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§1 Introduction

If Σ(n−1) is the unit sphere in Rn, the Radon transform Rf of a suitable function
f on Rn is defined by

Rf(σ, t) =
∫
σ⊥
f(p+ tσ) dmn−1(p) σ ∈ Σ(n−1), t ∈ R,

where the integral is with respect to (n− 1)-dimensional Lebesgue measure on the
hyperplane σ⊥. We also define, for 0 < δ < 1,

Rδf(σ, t) = δ−1

∫
[σ⊥∩B(0,1)]+B(0,δ)

f(x+ tσ) dmn(x).

The paper [5] is concerned with the mapping properties of R from Lp(Rn) into
mixed norm spaces defined by the norms

(∫
Σ(n−1)

[∫ ∞
−∞
|g(σ, t)|rdt

]q/r
dσ
)1/q

.

Here dσ denotes Lebesgue measure on Σ(n−1). The purpose of this paper is mainly
to study the possibility of analogous mixed norm estimates when dσ is replaced
by measures dµ(σ) supported on compact subsets S ⊆ Σ(n−1) having dimension
< n − 1. We are usually interested in the case r = ∞ and will mostly settle
for estimates of restricted weak type in the indices p and q and those only for f
supported in a ball. The following theorem, which we regard as an estimate for a
restricted Radon transform, is typical of our results here:

Theorem 1. Fix α ∈ (1, n − 1). Suppose µ is a nonnegative and finite Borel
measure on Σ(n−1) satisfying the Frostman condition∫

Σ(n−1)

∫
Σ(n−1)

dµ(σ1)dµ(σ2)
|σ1 − σ2|α

< ∞.
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Then

(1) λ µ
(
{σ ∈ Σ(n−1) : sup

t∈R
RχE(σ, t) > λ}

)1/α
. |E|1/2

for λ > 0 and Borel E ⊆ B(0, 1). That is,

‖RχE‖Lα,∞µ (L∞) . |E|1/2.

Suppose that α ∈ (0, n − 1). Say that a Borel set E ⊆ Rn satisfies the (Besicov-
itch) condition B(n − 1;α) if there is a compact set S ⊆ Σ(n−1) having Hausdorff
dimension α such that for each σ ∈ S there is a translate of an (n − 1)-plane or-
thogonal to σ which intersects E in a set of positive (n− 1)-dimensional Lebesgue
measure. It is well-known that, given ε ∈ (0, α), such an S supports a probability
measure µ satisfying the hypothesis of Theorem 1, but with α − ε in place of α.
In conjunction with Theorem 1, standard arguments imply that such an E must
have positive n-dimensional Lebesgue measure. That is, B(n−1;α) sets in Rn have
positive Lebesgue measure if α > 1. As will be pointed out in §2, the next theorem
implies that, for α ∈ (0, 1) and in certain cases, B(n − 1;α) sets have Hausdorff
dimension at least n−1+α. (Here is a notational comment: |E| will usually denote
the Lebesgue measure of E with the appropriate dimension being clear from the
context.)

Theorem 2. Suppose α ∈ (0, 1). Suppose µ̃ is a nonnegative measure on a compact
interval J ⊆ R which satisfies the condition

µ̃(I) . |I|α

for subintervals I ⊆ J . Let µ be the image of µ̃ under a one-to-one and bi-Lipschitz
mapping of J into Σ(n−1). If 0 < γ < β < α and

1
p

=
1 + β − γ
1 + 2β − γ

,
1
q

=
1 + γ

1 + 2β − γ
, η =

1− γ
1 + 2β − γ

then there is the estimate

‖RδχE‖Lq,∞µ (L∞) . |E|1/pδ−η

for Borel E ⊂ B(0, 1) and δ ∈ (0, 1).

Contrasting with Theorems 1 and 2, the next result provides a global estimate
for a restricted Radon transform:

Theorem 3. Suppose n ≥ 4. Let S be the (n− 2)-sphere

{σ = (σ1 . . . , σn) ∈ Σ(n−1) :
n−1∑

1

σ2
j = σ2

n}

and let µ be Lebesgue measure on S. Then there is an estimate

‖RχE‖Ln−2
µ (L∞) . |E|

(n−1)/n
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for Borel E ⊆ Rn.

