

+e2 2|V PP VG|7 + 2¢4€”|[VEATIG|P VGG 0
+24[IVEATIGIPIVEIEL)

”Vq ||L°°|| l||2
\/_

(1 + V2V [l=)lld'II?

e (AVIIVGI* + 44 V-ATGIP VG700
HG|VEATGIPIVE L + 44V IVEI L),

0.

For any fixed time 7" > 0, for almost all w in the probability space (prob-
ability one ), G(t,w) is a continuous function on [0,7] and G(0,w) = 0,
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with values in H?(Q) [ Hy(Q) (see (52)). Thus all terms involving G on the
right hand side of the energy equation are bounded on [0, 7]. The zero noise
solutions are smooth (see for instance Constantin and Foias, 1988). Let us
assume for the moment that [|[V-1|| is also a function bounded in time. We
may then deduce from the energy inequality

d
ZN 1P +vIVE P < alid” + e,

Il =0,
t=0

where ¢, co are constants independent of €. This implies, thanks to the clas-

sical Gronwall inequality, that there exist constants x; and ko, independent
of €, such that

”qI”L“(O,T;LZ(Q)) = |lg — caeG — q0||L°°(0,T;L2(Q)) < K€
||vql||L2(0,T;L2(Q)) = [[Vg—caeVG - Vq0||L2(0,T;L2(Q)) < Ko€

which further implies

Theorem 2 For any fized time T, for almost all w in the probability space,

i.e., with probability one, there exist constants k1, ks, independent of €, such
that

lg — ¢llzo.02(0)) < Fr€,
Vg — V(ZOHL?(O,T;L?(Q)) < Ka€.
Proof We have almost everything except the time uniform estimate on
V9]
For this purpose we multiply the equation for ¢ by ¢ and integrate over
@ and we deduce

Ld

5717 +vIValz: < callerlligl + cavel VGV

+ea| VD[V G <l dl]
+Ae’ VAT GIVE || ]

17 B 1 s
2194l + 5 (1 + 24| VG =) gl

IN

A ve?

A velp
et |VEAT G VG

+c4 w12 +
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Therefore, for almost all w (probability one )

||Cf||L°°(0,T;L2(Q)) <k
||q~||L2(O,T;H1(Q)) <K

where k is a constant uniform for small (¢ < 1). This completes the proof
of the theorem.

Remark 'This theorem gives us a clear indication that the deterministic zero
noise model is the zero noise limit of the noisy model (53). The pathwise
convergence rate of ¢ is the usual strong convergence rate in stochastic anal-
ysis ( see for instance Bhattacharya and Waymire 1990, Karatzas and Shreve
1991). On the other hand, the convergence result is weak in the sense that
all these constants depends on w (path dependent) and it is for finite time.

3.3 Zero Noise Limit at Large Times

Our next justification of the heuristic limit will be for long time at the expense
of imposing a relative smallness condition on data. We also have an estimate
on the variation.

Indeed, the mathematically correct way of writing the continuous in time
stochastic version of our problem (53) is

dg + (—vAq + VY - Vg — caw,)dt = caedG (75)

where we choose to use the It6’s formulation over the Stratonovich’s formu-
lation.

The difference between the noisy solution ¢ and the zero noise solution
q°, i.e. ¢ = q— ¢°, satisfies the following Ito differential equation.

dq' + (—vAq¢' + V- V' + V' - V) dt = caedG.
We then formally apply It6’s celebrated formula to
I = [ (@2
Q
and we have
1
d(¢)? = 2¢'dq + 5203152 Z bibjegeicpdt
= (2ug'Aqd — 2V -V'q — 2V - Vg + e? Z bpbrepercp)dt + 2c4eq'dG
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where

cir = E(B;57) (76)

is the covariance between 3; and [
Integrating over () and utilizing the orthonormal property of {ez}, we

have

dllq'lI*

= (—2||V{|? + &e? Zbi—)dt — 2(/ V' - V'q'di)dt + 2c e / (¢',dG)dz
> Q Q

< (—QUIIVq'||2+0,246226%+QIIVW'IILO@IIVQ'IIIIQOII)dt+QCAﬁ/Q(Q’,dG)df

IN

1 3 N
(—20[|Vq|1* + Ae? > 02 + al|¢l|Z 1V ']|2 |¢°])dt + 2cae / (¢,dG)dz
P Q

callg’|l
14

< —2w||Vd|*(1 - )dt+c§5225§dt+2c,45/(q',dc)df.
Q

Now we postulate the smallness condition

< - (77)

