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Abstract. We introduce a formal integral on the system of varieties mapping
properly and birationally to a given one, with value in an associated Chow group.
Applications include comparisons of Chern numbers of birational varieties, new bi-
rational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta function specializing
to the topological zeta function.

In its simplest manifestation, the integral gives a new expression for Chern-
Schwartz-MacPherson classes of possibly singular varieties, placing them into a
context in which a ‘change of variable’ formula holds.

The formalism has points of contact with motivic integration.

1. Introduction

1.1. In this note I review the notion of celestial integration, and sketch a few ap-
plications; for proofs and further details, the reader is addressed to [Alu05]. I am
very grateful to Jean-Paul and Cidinha for organizing the VIIIème Rencontre Inter-
nationale de São Carlos sur les singularités réelles et complexes au CIRM, relocating
for the occasion the idyllic surroundings of São Carlos, Brasil to the idyllic surround-
ings of Luminy, France. Perfect weather, exceptionally interesting talks, and spirited
conversations made the conference a complete success. What follows was the subject
of my lecture at the São Carlos/Luminy meeting, and preserves (for better or worse)
the informal nature of a seminar talk.

I thank the Max-Planck-Institut für Mathematik in Bonn, where much of this
material was conceived and where this note was written.

1.2. Summary: to a variety X I will associate a large group A∗CX (containing the
Chow group A∗X of X); for certain data D, S (arising, for example, from a divisor
D and a constructible subset S of X) I will define a distinguished element∫

S
11(D) dcX ∈ A∗CX .

These are the celestial integrals in the title; they are not defined as integrals, but
satisfy formal properties justifying the terminology. The celestial qualifier is meant
to evoke the fact that the modification systems on which this operation is defined are
close relatives of Hironaka’s voûte étoilée.

Applications of this construction:

• Comparison of Chern classes of birational varieties;
• Birational invariants;
• ‘Celestial’ zeta functions;
• Invariants of singular varieties (‘Stringy Chern classes’ );
• Relations with the theory of Chern-Schwartz-MacPherson classes.
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1.3. Digression: motivic integration. This is technically not necessary for the rest
of the talk, but useful nonetheless as ‘inspiration’ for the main construction.

The Grothendieck group of varieties is the free abelian group on symbols [X], where
X is a complex algebraic variety up to isomorphism, modulo relations

[X] = [Y ] + [X \ Y ]

for each closed subvariety Y ⊂ X. This group may be made into a ring by setting
[X] · [Y ] = [X × Y ].

Example 1.1. The class of a point is the identity for this multiplication. The class
[A1] is denoted L; thus

[Pn] = [A0] + [A1] + · · ·+ [An] =
Ln+1 − 1

L− 1
.

As Eduard Looijenga writes ([Loo02], p. 269), this ring—or rather its localization
at L—is interesting, big, and hard to grasp. In practice, it is necessary to further
tweak this notion, by a suitable completion with respect to a dimension filtration; I
will glibly ignore such important ‘details’.

Mapping X to its class in this ring gives a universal Euler characteristic: anything
satisfying the basic relations—e.g., topological Euler characteristic, Hodge polynomi-
als and structures,. . . , must factor through this map. This is motivation to ‘compute’
[X] for given X.

Through motivic integration, one can determine an element∫
S

L− ord Ddµ

in the completed Grothendieck ring of varieties, from the information of a divisor
D and a constructible subset S of the arc space X of X. If X is nonsingular, then
choosing D = 0, S = X gives

∫
X L0dµ = [X].

Motivic integration was defined and developed by Maxim Kontsevich, Jan Denef,
and François Loeser, and it is of course much deeper than this brief summary can
begin to suggest. There are many good surveys of this material, for example: [Cra04],
[DL01], [Loo02], [Vey05]. For an explanation of what makes motivic integration
motivic, see the appendix in [Cra04].