This result is an analogue of (3) in [5] (which is a similar estimate but with µ
replaced by Lebesgue measure on Σ(n−1) and q = n). The proof of Theorem 3
parallels the proof in [5] but requires the L2 Fourier restriction estimates for the
light cone in Rn in place of an easier L2 estimate used in [5].

The remainder of this paper is organized as follows: §2 contains the proofs of
Theorems 2 and 3 and the statement and proof of a similar result in the case
when d is an integer strictly between 1 and n − 1 and µ is Lebesgue measure on
a suitable d-manifold in Σ(n−1); §3 contains the proof of Theorem 3; §4 contains
some miscellaneous observations and remarks: an analogue for Kahane’s notion of
Fourier dimension of Theorem 2 when n = 2 and examples bearing on the question
of whether B(n−1; 1) sets in Rn must have positive measure or only full dimension
(the answer depends on the set S of directions).

§2 Proofs of Theorems 1 and 2

As Theorem 1 is a consequence of its analogue, uniform in δ ∈ (0, 1), for the
operators Rδ, we will restrict our attention to these operators. A standard method
for obtaining restricted weak type estimates is to estimate |E| from below. We will
do this with a particularly simple-minded strategy based on two observations and
originally employed in [3] and [4]. The first observation is that

| ∪Nn=1 En| ≥
∑N

n=1
|En| −

∑
1≤m<n≤N

|Em ∩ En|.

The second is the well-known fact that if σ ∈ Σ(n−1) and if, for t ∈ R, P δσ denotes
a plate [σ⊥ ∩B(0, 1)] +B(0, δ) + tσ, then

|P δσ1
∩ P δσ2

| ≤ C(n)δ2

|σ1 − σ2|

(so long as σ1 and σ2 are not too far apart, an hypothesis we tacitly assume since it
can be acheived by multiplying the measures µ appearing below by an appropriate
partition of unity). Thus if, for n = 1, . . . , N , we have plates P δσn satisfying |E ∩
P δσn | ≥ C1λδ, it follows that

(2) |E| ≥ C1Nλδ − C(n)δ2
∑

1≤m<n≤N

1
|σm − σn|

.

Our strategy, then, will be to choose N and

σn ∈ {σ ∈ Σ(n−1) : sup
t∈R

RδχE(σ, t) > λ}

so that (2) gives, for example,

|E| & λ2µ
(
{σ ∈ Σ(n−1) : sup

t∈R
RδχE(σ, t) > λ}

)2/α
,

which is the analogue of (1) for the operator Rδ. For Theorem 1 the following
lemma will facilitate this choice:
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Lemma 1. Let µ be as in Theorem 1. There is C = C(µ) such that given n ∈ N
and a Borel S ⊆ Σ(n−1) with µ(S) > 0, one can choose σn ∈ S, 1 ≤ n ≤ N , such
that ∑

1≤m<n≤N

1
|σm − σn|

≤ CN2

µ(S)2/α
.

Proof of Lemma 1: Suppose σ1, . . . , σN are chosen independently and at random
from the probability space (S, µ

µ(S) ). Then, for 1 ≤ m < n ≤ N ,

E

( 1
|σm − σn|

)
=

1
µ(S)2

∫
S

∫
S

1
|σm − σn|

dµ(σm) dµ(σn) ≤

1
µ(S)2

(∫
S

∫
S

1 dµ(σm)dµ(σn)
)1−1/α(∫

S

∫
S

1
|σm − σn|α

dµ(σm)dµ(σn)
)1/α

≤ C

µ(S)2/α
,

by the hypothesis on µ. Thus

E

(∑
1≤m<n≤N

1
|σm − σn|

)
≤ CN2

µ(S)2/α

and the lemma follows.

Proof of Theorem 1: Let S be the set

{σ ∈ Σ(n−1) : sup
t∈R

RδχE(σ, t) > λ}

so that if σ ∈ S then there is t ∈ R such that if P δσ = [σ⊥ ∩B(0, 1)] +B(0, δ) + tσ
then |E ∩ P δσ | ≥ C1λδ. The conjunction of Lemma 1 and (2) yields

(3) |E| ≥ C1Nλδ − C2δ
2N2µ(S)−2α.