AS
DN | =

We then deduce, from the previous inequality,

A g D)) < e S Bt + 2cace” / (¢, dG)d7
Q

which further implies

2 -2 t
DI < () P =) D S 2eae [ e [ (o), a6 ()az
0 Q

Next, we apply the mathematical expectation operator E and utilize the
martingale property of fg e’ [o(d', dG), we have

B(l¢(0)]7) < e IR (1)) + A= 302, (78)

As shown next, the estimates in (78) and (77) leads to
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Theorem 3 Assume relative weak amplitude of the forcing so that the small-
ness condition(77) is satisfied for any initial data at large time. Then there
exists a constant k independent of ¢ ( but depend on initial data and all other
parameters ) such that

E(|l(g = ¢*)OI°) < ke? (79)
for all time.

Proof To complete the proof, we need to show that the first term in (78)
is order 2.

For small enough cy4, it is easy to see that the zero noise solution ¢°
(55) will satisfy the smallness condition (77) ( see for instance Doering and
Gibbon 1995, Foias, Manley, Rosa and Temam 2001, or Temam 2000 among
others ).

Indeed, simple calculation reveals

d 21~ |12
D+ v < Al

Hence we have, after applying Poincaré inequality,

d A
I +2vlle’|* < =457
which leads to

” 0(t)||2 < e—2ut” ||2+ 0,24”@7‘“2
q > 4o A2

Thus we will have the smallness condition (77) for large time satisfied pro-
vided

(80)

2.2~ 112
ccallwr]* _ 1
< = 81

Then for )
ys e 1), dcalal
v v
the inequality (78) holds, which further leads to to our estimate over the
interval [T, 00) provided we can control E(||¢'(T)||?) in the order of £2.
For the time interval [0, 7], we make a slight change in the inequalities in

applying It0’s formula, and we have

(82)

d c
aE(”Q'W) < —vE(||[Vq'|?) + V—§||q0||4E(||q'||2) + e’y b2 (83)
E
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This leads to a desired bound on E(||¢'||?) of the order of &% on the time
interval [0, 7).
The proof is complete after combining the above two estimates.

Remark The theorem states that the expected value of the distance in L?
from the noisy solution to the heuristic limit of zero noise solution is of the
order of € for all time. This explains the emergence of large coherent structure
very well when combined with our earlier discussion on the behavior of the
solution to the zero noise equation.

3.4 Convergence of the Random Attractor

It is well-known that the two dimensional Navier-Stokes equations can be
viewed as a dissipative dynamical system and it possesses a global attractor
( see for instance Temam 1997). This deterministic theory can be extended
to the stochastic case ( see for instance Arnold 1998, Crauel, Debussche and
Flandoli 1997 among others ) in terms of random dynamical systems and
random attractors. For the sake of exposition we quickly recall some of the
relevant notations.
Given a probability space (€2, F, P) and a family of measure preserving
maps 6; on €2 satisfying
Oy = 1d, 05 = 040, (84)

a random dynamical system is a map ¢

¢: R xQxH-—H
(t, w, u) = ¢(t,w)u

satisfying

o(0,w) = id
O(t+s,w) = o(t,0w)- d(s,w) (co-cycle property).

Here H is the physical phase space of the problem and in our case would be
the L? space for the vorticity .