The definition of the integral
∫
S L− ord Ddµ relies on the study of the arc spaces of a

variety; dµ is a measure on this space, with value in the completed Grothendieck ring;
the integral is an honest integral with respect to this measure, and as such it satisfies
a change of variable formula: for example, if π : Y → X is proper and birational,
then ∫

X
L− ord Ddµ =

∫
Y

L− ord(π−1D+Kπ)dµ ,

where Kπ denotes the relative canonical sheaf.
This formula is at the root of spectacular applications of motivic integration. For

example, suppose X, Y are birational nonsingular, complete Calabi-Yau varieties;
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resolve a birational morphism between them:

V
π1

~~~~
~~

~~
~~ π2

  @
@@

@@
@@

X //_______ Y

with V nonsingular and π1, π2 proper and birational. Then the Calabi-Yau condition
implies Kπ1 = Kπ2 ; denoting this by K gives

[X] =

∫
X

L0 dµ =

∫
V

L− ord K dµ =

∫
Y

L0 dµ = [Y ] .

Hence: such varieties must have the same topological Euler characteristic, Betti num-
bers, Hodge polynomials, etc.

1.4. Motivic integration only serves as motivation for the rest of this lecture, or
maybe more correctly as a motivating analogy. The basic relation in the Grothendieck
ring holds (in a suitable sense) for Chern-Schwartz-MacPherson classes; ‘hence’ there
should be a ‘motivic’ theory of such classes: it should be possible to deal with the
classes within the framework of an integration theory, satisfying a suitable change-of-
variable formula; one should be able to play tricks such as the application sketched
above at the level of Chern classes.

This is the guiding theme in what follows.

2. Modification systems

2.1. The task is to define an ‘integral’ carrying information about Chern classes.
Taking at heart the lesson learned in motivic integration, we should start by defining
an appropriate context in which this integral may take its value.

Let X be a variety over an algebraically closed field of characteristic zero (the
precise requirement is that embedded resolution à la Hironaka should work).

Definition 2.1. I will denote by CX the category of proper birational maps

Vπ

π

��
X

with morphisms given in the obvious way by commutative triangles

Vπ1

α //

π1   B
BB

BB
BB

B
Vπ2

π2~~||
||

||
||

X

with α proper and birational.

Proper birational maps are often called modifications, and the natural way to think
of CX is as an inverse system, so it seems appropriate to call this category the modifica-
tion system of X. Also, it is useful to take this notion up to the following equivalence
relation: say that CX and CY are equivalent if there exist objects in CX and CY with
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a common source. For example, if X and Y are birational and complete then their
modification systems are equivalent in this sense.

2.2. I will (usually) denote by Vπ the source of the object π of CX . It is hard to resist
the temptation to think of the object π really in terms of its corresponding Vπ, and
of CX as a system of varieties birational to X.

Morally I would like to take the inverse limit of this system, and define ordinary
data such as divisors, Chow group, etc. for the resulting provariety. In practice,
it is more straightforward to simply define these data as appropriate limits of the
corresponding data on the individual Vπ’s. For example, denote by A∗Vπ the Chow
group of Vπ, with rational coefficients; then

AX := {A∗Vπ |π ∈ Ob(CX)}

is an inverse system of abelian groups under proper push-forward.

Definition 2.2. The Chow group of CX is the inverse limit of this system:

A∗CX := lim←−AX .

Thus, an element a ∈ A∗CX consists of the data of a class (a)id in the Chow group
of X and of compatible lifts (a)π for all π ∈ Ob(CX). I call (a)π the π-manifestation
of a.

Note that any class α ∈ A∗X determines a ‘silly’ class a ∈ A∗CX : just set
(a)π := π∗α. One intriguing (to me, at least) consequence of the construction given
in this paper is that certain classes on X have other, more interesting, lifts to A∗CX .
These lifts call for rational coefficients, hence the need for rational coefficients in the
definition of A∗CX .

Equivalent modification systems have isomorphic Chow groups.

2.3. Other standard notions may be defined similarly. Divisors and constructible sets
of sources Vπ are organized by direct systems, under pull-backs; the corresponding
notions for a modification system are defined as direct limits of these systems.

For example, a divisor D of CX is represented by a pair (π, Dπ) with Dπ a divisor
of Vπ, and where pairs (π, Dπ), (π ◦α, Dπ◦α) are identified whenever α : Vπ◦α → Vπ is
a proper birational map and Dπ◦α = α−1(Dπ):

Vπ◦α
α // Vπ

π // X .

An obvious way to get a divisor D is by pulling back a divisor of X through
the whole system; but note that there are many other divisors: for example, every
subscheme S of X determines a divisor of CX (represented by the exceptional divisor
in the blow-up of X along S). As a bonus, equivalent modification systems have the
same divisors, while birational varieties don’t.

2.4. The story is entirely analogous for constructible subsets of a modification system.
The ‘obvious’ such object is determined by a constructible (for example, closed) subset
of X, by taking inverse images through the system. While this is our main example,
one should keep in mind that the notion is considerably more general.
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Of course, equivalent systems have the same constructible subsets. For example, if
V maps properly and birationally to both X and Y :

V
πX

