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Fix a dimension d ≥ 2 and for x ∈ Rd and r > 0, let S(x, r) stand for the sphere
in Rd with center x and radius r. Identifying the collection of all such spheres with
S=̇Rd× (0,∞) ⊆ Rd+1, it makes sense to talk about the dimension of a (Borel) set
of spheres. Since the dimension of any S(x, r) is d − 1, it is natural to conjecture
that if E is the union of the spheres in a collection whose dimension exceeds one,
then |E|, the d-dimensional Lebesgue measure of E, is positive. When d = 2 this is
a difficult question, answered in the affirmative in Wolff’s paper [7]. When d > 2 we
will establish the same result much more easily by giving an elementary proof of the
following estimate for the spherical average operator Tf(x, r) =

∫
Σ(d−1) f(x−rσ)dσ.

Theorem 1. Suppose d > 2. Fix α ∈ (1, d+1) and suppose that µ is a nonnegative
Borel measure on a compact subset K of S. Let

Eα(µ) =
∫
K

∫
K

dµ(S1)dµ(S2)
|S1 − S2|α

denote the α-dimensional energy of µ, where |S1 − S2| = |y1 − y2|+ |r1 − r2| when
Sj = S(yj , rj). Then, for Borel sets E ⊆ Rd, we have the restricted weak type
estimate

(1) ‖TχE‖Lα,∞(µ) ≤ C Eα(µ)
1

2α |E| 12 ,

where the constant depends only on d, α, and the inf and sup of r on K.

Since any set whose Hausdorff dimension exceeds one carries a measure µ as in
Theorem 1 for some α > 1, the following corollary is immediate.

Corollary 1. Suppose E ⊆ Rd and T ⊆ S are Borel sets. Suppose that T has
dimension exceeding one and that for every (x, r) ∈ T , S(x, r) ∩ E has positive
(d− 1)-dimensional measure. Then |E| > 0.

We mention that the paper [2] contains an analogue of Corollary 1 in the case where
the projection of T onto Rd has dimension greater than one.

It should also be true that for 0 < α < 1 the union of an α-dimensional set of
spheres has dimension at least d − 1 + α. We will prove this if the points (x, r)
corresponding to the spheres either lie on a curve or comprise an appropriate Cantor
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set. It seems likely that these extra hypotheses are redundant, but we have not yet
been able to eliminate them.

Estimates like (1) are closely connected with the wave equation. Thus it is
not surprising that (1) implies the following estimate of Strichartz type, again a
higher-dimensional analogue of certain results in [7].

Theorem 2. Suppose α and µ are as in Theorem 1. Suppose u(x, t) is a solution of
the wave equation utt−∆u = 0 on Rd× [0,∞) with u(x, 0) = g(x), ut(x, 0) = h(x).
For q < α and ε > 0 there is the estimate

‖u‖Lq(µ) .
(
‖g‖W 2,(d−1)/2+ε + ‖h‖W 2,(d−3)/2+ε

)
.

This note is organized as follows: we begin with the proof of Theorem 1. The
argument here was first used in [3] and [4], and then, in a form essentially identical
to that employed here, in [5]. After the proof of Theorem 1 we sketch proofs for
the statements following Corollary 1. We conclude with the proof of Theorem 2.

Proof of Theorem 1:
For small 0 < δ < r, let Tδ be the operator which maps f to its average Tδf(x, r)

over the annulus A(x, r, δ) of radii r−δ and r+δ centered at x. The estimate (1) is
obviously a consequence of similar estimates, uniform in δ, for the operators Tδ. A
simple-minded strategy, introduced in [3], for obtaining such estimates for operators
like Tδ starts from the inequality

(2) |E| ≥
N∑
n=1

|En| −
∑

1≤m<n≤N
|Em ∩ En|,

where the En’s are subsets of E. In the present case, the En’s will be intersections
of E with annuli A(xn, rn, δ). The measures of the Em ∩ En will be controlled by
the integral Eα(µ) and the following crude observation (whose proof we include for
the sake of completeness).

Lemma 1. Suppose 0 < r0 < R0. There is a constant C = C(R0) such that if
0 < δ < r0 < r1, r2 < R0 and y1, y2 ∈ Rd, then

(3) |A(y1, r1, δ) ∩A(y2, r2, δ)| ≤
Cδ2

δ + |y1 − y2|+ |r1 − r2|
.