A random set A(w) is called a random attractor of the random dynamical
system ¢ if

i) A(w) is compact with ”probability” one and dist({u}, A(w)) is measur-
able for all u € H

i) ¢(t,w)A(w) = A(fw), for all t > 0 (invariance)
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ii) for any bounded set B in H
lim dist(¢(t,0 w)B, A(w)) =0

t—>00
with probability one (attracting).

The theory of random attractor applies to our continuous in time stochas-
tic version of our problem (53) in the sense that we can prove the existence
of random attractors A, (w) for each € > 0. Moreover, the random attractors
A.(w) are related to the zero noise attractor Ay of (55) in an upper semi-
continuous fashion just as in the deterministic case ( see for instance Temam,
1997 or Hale 1988 among others ). More precisely we have

Theorem 4 Let A.(w) be the random attractor of the random dynamical
system generated by (53) with noise level € and let Ay be the global attractor
of the deterministic Navier-stokes system (55). Then A.(w) converges to Ay
in an upper semi-continuous fashion with probability one, i.e.

lim dist(A:(w), Ag) =0, a.s.. (85)

Proof The proof is an application of an upper-semi continuity of attrac-
tor for small random perturbation of dynamical system result obtained by
Caraballo, Langa and Robinson (1998). In fact they already applied their
result to small random perturbation of deterministic two dimensional Navier-
stokes equations. The differences are: 1. they used velocity-pressure formu-
lation of the NSE; 2. they only allowed one mode random perturbation, i.e.,
G = ¢(Z)B(t) where ¢ is a fixed mode not necessarily related to eigenmode
of the the Laplace operator and 3 is a standard one dimensional Brownian
motion.

There are two main ingredients in the application of the Caraballo, Langa,
Robinson result, namely
1. uniform ( from bounded initial data) convergence of trajectories with
probability one(this is basically the first justification that we presented) and
2. the existence of uniform compact absorbing set. This can be accomplished
with minor modification of the argument of Carabolla, Lange, Robinson. We
leave out the details and the interested reader my consult the original work
of Carabolla, Langa, Robinson (1998) for more information. The completes
the proof of this theorem.

The result presented here again explains the emergence of the large scale
coherent structure observed in the numerical experiments when we combine
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this theorem which says the numerical result (long time behavior) should be
close to the solution of the zero-noise limit (55) which resembles, as shown
earlier, the large scale coherent structure at small amplitude.

Since the long time behavior of the limit deterministic system (55) is
unique for small relative amplitude c4, and since the noisy solution ¢ con-
verges to the zero noise solution ( both in terms of trajectories and in terms
of attractors), we naturally ponder if there is any uniqueness for the noisy
system (53) in terms of long time behavior for small noise ( small €) and
small relative amplitude (small c4). This suggest we should look into the
question of whether the random attractors A.(w) generated by the stochas-
tic PDE (53) has only one point ( one single stochastic process). If the
random attractor A.(w) consists of one stochastic process only, we then de-
duce that all statistical information must be encoded in this single stochastic
process. Indeed, this implies that there exists a unique invariant measure.
The support of the measure, which is exactly A, must be close to Ay which
is a one point set {¢% } for small enough c4. This would offer an explana-
tion of the emergence of large coherent structure in a way that is closer to
traditional statistical theory, namely, there exists a unique invariant mea-
sure and the statistics with respect to the unique invariant measure yield a
large coherent structure close to ¢2, which is asymptotically (up to a scal-
ing) (—A) Y(@,) = (—A) (1) who has an extremely strong correlation with
sin(x)sin(y). Indeed, all these heuristics are correct and we have the follow-
ing theorem.