~~~~
~~

~~
~~ πY

  @
@@

@@
@@

X //_______ Y

then (πX , V ) determines the same subset of CX as (id, X) and the same subset of
CY as (id, Y ); abusing language I may denote this object by CX or CY according to
the context, but the reader should keep in mind that these constructible subsets of
different systems may be identified.

Details about all these notions, and natural definitions (such as sums of divisors,
or unions of constructible subsets) are left to the interested reader, and may be found
in [Alu05].

3. Celestial integrals

3.1. The main result of this note is that for a variety X, a divisor D of CX , and a
constructible subset S, there is an element (the ‘celestial integral’ of D over S, in CX)∫

S
11(D) dcX

of the Chow group A∗CX , satisfying interesting properties.
The actual definition of this element is uninspiring; I’ll give it at the end of the

paper for the sake of completeness. The properties satisfied by this ‘integral’ are more
important, so they get the honor of prime time.

Of course the notion is additive with respect to disjoint unions of constructible
subsets, as should be expected from an integral. What makes the notion interesting
is that it computes interesting objects for suitable choices of the input data, and
that it satisfies a change-of-variable formula (again, as should be expected from an
integral!).

More explicitly:

Theorem 3.1. (1) (Normalization) Assume X is nonsingular. If S is represented
by (id, S) with S ⊂ X a nonsingular subvariety, then(∫

S
11(0) dcX

)
id

= c(TS) ∩ [S] ,

the total homology Chern class of S, viewed as an element of A∗X.
(2) (Change-of-variables) If ρ : Y → X is proper and birational, then∫

S
11(D) dcX =

∫
S

11(D + Kρ) dcY ,

where Kρ denotes the relative canonical divisor of ρ.

The normalization property (1) is self-explanatory; it will serve as a point of depart
for extensions to possibly singular subsets S of a nonsingular variety, in §§5 and 6.
By contrast, (2) deserves an immediate clarification.
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3.2. First of all, note that under the given hypotheses we have that CX and CY are
equivalent systems; thus we may indeed treat S and D as data belonging to either.

Secondly, I have to clarify what I mean by the relative canonical divisor Kρ of
ρ : Y → X. It in fact turns out that there are more than one sensible such notions,
according to the context. In the simplest case, when X and Y are nonsingular, Kρ is
the divisor corresponding to the determinant of the differential dρ : TY → ρ∗TX. In
the general case there is a choice as to what is the correct generalization of TX; I’ll
come back to this point in §5.2.

Further, in general the scheme corresponding to the vanishing of the determinant
may not be locally principal. This is not a problem in our context, however, since
every subscheme of every variety in the modification system CX determines a divisor
of the system, as observed in §2.3.

4. Sketch of applications

4.1. Invariance of Chern classes. Exactly as in the case of motivic integration,
the change-of-variable formula yields an invariance statement for celestial integration
across birational morphisms preserving the canonical class.