We consider two cases (noting that N = N0
.= λC1µ(S)2/α/C2δ makes the RHS of

(3) equal to 0):

Case I: Assume N0 > 10.
In this case choose N ∈ N such that

λC1µ(S)2/α

2C2δ
≥ N ≥ λC1µ(S)2/α

3C2δ
.

Then it follows from (3) that

|E| ≥ C1
λC1µ(S)2/α

3C2δ
λδ − C2δ

2λ
2C2

1µ(S)4/α

4C2
2δ

2
µ(S)−2/α = κλ2µ(S)2/α

for κ = C2
1/(12C2). This gives λµ(S)1/α . |E|1/2 as desired.

Case II: Assume N0 ≤ 10.
In this case (unless S is empty) we estimate

|E| ≥ C1λδ ≥
λ2C2

1µ(S)2/α

10C2
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which again yields λ µ(S)1/α . |E|1/2 and so completes the proof of Theorem 1.

The proof of Theorem 2 requires an analogue of Lemma 1:

Lemma 2. Suppose µ is as in Theorem 2. Suppose 0 < γ < β < α. Then there is
C = C(α, µ, β, γ) such that given a Borel S ⊆ Σ(n−1) with µ(S) > 0 and N ∈ N,
one can choose σn ∈ S, 1 ≤ n ≤ N , such that

∑
1≤m<n≤N

1
|σm − σn|

≤ CN (1+2β−γ)/β

µ(S)(1+γ)/β
.

Proof of Lemma 2: It suffices to show that there exists C such that if F is a
measurable subset of J with µ̃(F ) > 0 and if N ∈ 2N, then there are x1, . . . , xN/2
in F such that

(4)
∑

1≤m<n≤N/2

1
|xm − xn|

≤ CN (1+2β−γ)/β

µ̃(F )(1+γ)/β
.

Note that because β < α it follows that µ̃(I) . |I|β for subintervals I of J . Now
define η by ηβ = µ̃(F )/N and find a1 < b1 ≤ a2 < · · · < bN in J such that
µ̃(F ∩ [an, bn]) = ηβ . Let In = [an + η/L, bn− η/L] where L is chosen large enough
to guarantee that µ̃(F ∩ In) ≥ ηβ/2 and then find intervals Ĩn ⊆ In satisfying
µ̃(F ∩ Ĩn) = ηβ/2. Choose Borel mappings

τn : [0, ηβ/2]→ F ∩ Ĩn

such that the equalities

∫
F∩Ĩn

f dµ̃ =
∫ ηβ/2

0

f(τn(s)) dm1(s)

hold for reasonable functions f on F ∩ Ĩn. Then

∫ ηβ/2

0

∫ ηβ/2

0

∑
n 6=m

dm1(s) dm1(t)
|τm(s)− τn(t)|

=
∑
n 6=m

∫
F∩Ĩm

∫
F∩Ĩn

dµ̃(x) dµ̃(y)
|x− y|

.

Since γ < 1 and d(Ĩm, Ĩn) ≥ η/L, the last sum is

≤ Cηγ−1

∫
F

∫
F

dµ̃(x) dµ̃(y)
|x− y|γ

≤

Cηγ−1
(∫

F

∫
F

dµ̃(x) dµ̃(y)
|x− y|β

)γ/β
µ̃(F )2(1−γ/β) = Cηγ−1µ̃(F )2(1−γ/β)

since ∫
J

∫
J

dµ̃(x) dµ̃(y)
|x− y|β

<∞
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follows from the hypothesis on µ̃ and the fact that β < α. Thus

1
(ηβ/2)2

∫ ηβ/2

0

∫ ηβ/2

0

∑
n 6=m

dm1(s) dm1(t)
|τm(s)− τn(t)|

≤ Cη−2β+γ−1µ̃(F )2(1−γ/β) =

C
( µ̃(F )

N

)(−2β+γ−1)/β

µ̃(F )2(1−γ/β) = CN (2β−γ+1)/βµ̃(F )−(1+γ)/β .

It follows that there are s, t ∈ [0, ηβ/2] such, for m,n = 1, . . . , N , the points

xn = τn(s) ∈ F ∩ Ĩn, ym = τm(t) ∈ F ∩ Ĩm

satisfy ∑
n 6=m

1
|xm − yn|

≤ CN (2β−γ+1)/β

µ̃(F )(1+γ)/β
.