Theorem 5 For small enough relative amplitude c4 of the forcing, the con-
tinuous time stochastic model (53) possesses a unique invariant measure and
the random attractor consists of a single stochastic process ¢oo(w, ).
Moreover, we have the following commutative diagram
—

q(t,w,e) t =00 goo(w,e)

le—=0 le—=0 (86)

Ctw) too g
Furthermore, we also have

lim corr(q>,, (=A) " 1(1)) = 1. (87)

ca—0,79—0,r—0

Proof The second part of the theorem is clear since we have,

lim corr(g, (~8) (@) = 1 (88)
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and

lim corr((—A)~ (@), (~A)7} (1)) = L. (89)

ro—0,r—0

Therefore, according to lemma 1,

. 0 -1
eamolm corr(ge, (—A)7 (1)) = 1. (90)

We have already shown that with probability one trajectories of the noisy
system (53) converge to that of the deterministic zero noise limit system (55)
as mentioned earlier. It is well-known that the deterministic system has a
trivial attractor (A = {¢%}) for small enough relative amplitude c4. We
have also shown in the previous theorem, that the long time behavior of
the noisy system (53) in terms of the attractors A, converge to the triv-
ial attractor Ay as ¢ approaches zero. (In this case, upper semi-continuity
implies continuity since Ay consists of one point only.) The convergence of
attractors also follows from Theorem 3. Thus we only need to show that the
random attractor of the noisy system consists of one single stochastic process
¢, in order to establish the validity of the commutative diagram (86). In
fact, if each random attractor at a fixed noise level consists of one stochastic
process, the long time convergence result stated in Theorem 2 and the fact
that the deterministic attractor of the zero noise system is trivial implies the
convergence of random attractors without invoking theorem 3.

In order to show that the random attractor of the stochastic system (53)
consists of one point only, we only need to show that there is contraction
of the phase space under the dynamics. More precisely, we need to show
that for almost all w (probability one), and any two initial data qo1, goo, the
solutions starting from go; and ggo, denoted ¢ and ¢ converge together,
ie., [|[¢g® —q¢M| — 0,as t = oo.

Indeed, ¢' = ¢® — ¢V satisfies the following equations

!
%—‘i+vw<2%vq'+vw'-vq<l> = vA{,
¢ = AY,
qli=0 = Go2 — qoi-

Multiplying the equation by ¢’ and integrating over ) we deduce

I”

VAN

—20||V'|I” + 2V [l ¢/ V™|
~(4v — e [Va DIl (91)

d,
@llq

IN
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which further implies

ld'(D11” < llgo2 — gor||* exp(—4vt(1 — —/ Vg™ (s)ll ds)). (92)

Therefore, we will have exponential contraction provided that

/ 1V4®(s) ||ds<— (93)

is satisfied for large t.
In order to estimate } f(f Vg (s)|| ds, we apply It&’s formula again uti-
lizing (75)

1
di? = 2qdg+ 520?482 Z bpbegecidt
= (2ugAq — 2V - Vg - q+ 2qca@, + e’ Z bibregercip)dt 4+ 2cacqdG.
Integrating over () we deduce

dlgl> < (=20|Vall® + 2call@ llllgll + &> ) b2)dt + 2cae Y brpdzdf;
k
2
2, Cap— 2 2 2 2 A
(=vIIVall” + @l + cae Zb,;)dt-F?CA&Zb,ngdﬁ;,
P

IN

where
g(t) = Gp(t)e(D).
E

This further implies

1 [t 1 A ce?

t [ IvaePas < LlalP + S+ A5 S
20 el

. / Zbqudﬁk

It is clear that the first three terms on the right hand side can be made
small, i.e.

1 . % e? V2
t—y||q0||2 + y—/;||wr||2 4 sz <@ (94)
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provided we take ¢ large (large time) for the first term, c4 small (small relative
amplitude) for the second term and either small ¢4 (small relative amplitude)
or small € from the third term. Thus we are only left to deal with the last

term 5 1
CAE
-M(t
o= M)

where
t
M(t) = f > by (95)
0 =
P

is a martingale.
We want to show that supy<,; M(7) does not grow too fast. In fact, we
want to show that

