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Suppose f is a convex function on an open interval I. The following facts are
well known and easy to verify:

(a) the second (distributional) derivative of f is a nonnegative locally finite Borel
measure on I, and any such measure is the second derivative of a convex
function f which is unique up to the addition of an affine function;

(b) it follows from (a) that

(1) (f",0) >0

whenever ¢ € C2°(I) is nonnegative; conversely, if f is a distribution on I
which satisfies (1), then f is a convex function.

The purpose of this note is to describe certain analogues of these facts for functions
of several variables and then to prove Theorem 2 below. Thus let U be a convex
open subset of R™. Suppose f is a convex function on U. Then, as a continuous
function, f defines a distribution on U. The derivatives of f mentioned below are to
be interpreted in that sense. In particular, the second derivative D?f is the Hessian
matrix of distributions on U whose entries are the second-order partial derivatives
fziz; of f. Let Bo(U) be the collection of all Borel sets £ C U having compact
closures contained in U. An analogue of (a) is

Theorem 1. Suppose f is convex on U. For 1 < i,j < n there are real-valued set
functions ;5 : Bo(U) — C which are complex measures on any compact subset of
U. For all p € Cg°(U) and k =1,--- ,n, the u,; satisfy the equations

(2) <f$z$j i ¢> = <:U“ija ¢>7
(3) </L’ij7 ¢xk> = <.uik7 ¢x]>

Further, the symmetric matrix
u(E) = (ﬂij(E))
is positive definite for all E € By(U). Conversely, if

p= (Mz’j)
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is such a (positive definite matrix valued) set function, then there is a convex
function f on U with D?f = u. Such an f is unique up to the addition of an affine
function.

The following analogue of (b) is a corollary of Theorem 1.
Corollary. Suppose f is a distribution on U satisfying

n

Z <f3clx,7¢z¢]> Z 0

i,j=1

whenever ¢; € C3°(U). Then f is a convex function on U.

More interestingly, there is a lower bound on the Hausdorff dimension of the support
of D?f for nontrivial convex functions f:

Theorem 2. With D2f = . as above, if y is supported on a Borel set having
Hausdorff dimension less than n — 1, then f is affine.

To begin the proofs, suppose that 1 is a nonnegative and radial C*° function
supported in B(0,1) and having integral 1. With n.(z) = e "n(xz/n) for e > 0
and for p a distribution on U, let p¢ = 7. * p be the usual e-mollification of p, a
distribution acting on those ¢ € C§°(U) whose support is distant at least e from

ou.

Proof of Theorem 1: Suppose that f is convex on U. Fix an open V C U
such that V has compact closure contained in U and choose ¢y > 0 such that
V + B(0,3¢p) € U. Then if 0 < € < €y, f€ is convex and C* on V. Suppose
1 € C§° is nonnegative, identically 1 on V', and supported in V 4+ B(0, 2¢p). Since

0< /V fon (@) dr < / Feon (@) (@)de =

[ 5@ @) do— [ 5@, (@) do
as € — 0, the nonnegative measures

€

xv () fz,0, (%) do

have uniformly bounded total variations on V. Since

|£e o+ 15,0,
e e e B

J
the same is true for the complex measures
Xv (@) 1,2, (x) dx.

Taking weak™® limits gives complex measures p;; on V satisfying (2) and (3) if
¢ € C3°(V). Letting V. — U then yields the set functions p;; whose existence is
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the first claim of Theorem 2. (The statement about the positive definite character
of p(E) follows from

Z /Vf;mj (z)pi(z)¢p;(z) dz >0

ij=1

and a limit argument.)

Suppose now that u = (uij) is as in Theorem 2. Suppose that V and ¢y are
as above and suppose additionally that 9V is C'. Fix i,j = 1,...,n. For € < ¢,
the C* functions y; have uniformly bounded L'(V + B(0, €)) norms (since the set
functions p;; are complex measures on V + B(0, 2¢p)). The conditions (3) and the
symmetry of 4 imply that there are C*° functions f. on V + B(0, ¢g) with

Pf _

5‘zixj J

The Poincaré-Sobolev inequalities and the uniform bounds on

11255122 (v +B(0,e0))

show that there is ¢ = ¢(n) > 1 such that the functions f. can be chosen to have

| fellLa(v+B0,e0)) < C

for some positive C' independent of €. Passing to a subsequence which converges
weakly in L9(V + B(0, ¢)) shows that there is f € LY(V + B(0, ¢g)) satisfying