Two varieties X, Y (nonsingular, for simplicity) are K-equivalent if their modifica-
tion systems are equivalent, and the canonical divisors KX , KY agree in the system(s):
that is, if the pull-backs of KX , KY to a common source agree:

V
πX

~~~~
~~

~~
~~ πY

  @
@@

@@
@@

X //_______ Y

π∗XKX = π∗Y KY .

In this situation, letting K = KπX
= KπY

and applying the change-of-variable
formula (2) gives:∫

S
11(D) dcX =

∫
S

11(D + K) dcV =

∫
S

11(D) dcY .

Therefore:

Theorem 4.1. Celestial integrals on K-equivalent varieties agree as elements of the
(common) Chow group of the corresponding modification systems.

4.2. For example, applying this observation with D = 0, S = CX (= CY on Y ) and
using (1) from §3 shows that c(TX) ∩ [X] and c(TY ) ∩ [Y ] are manifestations (in
A∗X, A∗Y , respectively) of the same class in the Chow group of the modification
system.

This recovers the fact (known, for example, through motivic integration) that the
Euler characteristics of K-equivalent varieties must agree. More generally, it shows
(via a simple application of the projection formula) that all numbers

ci
1 · cn−i

with n = dim X = dim Y must agree for K-equivalent varieties.
Incidentally, these numbers must therefore be invariant through classical flops, and

hence (as shown by Burt Totaro, [Tot00]) they must factor through the complex
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elliptic genus. It is a pleasant exercise to verify this fact directly: these numbers can
be assembled into a genus (which I would like to call the cuspidal genus, for reasons
which will likely be apparent to many readers), corresponding to the characteristic
exT (1 + xU); it is straightforward to check directly that the cuspidal genus factors
through the complex elliptic genus.

The invariance of Chern numbers mentioned above is of course only a very partic-
ular case of similar results accessible through celestial integration. Every choice of
a divisor and a constructible subset yields an analogous (but, unfortunately, usually
much less transparent) invariance statement.

4.3. Birational invariants. As another application, we can extract new birational
invariants from the integral. For example, let

dCan(X) := {deg

∫
CX

11(K) dcX | K effective canonical divisor of X} ⊂ Z .

Theorem 4.2. If X, Y are birational complete varieties, then dCan(X) = dCan(Y ).

For example: if X is birational to a Calabi-Yau variety Y , then dCan(X) = {χ(Y )}.
An interesting question is whether an analogous (and nontrivial) invariant can be

defined for varieties without effective canonical divisors. A few natural candidates
for such invariants, involving negative representatives, must be ruled out at the mo-
ment because of a sticky technical obstacle to the definition of celestial integrals for
noneffective divisors (see §7).

4.4. Zeta functions. In analogy with motivic integration, zeta functions can be
concocted from motivic integrals. For example, for a divisor D of X (say defined by
f = 0) set

Z(D, m) :=

∫
CX

11(mD) dcX ,

a series in the variable m, with coefficients in A∗CX ; here D is the divisor in CX
determined by D. Then

Theorem 4.3. The degree of Z(D, m) equals the topological zeta function of f .

This connection makes it possible to formulate analogs of the monodromy con-
jecture (see for example [Vey05], §6.8) for celestial zeta functions. I hope that the
celestial viewpoint will add something to the circle of ideas surrounding zeta func-
tions. For example, conceivably the relationship between celestial integration and the
theory of Chern-Schwartz-MacPherson classes (§6) may give a tool to compute local
contributions to the zeta function of a hypersurface in terms of the Segre class of its
singularity subscheme.

5. Stringy invariants

5.1. If X has sufficiently mild singularities, there is a notion of stringy Euler charac-
teristic of X, introduced by Batyrev. For example, in the particular case in which X
admits a crepant resolution V , the stringy Euler characteristic of X may be defined
to be the ordinary Euler characteristic χ(V ) of V : remarkably, this turns out to be
independent of the chosen crepant resolution.
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Celestial integration extends this notion to a whole class in A∗X. By the normal-
ization property (Theorem 3.1 (1)),(∫

CX

11(0) dcX

)
id

= c(TX) ∩ [X]

if X is nonsingular; but the expression on the left-hand-side defines an element of A∗X
even if X is singular (in fact, the celestial integral defines this expression together with