(96)

almost surely for large ¢, since this would imply the contraction because

1 ' 1 ! 2 1 v
= [ IVa(s)llds < (= [ [Va(s)lI*ds)? < —.
0 0 4

The supremum of a (local) martingale can be estimated utilizing Burkholder’s

inequality ( see for instance Bhattacharya and Waymire 1990, Karatzas and
Shreve 1991). For this purpose we need to consider the quadratic variation
of M, namely

t
MM < Y / gl 71851 3¢l [z s
ir o

b%/tZ%\qUquﬂ ds

o & [R2IT
bz/t(zmﬂ)?d

2 =5/ 08
o i k|

¢
-9 R
c5b2/ E |q,;|2ds
0 =
i

t
-2
_— / lall”
0
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where

by = sup|bgl[k[* < oo, (97)
E
1
c; = —— < 00, 98
5 ZW (98)

by direct calculation and (52).
Next we apply Ito formula to ||¢||?” and we have

dla@®lI” = 2plla®OI**D (=vIVa@)I* + callwrllllg@®) dt + cac /Q q(t) dG dT

+2p(p = Dlla@IP* e Y by - braye e
kil
+pllg(t) [ Veie® D bpat.

Therefore
d _ _
LB(la®)) < B-20plla)] + 2pealio o]
+2p(p — 1)&e%csby|a(t)] 2
12 Y Rl0)]7)
2pc 4 ||@r
< —upB(llq@)) + (2realodl vz
vp)2) 5%
(2p(p — 1)0?45205b2 + pche® YT )
+ —
(vp/2)F
Thus
-2
1,2 Or 2p(p — 1) e%esby + pcie? S b2
E<||q<t>||2p>Se—"“||qo||2p+—{(%'°ﬂ)p+< = Deaceshs +peac 2.0,y
bV (vp/2) 2 (vp/2)»

Now combining these estimates, together with Burkhélder inequality, Cheby-
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shev inequality and Holder’s inequality, we have

E((supg<;<, M(1))??)
Prob{ sup M (t) > én*} < ='=
{ogtgn ()= bos (0ne)?p
P
o B M)
52pn2ap
72P p—1 n
ceclb, nP
< O [ Blla)
Cﬁcng —vpn 2
= 52Pn2a;v*p+1{e " llgolI**
-2
PRI (21 R U e G e L 3P
(5 =
v (vp/2) > (vp/2) »
Next, we set
3
v
= ——r =1 -9
2c2cpe’ @ > P ’

and we see that

V3 1
Prob M(t) > < — < oc.
; rob{ sup M(t) > Aen}_C7Zn3 00

2
0<t<n 2646

Thus the Borel-Cantelli lemma tells us that with probability one, for each w,
there exists an N(w), such that

2

1
— sup M(t) < 5.2 for all n > N(w).

T 0<t<n CiCAE

Hence if N(w)<n<t<n+1

1 1 3 1 3 3
— sup M(7) < sup M(t) < nr v n v Y

1
< - 5 < 5 <= Vi > N(w).
0<7<t T o<t<nt1 t  2cjcac n - 2cicae C1CAE

This completes the proof of the theorem.

Remark 'There have been an intensive effort on the study of the uniqueness
of invariant measure for randomly forced PDEs (see for instance E 2001, E,
Mattingly and Sinai 2001, Eckman and Hairer 2001, Kuksin and Shirikyan
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2001, Masmoudi and Young 2002, Mattingly 1999, Schmalfuss 1998 among
others. See also Da Prato and Zabczyk, 1992, 1996). The uniqueness of
invariant measure part of our result resembles those of Mattingly 1999 and
Schmalfuss 1998. The differences are: 1. We consider forcing with a deter-
ministic part and a random fluctuation part while the other authors consid-
ered random fluctuation only. We believe our setting is closer to physical
reality where the overall mean (expectation) of physically realistic systems
does not necessarily vanish; 2. We consider dependent Brownian fluctua-
tions. This is generic if the randomness is introduced in the physical space (
not frequency space ) as is discussed here.