Proof of Lemma 1: Fix y1 and y2 and, with no loss of generality, suppose that

y1 = (0, 0, . . . , 0) and y2 = (t, 0, 0, . . . , 0).

For s1, s2 > 0, the spheres

S(y1, s1) = {(x1, . . . , xd) : x2
1 + · · ·+ x2

d = s2
1}

and
S(y2, s2) = {(x1, . . . , xd) : (x1 − t)2 + x2

2 + · · ·+ x2
d = s2

2}
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intersect in ∅ or in a (d− 2)-sphere {(x0
1, x2, . . . , xd)} where

s2
1 − s2

2 = 2tx0
1 − t2, x2

2 + · · ·+ x2
d = ρ2, and ρ2 = s2

1 − (x0
1)2.

Then

x0
1 = x0

1(s1, s2) =
t2 + s2

1 − s2
2

2t
and

ρ2 = ρ(s1, s2)2 =
4s2

1t
2 − (t2 + s2

1 − s2
2)2

4t2
.

Consider the map (s1, s2, σ) 7→ (x0
1, ρσ) of (0,∞)2 × Σ(d−2) into Rd and the corre-

sponding formula

(4)
∫ ∞

0

∫ ∞
0

∫
Σ(d−2)

f(x0
1, ρσ)J(s1, s2) ds1 ds2 dσ =

∫
Rd

f.

Suppose S(y1, s1)∩S(y2, s2) 6= ∅. If f approximates the function χ{s1=s01,s2=s02} and
cd−2 is the volume of the unit (d− 2)-sphere, it is easy to see that cd−2J(s0

1, s
0
2) =

cd−2ρ(s0
1, s

0
2)d−2. Some algebra then shows that

(5) J(s1, s2) =
(√|s1 + s2 + t| · |s1 + s2 − t| · |s1 − s2 + t| · |s1 − s2 − t|

2|t|

)d−2

.

We will use (4) to estimate

(6) |A(y1, r1, δ) ∩A(y2, r2, δ)| ≤ cd−2

∫
{|s1−r1|<δ}

∫
{|s2−r2|<δ}

J(s1, s2) ds1ds2.

If A(y1, r1, δ) ∩A(y2, r2, δ) 6= ∅ then it follows that |r1 − r2| ≤ |y1 − y2|+ 2δ. Now
recall that |y1 − y2| = |t| to observe that if |t| ≤ δ, then (3) follows from rj < R0.
On the other hand, if |t| > δ then |s1− r1|, |s2− r2| < δ and |r1− r2| ≤ |t|+ 2δ give

|s1 − s2 ± t| ≤ 2δ + |r1 − r2|+ |t| ≤ 2|t|+ 4δ ≤ 6|t|.

With (5) this shows that J(s1, s2) ≤ C(R0) and so (6) gives (3).

Let r0 be the inf of r on the (compact) support of µ. The analogue of (1) for Tδ
is the inequality

(7) λ2µ{TδχE(S) > λ} 2
α ≤ CEα(µ)

1
α |E|

for λ > 0 and 0 < δ < r0. Here Tδf(S) is the average of f over the annulus A(y, r, δ)
if S = S(y, r). If TδχE(S) > λ for S = S(y, r), then |E ∩ A(y, r, δ)| ≥ cλδ where c
depends only on r0. Thus if

S1, . . . , SN ∈ {TδχE(S) > λ}=̇T ,

then (2) and Lemma 1 give

(8) |E| ≥ cNλδ −
∑

1≤n<m≤N

Cδ2

|Sn − Sm|
.
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Control of the sum in (8) is provided by

Lemma 2. Let µ be as in Theorem 1. Then given n ∈ N and a Borel T ⊆ S with
µ(T ) > 0, one can choose Sn ∈ T , 1 ≤ n ≤ N , such that

∑
1≤m<n≤N

1
|Sm − Sn|

≤
(
Eα(µ)

)1/α
N2

µ(T )2/α
.