distinguished lifts to all varieties mapping to X). If X admits a crepant resolution π :
V → X, it is easy to check that this definition produces the push-forward π∗c(TV )∩
[V ]. By the Poincaré-Hopf theorem, therefore, the degree of this class recovers the
stringy Euler characteristic of X in this case.

This in fact holds for any X for which the stringy Euler characteristic is defined,
justifying the following:

Definition 5.1. The stringy Chern class of X is the identity manifestation(∫
CX

11(0) dcX

)
id

.

Coincidentally, a notion of stringy Chern class was produced simultaneously as
the one presented above, by Tommaso de Fernex, Ernesto Lupercio, Thomas Nevins,
and Bernardo Uribe (in fact, the preprint [dFLNU] appeared on the arXiv during
the São Carlos/Luminy conference!). While the approaches to the two notions differ
somewhat, the two stringy classes agree.

5.2. There is a subtlety here, which I can only touch upon in this note. For singular
X, the notion of celestial integral depends on the choice of a good notion of relative
canonical divisor. The ‘usual’ notion is constructed starting from the double dual ωX

of the Kähler differentials Ωdim X
X of X; this ‘ω flavor’ of the celestial integral is what

leads to the stringy Chern class recovering the usual stringy Euler characteristic, as
explained above, and agreeing with the class introduced by deFernex et al.

The ω flavor leads to a technical difficulty, which may make the celestial integral
(and hence stringy Chern classes) undefined if the singularities of X are not mild
enough—the technical condition is that they should be log terminal. Whether stringy
classes (or more generally celestial integrals) may be defined for varieties with more
general singularities is an open question, see §7.

One way out of this bind is to choose a different notion of relative canonical divisor
in the main set-up. For example, one can avoid taking the double-dual, leading to the
ω flavor as mentioned above; this leads to a different notion (which I call the Ω flavor
of the integral), which is defined for arbitrarily singular varieties. While this yields
a stringy Chern class for arbitrary varieties, the meaning of this class (for example
vis-a-vis the stringy Euler characteristic) has not been explored.

6. Chern-Schwartz-MacPherson classes from celestial integrals

6.1. The stringy notion presented in §5.1 amounts to taking the identity manifesta-
tion of the integral of 0 over the whole modification system CX of the variety X. By
the normalization property ((1) in Theorem 3.1), this yields the usual Chern class of
the tangent bundle of X when X is nonsingular.
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There is a different natural way to use the same tool and define a class generalizing
c(TX) ∩ [X]: embed X into an ambient nonsingular variety M , then compute the
identity manifestation of the celestial integral of 0 over the constructible subset X
determined by X: (∫

X
11(0) dcM

)
id

.

With due care, this class can be defined in A∗X (our definition of the celestial integral
would only place it in A∗M); remarkably, as such it does not depend on the ambient
variety M . In fact: (∫

X
11(0) dcM

)
id

!
= cSM(X) ,

the Chern-Schwartz-MacPherson class of X.
This is a famous notion, going back to Marie-Hélène Schwartz ([Sch65]) and Robert

MacPherson ([Mac74]). In MacPherson’s construction (as recalled, for example, in
[Ful84], §19.1.7), one obtains in fact a natural transformation c∗ from the functor of
constructible functions (with proper push-forward defined by Euler characteristic of
fibers) to the Chow group functor; applying c∗ to the constant function 11X defines
the class cSM(X).

6.2. The connection between celestial integrals and Chern-Schwartz-MacPherson classes
mentioned above goes in fact much deeper. Given any divisor D and any constructible
subset S of a modification system CX , one may define a constructible function by

p 7→ IX(D,S) := deg

(∫
S∩p

11(D) dcX

)
;

here, S ∩ p is the constructible subset of CX obtained by intersecting S with inverse
images of p through the system.

Theorem 6.1. (∫
S

11(D) dcX

)
id

= c∗(IX(D,S)) .

Thus, celestial integrals and Chern-Schwartz-MacPherson classes are, in a sense,
equivalent information: each can be obtained from the other.

Classes such as the stringy Chern class considered in §5.1 correspond, via MacPher-
son’s natural transformation, to specific constructible functions. These ‘stringy’ char-
acteristic functions deserve much further study.

The apparatus of Chern-Schwartz-MacPherson classes is an important ingredient