4 Conclusion and remarks

We have demonstrated both numerically and theoretically that small scale
random forcing may induce large scale coherent structure in two dimension
flow problems. Moreover, the large scale coherent structure is well pre-
dicted by equilibrium statistical theory utilizing energy-enstrophy as con-
served quantities or energy-circulation as conserved quantities ( see Majda
and Wang 2004, Grote and Majda 1997) although the mean field predicted
by the rigorous theory is different from the mean field predicted by the equi-
librium statistical theory.

The main result can be generalized in some straightforward fashion. For
instance, we can allow different probability distributions for the center
of the random small scale forcing. Also we may allow the random vortices
to change signs as long as the mean does not vanish ( so that the deter-
ministic part does not vanish). Of course, the emerging large scale vortex
will be changed as well. Other generalization such as to systems on differ-
ent domain/geometry and more general one layer /multi-layer system (see for
instance Gill, 1982, Majda, 2003, Majda and Wang, 2004, Pedlosky, 1987
among others) can be considered as well without much difficulty. We are es-
pecially interested in the geophysical effects (S-plane, F-plane, topography,
Ekman damping etc.) The crude closure numerical algorithms give a vari-
ety of interesting new behavior when such geophysical effects are included
(Grote and Majda, 2000; DiBattista, Majda and Grote, 2001). There is a
recent statistical theory which successfully predicts the Great Red Spot of
Jupiter in a fashion consistent with the observations from the Galileo and
Voyager missions (Turkington et al 2001; Majda and Wang 2004); the idea of
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small scale bombardment of random vortices creating a large scale coherent
structure is crucial in that work; that assumption is also supported by the
observational record (Ingersoll et al, 2000). One of the challenges is to deduce
if realistic large scale coherent structures such the Great Reel Spot can be
predicted rigorously using the approach of this paper. We are far from our
goal at this time.

There are many other issues to be considered so far as the theoretical
problem is considered. For instance, what if the smallness (of the relative
amplitude) assumption is violated 7 We are then close to the situation of

%%—J(qﬁ,q):yAq—i-]:-f-s% (99)
where F is not small so that the deterministic system (zero noise system)
has non-trivial long time dynamics (non-trivial global attractor). This sce-
nario is similar to the classical SRB measure problem for a finite dimensional
dynamical system. In that case, a unique (distinguished) invariant measure,
the SRB measure, is the one selected by the vanishing noise limit (see Young
2001) with appropriate assumptions on the system and noise. In our infinite
dimensional setting, we anticipate that invariant measure for such noisy sys-
tems remains unique when all determining modes are forced independently.
This can be done via appropriate modification of the works of E, Mattingly
and Sinai (2001) (see also E and Liu 2002). A more interesting issue is the
limit of such invariant measures at vanishing noise. It seems that we are able
to show that this set of invariant measures (with noise level € as parame-
ter) is tight, and any limit should be an invariant measures of the zero-noise
deterministic system. It would be very interesting to determine if the limit
is unique since if it is unique, then the limiting invariant measure has the
distinguished role of an SRB measure in the infinite dimensional setting, and
thus all statistics should be performed utilizing this distinguished invariant
measure.

Going back to our theoretical problem, we would also like to know if the
invariant measure still remains unique if the smallness condition is violated.
Our situation differs from the ones available in existing literature in two
ways: we have a non-trivial mean part, and more importantly, the Brownian
motions on different modes may be dependent (in our case it is intuitively two
dimensional only since the distribution is determined with two parameters
only). Uniqueness of invariant measure when not all determining modes are
independently randomly forced is a major open problem (see E 2001, E and
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Mattingly 2001, Eckmann and Hairer 2001 among others). Another related
issue is what happens when the mean (deterministic) part of the forcing
vanishes. Then the problem resembles those studied by E, Mattingly and
Sinai (2001), Kuksin (2002). Again we encounter the difficulty of mode-wise
dependent random forcing.

Lastly, we treated the continuous problem here only. We may then nat-
urally ponder what happens to the original kick forcing problem? Does the
discrete problem also have a large scale coherent structure? Is the limit of
the discrete problem the continuous problem as we studied here? We will
provide the answer to some of these problems in the near future in a separate
manuscript.
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