Now either xn ≤ yn for at least N/2 n’s or yn ≤ xn for at least N/2 n’s. Without
loss of generality, consider the first case and let

N = {n = 1, . . . , N : xn ≤ yn}.

If n1, n2 ∈ N and n1 < n2 then (because yn1 ∈ In1 and xn2 ∈ In2), we have

xn1 ≤ yn1 < xn2 ≤ yn2

and so
|xn1 − xn2 | > |yn1 − xn2 |.

Thus ∑
n1<n2

n1,n2∈N

1
|xn1 − xn2 |

<
∑
n1<n2

n1,n2∈N

1
|yn1 − xn2 |

≤

∑
n 6=m

1
|xm − yn|

≤ CN (2β−γ+1)/β

µ̃(F )(1+γ)/β
.

Renumbering the xn (n ∈ N ) gives (4) and completes the proof of the lemma.

Proof of Theorem 2: The proof is parallel to that of Theorem 1. Using Lemma 2
instead of Lemma 1, the analogue of (3) is

(5) |E| ≥ C1Nλδ − C2δ
2N (1+2β−γ)/βµ(S)−(1+γ)/β .

The two cases are now defined by comparing

N0
.=
(C1λ

C2δ

)β/(1+β−γ)

µ(S)
1+γ

1+β−γ

and 10. In case N0 > 10, choosing N in (5) such that N0/2 ≥ N ≥ N0/3 gives

|E| ≥ λ
1+2β−γ
1+β−γ δ

1−γ
1+β−γ µ(S)

1+γ
1+β−γ κ



RESTRICTED RADON TRANSFORMS AND UNIONS OF HYPERPLANES 7

where
κ = C

1+2β−γ
1+β−γ

1 C
−β

1+β−γ
2

(1
3
− 1

2(1+2β−γ)/β

)
> 0.

This leads directly to the desired estimate λµ(S)1/q . |E|1/pδ−η if N0 > 10. On
the other hand, the inequality N0 ≤ 10 gives λµ(S)(1+γ)/β . δ and so

(6) λAµ(S)A(1+γ)/β . δA

if A > 0. Since |E| ≥ C1λδ (unless S is empty), there is also the inequality

(7) λ1−A . |E|1−AδA−1

as long as 0 < A < 1. Multiplying (6) and (7) gives λµ(S)A(1+γ)/β . |E|1−Aδ2A−1.
Then the choice A = β/(1 + 2β−γ) yields λµ(S)1/q . |E|1/pδ−η again, completing
the proof of Theorem 2.

It follows from the proof of Lemma 2.15 in [1] that the estimate

‖RδχE‖Lq,∞µ (L∞) . |E|1/pδ−η

provides a lower bound of n−pη for the Hausdorff dimension of a Borel set contain-
ing positive-measure sections of hyperplanes associated with each of the directions
σ in the support of µ. Plugging in the values for p and η which are given in Theorem
2 yields first the lower bound n− (1− γ)/(1 + β − γ) and then, since that is valid
for 0 < γ < β < α, the desired lower bound of n − 1 + α. A subset S ⊆ Σ(n−1)

of Hausdorff dimension α ∈ (0, 1) and located on a curve as in the hypotheses of
Theorem 2, will, for each ε ∈ (0, α), support a measure µ satisfying the hypotheses
of Theorem 2, but with α − ε instead of α. It follows that the B(n − 1;α) sets
associated with such sets of directions S will all have Hausdorff dimension at least
n− 1 +α. Finally, note that if n = 2 then the hypothesis that µ be supported on a
curve is no restriction and so all B(1;α) sets in R2 have dimension at least 1 + α.

The next result gives, in certain special situations, an improvement over Theorem
1 on the index q in the bound ‖RχE‖Lq,∞µ (L∞) . |E|1/2.

Proposition 1. Suppose d ∈ N, 1 < d < n − 1. Suppose that µ is the image of
Lebesgue measure on a closed ball in Rd under a bi-Lipschitz mapping of that ball
into Σ(n−1). Then for Borel E ⊆ B(0, 1) there is the estimate

‖RχE‖L2d,∞
µ (L∞) . |E|

1/2.