in the construction in [dFLNU].

6.3. It should be noted that the definition of celestial integration (which I will finally
summarize in §7) does not rely on Chern-Schwartz-MacPherson classes; the latter are
an honest subproduct of the former. Thus, one could try to recover the main defining
features of Chern-Schwartz-MacPherson classes from celestial properties.

For example, I would like to venture the guess that the covariance property of
Chern-Schwartz-MacPherson classes is a facet of the change-of-variable formula for
celestial integrals. This should mean that the change-of-variable formula is a Riemann-
Roch theorem in disguise. As things stand now I don’t even have a precise version of
this ‘guess’ to offer, and I will have to leave it at the stage of half-baked speculations.
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7. The definition

A summary of celestial integration without a definition of this notion would be
incomplete, even though I have tried to defend the idea that the definition itself is less
important than the fact alone that such a notion exists—in practice, the normalization
and change-of-variable properties suffice for interesting applications and do not require
the actual definition of the integral to be appreciated.

In any case, here is the definition. Given a divisor D and a constructible (say
closed and proper, for simplicity) subset S of the modification system CX , embedded
resolution of singularities ensures that there is an object π : Vπ → X in CX , a
normal crossing divisors E with nonsingular components Ej, j ∈ J , and divisors Dπ,
Sπ = ∪j∈JS

Ej of Vπ such that:

• D is represented by (π, Dπ);
• S is represented by (π, Sπ);
• Dπ + Kπ =

∑
j∈J mjEj, with mj ∈ Q.

This set of data depends on the chosen notion of relative canonical divisor Kπ. Assume
that all coefficients mj are > −1.

Definition 7.1.(∫
S

11(D) dcX

)
π

:= c(ΩVπ(log E)∨) ∩
∑

I⊂J, I∩JS 6=∅

[∩i∈IEi]∏
i∈I(1 + mi)

This expression defines the manifestation of the integral on all varieties such as Vπ,
in which the data D, S are ‘resolved’ by a normal-crossing divisor. The manifestation
on any other variety is obtained by push-forward, compatibly with the requirement
that the celestial integral is an element of the inverse limit A∗CX .

The obvious difficulty with this definition is that it is not at all clear that it should
not depend on the chosen π used to resolve the given data. In motivic integration,
similar expressions are obtained a posteriori, and compute intrinsically defined ob-
jects, hence it is clear that they do not depend on the choices. In celestial integration
I have to prove the necessary independence explicitly, directly from Definition 7.1.

Theorem 7.2. If all mj are > −1, then the given expression does define an element
of the inverse limit A∗CX .

This is proved by applying the factorization theorem of [AKMW02], which reduces
this claim to a computation across blow-ups along nonsingular centers. Manipulating
the expressions is a somewhat messy, but manageable, exercise in standard intersec-
tion theory.

The independence requires that all mj > −1 (even though the expression in Defi-
nition 7.1 makes sense as soon as no mj is = −1); this is where the singularities of X
may play a rôle for the particular case D = 0, as I discussed in §5.2: the restriction
mj > −1 in this case amounts to the requirement that X be log terminal.

The difficulty arising if some mj ≤ −1 is that in a chain of varieties connecting two
varieties where the data is resolved, one may appear for which the expression in Defi-
nition 7.1 does not make sense, for the mundane reason that one of the denominators
in the expression may vanish.
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This problem arises in many different contexts, of which celestial integration is but
one instance (see for example [Vey05], §8, Question I). While there is a feeling that
the obstacle is technical rather than conceptual, it has opposed stubborn resistance to
the attempts made so far to overcome it, and examples such as the one presented in
§3.4 in [Vey] suggest that the issue may be more fundamental than initially expected.

The question of exactly which celestial integrals are well-defined outside the range
specified in Theorem 7.2 is subtle and difficult. Answering this question is a worth-
while challenge: the present state of affairs limits the scope of the definition of certain
key celestial integrals and hence, as pointed out in §4 and §5, of some potentially in-
teresting applications.
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