02 f

8.131'37]‘

(4) = Hij

(in the sense of distributions on V' + B(0,¢p)). To check that f is equal a.e. to a
convex function on V', we begin by noting that, for 0 < € < €, (4) and the positive
definite assumption on p show that the mollifications f€ are convex on V. The
formula

1 %) or d2
#0) =1 / / n(ro) / L gtoyr=dr do + 9(0)
2 Yho1J0 —or dt?

for the §-mollification of a twice differentiable function g at 0 shows that §-mollifications
of twice differentiable convex functions decrease pointwise as 6 — 0. In particular,
if B(z,8) C V and 0 < § < &g, this applies to (f€)°(x) for each ¢ and so, in the
limit as € — 0, to fO(x). If

lim f°(x) = —o0

held for any = € V, it would follow from convexity that
. s
Lim | £l 2oy — o0

Thus the decreasing limit

lim f°(x)
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gives a realization of f as a convex function on V. Now suppose that V satisfies
the same hypotheses as V and is such that V' C V. Then the argument above
yields a convex function f on 1% satisfying (4) on V. Such an f can be adjusted
by the addition of an affine function to agree with f on V. Considering a sequence
Vi C Vo C -+ of such open sets with UV,, = U furnishes a convex f on U satisfying
D?f = pon U. Since such an f is clearly unique up to the addition of an affine
function, the proof of Theorem 1 is complete.

Proof of Corollary: If f is a distribution on U satisfying the hypothesis, then
it is clear that each f;,,, is nonnegative and therefore realizable as a nonnegative
Borel measure p;; on U. The hypothesis also implies that

n

S (farey 926G G 20

ij=1
for all real numbers (i, ..., (, whenever ¢ € C§°(U). It follows that

{faizis ¢2> + <f1’j1j7¢2> o (ptiis ¢52> + (155, ¢2>
|<f$ﬂj7¢2>| S 2 = 2

for ¢ € C§°(U). This implies that each f,,,, is realizable as a complex Borel
measure p;; on each open and bounded V' C U. Thus the desired result follows
from Theorem 1.

Proof of Theorem 2: Tt follows from the proof of Theorem 1 that if f is convex
on U, each of the distributions f,, is realizable as a function on U. Thus Theorem
2 can be proved by applying the following result to each f:

Lemma 1. Suppose the locally integrable function g on U has the property that
each of the distributions g, is realized by a Borel measure i; supported on a set
of Hausdorff dimension less than n— 1. Then g is equal a.e. to a constant function.

The proof depends on a simple fact:
Lemma 2. Suppose E C R" is a set of Hausdorff dimension less than n — 1. Then
the n-dimensional Lebesgue measure of

Ut>0 (tE)

is 0.

x

Proof of Lemma 2: The mapping 7 : x — To] is Lipschitz on

Es =En{0 <|z| <1/}

for each 6 > 0. Thus 7(Es) has (n — 1)-dimensional measure 0 in 3, _; and the
desired result follows by integrating in polar coordinates.

Proof of Lemma 1: Assume without loss generality that 0 € U and that

lim ¢(0) = g(0).

e—0
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This is possible since the local integrability of g implies that

lim g(2) = g(z)

e—0

for a.e. x € U. If his C' on U and = € U, then

1 n

h(z) = /0 S b, (at) dt + h(0)

Jj=0

leads to

| #ero) az =00 [ o@ a+ [ | 1¢<§>§xm%<x>%dw

for ¢ € C§°(U) and 6 = 6(¢) > 0. Thus

l9,¢) = lim(g*, ¢) =

lim [g° /¢ dx+//¢ Zz]gx] thd]

Letting ¢:(z) = ¢(x/t), we have

im [ g7 (2)z;0:(2) do = (ga;, 21

e—0

uniformly for § <t¢ <1 and so

6 0.0 = (img'©) [ ol M+//¢ Z}mjtwy

If E is a set of Hausdorff dimension less than n — 1 which supports each of the
measures g, then (5) implies that

(9.6) = (tmyg°(0)) [ 0@) da+ [ o) avte
where the measure v is supported on the set

Uiso(tE).

By Lemma 2, that set has Lebesgue measure 0. Since g is a locally integrable
function, it must be the case that v = 0, and Lemma 1 follows.