Proof of Proposition 1: The proof is again analogous to the proof of Theorem 1.
The required analogue of Lemma 1 is

Lemma 3. Suppose µ is as in Theorem 4. Then there is C such that given a Borel
S ⊆ Σ(n−1) with µ(S) > 0 and given N ∈ N, one can choose σn ∈ S, 1 ≤ n ≤ N ,
such that ∑

1≤m<n≤N

1
|σm − σn|

≤ CN2

µ(S)1/d
.
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Proof of Lemma 3: Letting η > 0 be defined by ηd = µ(S)/(CN), where C is
sufficiently large, choose N η-separated points σ1, . . . , σN from S. Then, for fixed
m, ∑

n 6=m

1
|σm − σn|

. η−d
∫
∪nB(σn,η/2)

dσ

|σm − σ|
.

The function σ 7→ |σm − σ|−1 is in Ld,∞(dµ). So, still for fixed m,∑
n 6=m

1
|σm − σn|

. η−d(Nηd)1−1/d.

The lemma follows from the choice of η by summing on m.

Returning to the proof of Proposition 1, the analogue of (3) is now

|E| ≥ C1Nλδ − C2δ
2N2µ(S)−1/d,

the choice for N0 is λC1µ(S)1/d/(C2δ), and the remainder of the proof of Proposi-
tion 1 is completely parallel to that of Theorem 1.

§3 Proof of Theorem 3

As previously mentioned, the proof is an adaptation of the proof of (3) in [5].
We begin by noting that

̂Rf(σ, ·)(y) =
∫ ∞
−∞

e−2πiyt

∫
σ⊥
f(p+ tσ)dmn−1(p) dm1(t) = f̂(yσ).

Thus

‖Rf‖2L2
dµ(L2) =

∫
S

∫ ∞
−∞

∣∣f̂(yσ)
∣∣2dm1(y) dµ(σ) =

∫
R(n−1)

∣∣f̂(ξ, |ξ|)
∣∣2 dξ

|ξ|n−2

and so estimates for R as a mapping into L2
µ(L2) are just Fourier restriction esti-

mates for the light cone in Rn. More generally, we have∥∥∥( ∂
∂t

)β
Rf
∥∥∥2

L2
µ(L2)

=
∫
R(n−1)

∣∣f̂(ξ, |ξ|)
∣∣2 dξ

|ξ|n−2−2β
.

Thus the results of 5.17(b) on p. 367 in [6] give the estimate

(8)
∥∥∥( ∂
∂t

)β
Rf
∥∥∥
L2
µ(L2)

. ‖f‖p

whenever
−1

2
< β ≤ n− 3

2
and

1
p

=
2n− 2β − 1

2n
.

Estimate (8) will lead to a mixed norm estimate in which the “inside” norm is a
Lipschitz norm. The proof of Theorem 3 is simply an interpolation of this estimate
with the trivial L1 → L∞(L1) estimate for R. The following generalization of an
observation from [5] allows this interpolation.
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Lemma 4. Fix α > 0 and m ∈ N with m > α. For a Borel function g on R and for
t ∈ R, write ∆t for the usual difference operator given by ∆tg(x) = g(x+ t)− g(x),
x ∈ R. Let ‖g‖α be the Lipschitz norm given by

‖g‖α = sup
x∈R,t6=0

|∆m
t g(x)|
|t|α

.

Then, for 1 ≤ r <∞, we have

‖g‖L∞ . ‖g‖αr/(1+αr)
Lr,∞ ‖g‖1/(1+αr)

α .

Proof of Lemma 4: Write

∆m
t g(x) =

m∑
j=1

cjg(x+ jt)± g(x).

Assume that |g(x)| ≥ λ for some fixed x ∈ R and some λ > 0. If |t| is so small that

|t|α‖g‖α ≤
λ

2

then

|
m∑
j=1

cjg(x+ jt)| ≥ λ

2
.

Thus
λ

2

(
2
( λ

2‖g‖α
)1/α)1/r

≤ ‖
m∑
j=1

cjg(x+ jt)‖Lr,∞t . ‖g‖Lr,∞

and so
λ . ‖g‖αr/(1+αr)

Lr,∞ ‖g‖1/(1+αr)
α .