Proof of Lemma 2: Suppose S1, . . . , SN are chosen independently and at random
from the probability space (T , µ

µ(T ) ). Then, for 1 ≤ m < n ≤ N ,

E

( 1
|Sm − Sn|

)
=

1
µ(T )2

∫
T

∫
T

dµ(Sm)dµ(Sn)
|Sm − Sn|

≤

1
µ(T )2

(∫
T

∫
T
dµ(Sm)dµ(Sn)

)1−1/α(∫
K

∫
K

dµ(Sm) dµ(Sn)
|Sm − Sn|α

)1/α

≤
(
Eα(µ)

)1/α
µ(T )2/α

,

by the hypothesis on µ. Thus

E

( ∑
1≤m<n≤N

1
|Sm − Sn|

)
≤
(
Eα(µ)

)1/α
N2

µ(T )2/α

and the lemma follows.

With Lemma 2, (8) becomes

(9) |E| ≥ cNλδ − Cδ2
(
Eα(µ)

)1/α
N2/µ(T )2/α.

Let N0 = cλµ(T )2/α/(CEα(µ)1/αδ). Noting that N = N0 makes the RHS of (9)
equal to 0, we consider two cases:

Case I: Assume N0 > 10.
In this case choose N ∈ N such that

λcµ(T )2/α

2C
(
Eα(µ)

)1/α
δ
≥ N ≥ λcµ(T )2/α

3C
(
Eα(µ)

)1/α
δ
.

Then it follows from (9) that

|E| ≥ c λcµ(T )2/α

3C
(
Eα(µ)

)1/α
δ
λδ−Cδ2

(
Eα(µ)

)1/α λ2c2µ(T )4/α

4(CEα(µ)1/α)2δ2
µ(T )−2/α = κλ2µ(T )2/α/

(
Eα(µ)

)1/α
for κ = c2/(12C). This gives (7).

Case II: Assume N0 ≤ 10.
In this case (unless T is empty) we estimate

|E| ≥ cλδ ≥ λ2c2µ(T )2/α

10CEα(µ)1/α
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which again yields (7), concluding the proof of Theorem 1.

The following result will allow us to deal with the case 0 < α < 1.

Proposition 1. Suppose 0 < γ ≤ β ≤ α < 1 and suppose that µ is a finite
nonnegative Borel measure on a compact subset K of S satisfying the following
condition: given N ∈ N and Borel T ⊆ S, one can choose S1, . . . , SN ∈ T such that

(10)
∑

1≤m<n≤N

1
|Sm − Sn|

≤ CN (1+2β−γ)/β

µ(T )(1+γ)/β
.

Suppose
1
p

=
1 + β − γ
1 + 2β − γ

,
1
q

=
1 + γ

1 + 2β − γ
, η =

1− γ
1 + 2β − γ

.

Then there is the estimate

‖TδχE‖Lq,∞(µ) . |E|1/pδ−η

for Borel E ⊂ Rd and δ ∈ (0, 1).

It follows from the proof of Lemma 2.15 in [1] that the estimate

‖TδχE‖Lq,∞µ . |E|1/pδ−η

implies a lower bound of n−pη for the Hausdorff dimension of a Borel set containing
positive-measure sections of each sphere S in the support of µ. Plugging in the
values for p and η which are given in Proposition 1 yields the lower bound

n− (1− γ)/(1 + β − γ).

We will see below that if T ⊆ S has dimension α ∈ (0, 1) and either lies on a
curve or is a Cantor set, then T supports measures µ allowing choices of β and γ
arbitrarily close to α and so leading to the desired lower bound of n− 1 +α for the
dimension of ∪S∈T S. First, though, we indicate the proof of the proposition.

Proof of Proposition 1: The proof follows the proof of Theorem 2 in [5] and is only
a slight modification of the proof of Theorem 1. Using (10) instead of Lemma 1,
the analogue of (9) is

(11) |E| ≥ cNλδ − Cδ2N (1+2β−γ)/βµ(T )−(1+γ)/β .

The two cases are now defined by comparing

N0
.=
( cλ
Cδ

)β/(1+β−γ)

µ(T )
1+γ

1+β−γ

and 10. In case N0 > 10, choosing N in (11) such that N0/2 ≥ N ≥ N0/3 gives

|E| ≥ λ
1+2β−γ
1+β−γ δ

1−γ
1+β−γ µ(T )

1+γ
1+β−γ κ
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where
κ = c

1+2β−γ
1+β−γ C

−β
1+β−γ

(1
3
− 1

2(1+2β−γ)/β

)
> 0.

