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1 Introduction

We analyse the existence question for essential laminations in 3-manifolds. The purpose of the article

is to prove that there are in�nitely many closed hyperbolic 3-manifolds which do not admit essential

laminations. This gives a de�nitive negative answer to a fundamental question posed by Gabai and

Oertel when they introduced essential laminations in [Ga-Oe], see also [Ga4, Ga5]. The proof is obtained

by analysing certain group actions on trees and showing that certain 3-manifold groups only have trivial

actions on trees. There are corollaries concerning the existence question for Reebless foliations and

pseudo-Anosov ows.

This article deals with the topological structure of 3-manifolds. Two dimensional manifolds are ex-

tremely well behaved in the sense that the universal cover is always either the plane or the sphere (for

closed manifolds), the fundamental group determines the manifold and many other important properties.

Similarly for a 3-manifold one asks: When is the universal cover R3? When does the fundamental group

determine the manifold? Are homotopic homeomorphisms always isotopic? An obvious necessary condi-

tion is that the manifold be irreducible, that is, every embedded sphere bounds a ball. As for 2-manifolds,

the existence of a compact codimension one object which is topologically good is extremely useful. A

properly embedded 2-sided surface not S2;D2 is incompressible if it injects in the fundamental group

level [He]. A compact, irreducible manifold with an incompressible surface is called Haken. Fundamental

work of Haken [Hak1, Hak2] and Waldhausen [Wa] shows that Haken manifolds have fantastic properties,

answering in the positive the 3 questions above.

But how common are Haken 3-manifolds, that is how common are incompressible surfaces amongst

irreducible 3-manifolds? In some sense they are not very common. Recall that Dehn surgery along an

orientation preserving simple closed curve Æ is the process of removing a tubular neighborhood N(Æ)

(a solid torus) and glueing back by a homeomorphism of the boundary - which is a two dimensional

torus T1 [Rol, Bu-Zi]. The surgered manifold is completely determined by which simple closed curve in

T1 becomes the new meridian, that is, which curve of T1 is glued to the null homotopic curve in the

boundary of N(Æ). Hence this is parametrized by a pair of relatively prime integers (q; p), corresponding

to the description of simple closed curves in T1. When viewed this way, the set of relatively prime (q; p) is

the Dehn surgery space � a subset of Z2 � R2. The same can be done iterating the process doing Dehn

surgery on links [He, Rol, Bu-Zi]. Notice that all closed, orientable 3-manifolds can be obtained from S3

by some Dehn surgery on an appropriate link in S3 [Rol]. So one can interpret how common a property

is by verifying how many of the Dehn surgered manifolds have that property. Along these lines some of

the many results on incompressible surfaces are: If K is a two bridge knot in S3 then almost all Dehn

surgeries on K yield manifolds without incompressible surfaces [Ha-Th]. The same is true for any knot

K in a manifold M so that M �K does not have any closed incompressible surfaces [Hat1]. Notice that

there are also results on the other direction: for example Oertel [Oe] proved that for many star links in

S3, then any non trivial Dehn surgery yields a manifold with incompressible surfaces. There are similar

results for Montesinos knots [Ha-Oe]. Basically a lot of it depends on whether the complement has closed
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incompressible surfaces or not. In many cases the complement does not have such surfaces, yielding the

non existence results for most Dehn surgered manifolds.

This amongst other reasons led to the concept of an essential lamination as introduced by Gabai

and Oertel in the seminal paper [Ga-Oe] of the late 80's. A lamination is a foliation of a closed subset

of the manifold. Roughly a lamination in a closed 3-manifold is essential if it has no sphere leaves,

no tori leaves bounding solid tori, the complement of the lamination is irreducible and the leaves in the

boundary of the complement are incompressible and end incompressible in their respective complementary

components [Ga-Oe]. Gabai and Oertel proved the fundamental result that essential laminations have

far reaching and deep consequences: the manifold M is irreducible, its universal cover is R3, leaves of

the lamination inject in the fundamental group level, eÆcient closed transversals are not null homotopic;

amongst other consequences [Ga-Ka3]. In addition manifolds with genuine essential laminations satify

the weak hyperbolization conjecture [Ga-Ka4]: either there is a Z�Z subgroup of the fundamental group

or the fundamental group is Gromov hyperbolic [Gr, Gh-Ha]. Genuine means that not all complementary

regions are I-bundles, or equivalently it is not just a blow up of a foliation. Brittenham also proved

properties concerning homotopy equivalences for manifolds with essential laminations [Br2].

In addition essential laminations are extremely common: For example if K is a non trivial knot in S3

then o� of at most two lines and a couple of points in Dehn surgery space, the surgered manifold contains

an essential lamination. This is obtained as follows: �rst Gabai constructed a Reebless foliation F in

(S3 � N(K)) which is transverse to the boundary [Ga1, Ga2, Ga3]. Reebless means it does not have a

Reeb component: a foliation of the solid torus with the boundary being a leaf, all other leaves are planes

spiralling to the boundary [Re, No]. Then results of Mosher, Gabai [Mo2] show that either there is an

incompressible torus transverse to F or there is an essential lamination in S3 � N(K) with solid torus

complementary regions. This lamination remains essential o� of at most two lines in Dehn surgery space

[Mo2] - see more on solid torus complementary regions later. Also Brittenham produced examples of

essential laminations which remain essential after all non trivial Dehn surgeries [Br3, Br4]. Roberts has

also obtained many important existence results concerning alternating knots in the sphere [Ro1, De-Ro]

(partly jointly with Delman) and punctured surface bundles [Ro2, Ro3].