Since x ∈ R and λ ≤ |g(x)| were arbitrary, the desired inequality follows and the
proof of Lemma 4 is complete.

For the remainder of this section, the “outside” norms ‖ · ‖Ls will refer to the
measure µ on S while ‖ · ‖p will be the norm on Lp(Rn) (or on Lp(R) ) and ‖ · ‖α
will be the Lipschitz norm of Lemma 4. Taking r = 1 in Lemma 4 gives

(9) ‖Rf‖Ln−2(L∞) . ‖ ‖Rf‖
α/(1+α)
1 ‖L∞ ‖ ‖Rf‖1/(1+α)

α ‖Ln−2 .

Since
‖Rf(σ, ·)‖1 ≤ ‖f‖1,

for all σ ∈ Σ(n−1), (9) gives

(10) ‖Rf‖Ln−2(L∞) . ‖f‖
α/(1+α)
1 ‖ ‖Rf‖1/(1+α)

α ‖Ln−2 .

To bound the second term of the RHS of (10), we note that the estimate

‖ ‖Rf‖α‖L2 .
∥∥∥( ∂
∂t

)1/2+α

Rf
∥∥∥
L2(L2)
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follows from Lemma 1 in [5]. Thus if

α =
n− 4

2
and

1
p

=
n− 1− α

n
=
n+ 2

2n
,

(8) with β = 1/2 + α yields

‖ ‖Rf‖1/(1+α)
α ‖Ln−2 = ‖ ‖Rf‖α‖1/(1+α)

L2 .
∥∥∥( ∂
∂t

)1/2+α

Rf
∥∥∥1/(1+α)

L2(L2)
. ‖f‖1/(1+α)

2n/(n+2) = ‖f‖2/(n−2)
2n/(n+2).

With (10), this gives
‖ ‖RχE‖L∞‖Ln−2 . |E|(n−1)/n,

which is the desired result.

§4 Miscellany

Fourier dimension

As introduced by Kahane in [2], the Fourier dimension of a compact set E ⊆ Rn
is twice the least upper bound of the set of nonnegative β’s for which E carries a
Borel probability measure λ satisfying |λ̂(ξ)| = o(|ξ|β) for large |ξ|. It is observed
in [2] that the Hausdorff dimension of E is always at least equal to the Fourier
dimension of E and is generally strictly larger, since the Hausdorff dimension of
E ⊆ Rn does not change if Rn if embedded in Rn+1 while the Fourier dimension of
E now considered as a subset of Rn+1 will be 0. The next result is an analogue for
Fourier dimension of the n = 2 case of Theorem 2:

Proposition 2. Suppose α ∈ (0, 1) and S ⊆ Σ(1) has Hausdorff dimension α.
Suppose that E is a compact subset of R2 containing a unit line segment in each
of the directions σ ∈ S. Then the Fourier dimension of E is at least 2α.

Since Fourier dimension is generally strictly smaller than Hausdorff dimension, it
is not surprising that our lower bound 2α for the Fourier dimension of E is strictly
smaller than the lower bound 1 +α for the Hausdorff dimension of E which follows
from Theorem 2. Still, it follows from Proposition 2 that Kakeya sets in R2 have
Fourier dimension 2, providing a different proof of the well-known fact that such
sets have Hausdorff dimension 2. It would be interesting to have examples, for
α ∈ (0, 1), of sets E as in the proposition and having Fourier dimension equal to
2α.

Proof of Proposition 2: The heuristic is simple: for each β < α, S carries a Borel
probability measure µ satisfying

(11) µ(J) ≤ C |J |β

for intervals J ⊆ Σ(1) (where C depends on β and |J | denotes the “length” of J). For
each σ ∈ S find xσ ∈ R2 such that xσ+tσ ∈ E if |t| ≤ 1/2. Let ϕ ∈ C∞0 ([−1/2, 1/2])
be a nonnegative function with integral 1 and define the measure λ on E by

(12)
∫
E

f dλ =
∫
S

∫ 1/2

−1/2

f(xσ + tσ) ϕ(t) dt dµ(σ).
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Then

(13) |λ̂(ξ)| ≤
∫
S

∣∣∣ ∫ 1/2

−1/2

e−2πiξ·(xσ+tσ)ϕ(t) dt
∣∣∣ dµ(σ) =

∫
S

∣∣ϕ̂(ξ · σ)
∣∣ dµ(σ).