This gives the desired estimate λµ(T )1/q . |E|1/pδ−η if N0 > 10. On the other
hand, the inequality N0 ≤ 10 gives λµ(T )(1+γ)/β . δ and so

(12) λAµ(T )A(1+γ)/β . δA

if A > 0. Since |E| ≥ cλδ (unless T is empty), there is also the inequality

(13) λ1−A . |E|1−AδA−1

as long as 0 < A < 1. Multiplying (12) and (13) gives λµ(T )A(1+γ)/β . |E|1−Aδ2A−1.
Then the choice A = β/(1+2β−γ) yields λµ(T )1/q . |E|1/pδ−η again, completing
the proof of Proposition 1.

When µ is supported on a curve, the following lemma verifies the hypotheses of
Proposition 1. Thus it follows from standard facts about Hausdorff dimension that
if the Borel set K ⊆ S lies on a curve as in Lemma 3, if E ⊆ Rd is Borel, and if
∪S∈KS ⊆ E, then

(14) α
.= dim(K) ∈ (0, 1) implies dim(E) ≥ n− 1 + α.

Lemma 3. Suppose α ∈ (0, 1). Suppose µ̃ is a nonnegative measure on a compact
interval J ⊆ R which satisfies the condition

µ̃(I) . |I|α

for subintervals I ⊆ J . Let µ be the image of µ̃ under a one-to-one and bi-Lipschitz
mapping of J into S. Suppose 0 < γ < β < α < 1. Then given N ∈ N and Borel
T ⊆ S, one can choose S1, . . . , SN ∈ T such that

∑
1≤m<n≤N

1
|Sm − Sn|

≤ C(α, β, γ)N (1+2β−γ)/β

µ(T )(1+γ)/β
.

We omit the proof of Lemma 3 since it is technical, of little intrinsic interest, and
completely parallel to the proof of Lemma 2 in [5]. The next lemma is an analogue
of Lemma 3 in case K is a Cantor set.

Lemma 4. Suppose 2 ≤ k, l are positive integers and set α = log k/ log l. Suppose
that K ⊆ S supports a Borel measure µ such that Eα−ε(µ) < ∞ for 0 < ε < α
and having the property that for each M ∈ N, K is the union of kM l−M -separated
compact sets KMm of diameter ' l−M such that µ(KMm ) = k−M . Then, given
β ∈ (0, α), N ∈ N, and Borel T ⊆ S, one can choose S1, . . . , SN ∈ T such that

∑
1≤m<n≤N

1
|Sm − Sn|

≤ C(β)N (1+β)/β

µ(T )(1+β)/β
.
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Again, it follows from Proposition 1 that (14) holds for such Cantor sets K.

Proof of Lemma 4: Fix β, ε ∈ (0, α) such that

(15)
1 + α+ ε

α
=

1 + β

β
.

For a given N ∈ N and Borel T ⊆ S, choose M ∈ N such that

(16) N ' kMµ(T ).

Since µ(KMm ) = k−m, T must intersect & N of the KMm ’s. Therefore we can choose
' N points Sm ∈ T such that distinct Sm’s lie in distinct KMm ’s. Then, using the
hypotheses on the KMm ’s,

k−2M
∑

1≤m<n≤N

1
|Sm − Sn|

.
∑

1≤m<n≤N

∫
KMm

∫
KMn

dµ(T1)dµ(T2)
|T1 − T2|

.

∑
1≤m<n≤N

∫
KMm

∫
KMn

dµ(T1)dµ(T2)
|T1 − T2|α−ε(l−M )1−α+ε

≤ Eα−ε(µ)(lM )1−α+ε.

Since l = k1/α, it follows from (16) and (15) that

∑
1≤m<n≤N

1
|Sm − Sn|

. (kM )(1+α+ε)/α '
( N

µ(T )

)(1+α+ε)/α

=
( N

µ(T )

)(1+β)/β

as desired.

We will give the proof of Theorem 2 in case d is even. The proof for odd d is
similar but slightly less complicated. Before beginning, we recall the well-known
formula for the solution of the wave equation for even d:

u(x, t) =
1
γd

[( ∂
∂t

)(1
t

∂

∂t

)(d−2)/2(
td−1

∫
B(0,1)

g(x+ ty)√
1− |y|2

dy
)

+

(1
t

∂

∂t

)(d−2)/2(
td−1

∫
B(0,1)

h(x+ ty)√
1− |y|2

dy
)]

for some constant γd.

Proof of Theorem 4: Recalling that Tf(x, t) =
∫

Σ(d−1) f(x+ tσ)dσ, we define

Sf(x, t) =
∫
B(0,1)

f(x+ ty)
dy√

1− |y|2
.

Let t0 and T0 be the inf and sup of t on the support of µ. For β > 0, let Iβ be a
potential operator on Rd with smooth and nonzero multiplier pβ(ξ) equal to |ξ|−β
for |ξ| ≥ 1/(2T0). The next lemma is essentially the difference between the proofs
of Theorem 2 for even and odd d.
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Lemma 5. If µ is as in Theorem 1 then for q < α and 0 < β < 1/2 we have

(17) ‖Sf‖Lq(µ) . ‖Iβf‖L2,1(Rd).

Proof of Lemma 5: Suppose γ(ξ) is a smooth function on Rd which vanishes on
B(0, 1) and which equals |ξ|−d/2 for large ξ. Let m(ξ) be the multiplier e2πi|ξ|γ(ξ)
and suppose that K is the kernel on Rd whose Fourier transform is m. Define the
operator S0 by

S0f(x, t) =
∫
Rd

f(x+ ty) K(y) dy.

By the asymptotic expansion of the Fourier transform of (1− |y|2)1/2
+ , the operator

S is the sum of two operators like S0 and nicer terms. We will explain why

(18) ‖S0f‖Lq(µ) . ‖Iβf‖L2,1(Rd).

Define m̃ by
pβ(ξ)m̃(ξ) = m(ξ)

so that m̃(ξ) = e2πi|ξ|γ̃(ξ) where γ̃(ξ) is smooth and equal to |ξ|β−d/2 for large ξ.
Let the kernel K̃ have Fourier transform m̃ and put

S̃f(x, t) =
∫
Rd

f(x+ ty) K̃(y) dy.

Since
̂S0f(·, t)(ξ) = m(tξ)f̂(ξ) = pβ(tξ)m̃(tξ)f̂(ξ) =

t−βm̃(tξ)pβ(ξ)f̂(ξ) = t−β
̂

S̃Iβf(·, t)(ξ),

(18) will follow from t0 ≤ t ≤ T0 on the support of µ and

(19) ‖S̃f‖Lq(µ) . ‖f‖L2,1(Rd).

Let ε = 1/2 − β. According to the considerations on p. 426 of [6], the kernel K̃
satisfies |K̃(y)| ' |1 − |y| |−1+ε for |y| ≤ 2 and |K̃(y)| . |y|−(d+1)/2 for large y.
Thus

K̃ =
∞∑
j=0

K̃j

where K̃0 ∈ L2(Rd) and for j = 1, 2, . . .

|K̃j | . 2−jε2jχA(0,1,2−j).

(We recall that A(0, 1, 2−j) is the annulus centered at 0 with radii 1 − 2−j and
1+2−j .) If the operators S̃j correspond to the kernels K̃j , then S̃0 maps L2(Rd) into
L∞(µ) (since t is bounded away from 0 on the support of µ). Also, for j = 1, 2, . . .
we have

‖S̃jf‖Lq(µ) . 2−jε‖T2−jf‖Lq(µ) . 2−jε‖f‖L2,1(Rd)
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by the analogue of Theorem 1 for the operators Tδ. Since S̃ =
∑
S̃j , (19) follows.

Returning to the proof of Theorem 4, we can write

u(x, t) =
∑
|α|=d/2

cα(t)S(Dαg)(x, t) +
∑

|α|=d/2−1

dα(t)S(Dαh)(x, t)

where the coefficients cα and dα are bounded on the support of µ. Fix ε > 0 and
let β = 1/2− ε/2. If |α| = d/2 then Lemma 5 gives

‖S(Dαg)‖Lq(µ) . ‖IβDαg‖L2,1(Rd) . ‖IβDαg‖W 2,ε/2 . ‖g‖W 2,d/2+ε/2−β = ‖g‖W 2,(d−1)/2+ε .

Analogous considerations for h complete the proof of Theorem 2.
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