For each p ∈ N there is C(p) such that

∣∣ϕ̂(ξ · σ)
∣∣ ≤ C(p)
|ξ · σ|p

.

Thus for any ξ ∈ R2 there are two intervals J1, J2 ⊂ Σ(1) of length η > 0 such that
for σ ∈ Σ(1) − (J1 ∪ J2) we have

∣∣ϕ̂(ξ · σ)
∣∣ ≤ C(p)

(|ξ|η)p
.

With (11) and (13) this leads to

|λ̂(ξ)| . ηβ +
1

(|ξ|η)p
.

Optimizing with the choice η = |ξ|−p/(β+p) then gives

(14) |λ̂(ξ)| ≤ C(β, p)|ξ|−βp/(β+p),

and this implies the lower bound 2βp/(β + p) for the Fourier dimension of E. As
that bound should hold for 0 < β < α and for p ∈ N, the desired lower bound 2α
follows.

The problem with this heuristic argument lies, of course, in the measurability of
the selection σ 7→ xσ. A standard approximation procedure circumvents this: for
each N ∈ N, partition Σ(1) into N intervals J1, . . . , JN of length 2π/N . Choose (if
possible) σn ∈ Jn ∩ S and define

µN =
N∑
n=1

µ(Jn) δσn .

Define λN as in (12) but with µ replaced by µN . Then the argument above shows
that

|λ̂N (ξ)| ≤ C(β, p)|ξ|−βp/(β+p)

for |ξ| ≤ N1+β/p. Thus some weak* limit point λ of the sequence {λN} will satisfy
(14). This completes the proof of Proposition 2.

B(n− 1; 1) sets

Recall that E ⊆ Rn is a B(n− 1; 1) set if there is a compact set S ⊆ Σ(n−1) having
Hausdorff dimension 1 such that for each σ ∈ S there is a hyperplane orthogonal
to σ which intersects E in a set of positive (n− 1)-dimensional Lebesgue measure.
Although we have not proved it unless S sits on a nice curve in Σ(n−1), one expects
that B(n− 1; 1) sets should have Hausdorff dimension n. Here are some examples
in dimension 3:
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Example 1. Suppose that Ẽ is a (Kakeya) subset of R2 ↪→ R
3 having 2-dimensional

Lebesgue measure 0 and containing a line segment in each direction. If E is the
product of Ẽ and a line segment orthogonal to R2, then E is a measure-zero B(2; 1)
set having full dimension and associated with the 1-sphere of directions

S1
.= {σ = (σ1, σ2, σ3) ∈ Σ(2) : σ3 = 0}.

Example 2. Suppose that S ⊆ Σ(2) is a compact set of Hausdorff dimension 1
which supports a measure µ satisfying the condition∫

S

∫
S

dµ(σ1)dµ(σ2)
|σ1 − σ2|

< ∞.

(It is not too difficult to construct such an S and µ using a Cantor set with variable
ratio of dissection.) The proof of Theorem 1 yields in this case the estimate

‖RχE‖L1,∞
µ (L∞) . |E|

1/2

for Borel E ⊆ R3. Thus any B(2; 1) set associated with the set of directions S must
have positive measure.

Example 3. Consider the 1-sphere of directions

S2
.= {σ = (σ1, σ2, σ3) ∈ Σ(2) : σ2

1 + σ2
2 = σ2

3}.

As with S2 in Example 1, it follows from Theorem 2 that the B(2; 1) sets associ-
ated with S2 have full dimension. A difference between S1 and S2 appears when
considering the possibility of

(15) Lp → L2
µj (L

2)

the circle Sj). For j = 2 there will be such an estimate for p = 6/5. This follows
from (8) and, as mentioned in the proof of Theorem 3, is just the Tomas-Stein
restriction theorem for the light cone in R3. On the other hand, there is no estimate
(15) for µ1 (because there are no Fourier restriction theorems for hyperplanes). It
would be interesting to know whether, in contrast to the situation in Example 1,
the B(2; 1) sets associated with S2 must actually have positive measure.
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