So succesful was the search for essential laminations that at �rst one might wonder whether all man-

ifolds that can (irreducible, with in�nite fundamental group), in fact do admit essential laminations.

Given that an incompressible torus is an essential lamination, the Geometrization conjecture [Th2] sug-

gests that one should only have to analyse Seifert �bered spaces and hyperbolic manifolds [Sc, Th2].

The Geometrization conjecture may well have been proved at this point: after this article was written

Perelman announced a proof of this conjecture [Pe1, Pe2] � this is being very carefully scrutinized by

the experts at this point.

The situation for Seifert �bered spaces has been completely resolved: Brittenham produced examples

of Seifert �bered spaces which are irreducible, have in�nite fundamental group, universal cover R3, but

which do not have essential laminations [Br1]. Naimi [Na], using work of Bieri, Neumann and Strebel

[BNS], completely determined which Seifert �bered manifolds admit essential laminations.

For hyperbolic 3-manifolds there were two fundamental open questions: 1) (Thurston) Does every

closed hyperbolic 3-manifold admit a Reebless foliation? 2) (Gabai-Oertel [Ga-Oe], see also [Ga4, Ga5])

Does every closed hyperbolic 3-manifold admit an essential lamination? In 2001 question 1) was answered

in the negative by Roberts, Shareshian and Stein [RSS] who produced in�nitely many counterexamples.

The goal of this article is to answer question 2) in the negative. We now proceed to describe the examples.

Basically one starts with a torus bundleM over the circle and do Dehn surgery on a particular closed

curve. Let � be the monodromy of the �bration associated to a 2 by 2 integer matrix A, so that A is

hyperbolic. Let R be a �ber which is a torus. There are two foliations in R which are invariant under

the monodromy �, the stable and unstable foliations. The suspension ow in M induces two foliations

in M with leaves being planes, annuli and M�oebius bands. Suppose there is a M�oebius band leaf. Blow

up that leaf, producing a lamination with a solid torus complementary component with closure a solid

torus with core Æ and with some curves � removed from the boundary. The curves � are called the
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degeneracy locus of the complementary region of the lamination [Ga-Ka1]. One can think of � as lying in

the boundary of N(Æ), which is a two dimensional torus. Let (1; 0) be the curve in @N(Æ) which bounds

the �ber in M � N(Æ). Under an appropriate choice for the curve (0; 1) of @N(Æ) then � is represented

by (1; 2). Do Dehn surgery along Æ. If � is the new meridian (the Dehn surgery slope), then results of

essential laminations [Ga-Oe, Ga-Ka1] show that � remains essential in the Dehn surgery manifold M� if

the intersection number of � and � is at least 2 in absolute value. If � is described as (q; p) then this is

equivalent to jp� 2qj � 2. Therefore the open cases for essential laminations are jp� 2qj � 1.

For simplicity of notation we omit the explicit dependence of M on �. It is always understood that

M depends on the particular �.

In a beautiful and fundamental result, Hatcher [Hat2], showed that if p < q then then Dehn surgery

manifold M� = Mp=q has a Reebless foliation. This is done via an explicit construction involving train

tracks and branched surfaces. In 2001 Roberts, Shareshian and Stein considered a particular type of

monodromy, namely generated by the matrix

A =

�
m �1
1 0

�
m � �3

The eigenvalues of A are negative. Consider the point (0; 0) in R2 and its projection O to the �bering

torus R. Let Æ be the closed orbit of the suspension ow through O. Because the eigenvalues are negative,

the leaf of the stable foliation through O is a M�oebius band. When it is blown open into an annulus the

degeneracy locus is (1; 2) as described above. In a groundbreaking work, Roberts, Shareshian and Stein

[RSS] considered Dehn surgery on these manifolds and proved a wonderful result: if p is odd, m is odd

and p � q then Mp=q does not admit Reebless foliations. In this article we consider a subclass of these

manifolds and prove that they do not admit essential laminations:

Main Theorem: Let M be a torus bundle over the circle with monodromy induced by the matrix

A above. Let Æ be the orbit of the suspension ow coming from the origin and M(q;p) = Mp=q be the

manifold obtained by (q; p) Dehn surgery on Æ. Here (1; 0) bounds the �ber in M � N(Æ) and (1; 2)

is the degeneracy locus. Then if m � �4 and jp � 2qj = 1, the manifold Mp=q does not admit essential

laminations.

The manifold M � Æ is atoroidal [Th4, Bl-Ca] and �bers over the circle with �ber a punctured torus.

By Thurston's hyperbolization theorem in the �bering case M � Æ has a complete hyperbolic structure

of �nite volume [Th3]. By Thurston's Dehn surgery theorem Mp=q is hyperbolic for almost all p=q [Th1].

Therefore:

Corollary: There are in�nitely many closed, hyperbolic 3-manifolds which do not admit essential

laminations.

Another immediate corollary is:

Corollary: If m � �4 and jp�2qj = 1, then the manifoldsMp=q above do not admit Reebless foliations.

About half of this result has already been established by Roberts, Stein and Shareshian [RSS], namely

the situation when m is odd. See more on m odd below. Another consequence is:

Corollary: If m � �4 and jp� 2qj = 1 then Mp=q does not admit pseudo-Anosov ows.

For basic de�nitions and properties of pseudo-Anosov ows consult [Mo1, Mo2]. This result provides

in�nitely many hyperbolic manifolds without pseudo-Anosov ows. We stress that Calegari and Dun�eld

[Ca-Du] previously obtained conditions implying manifolds do not admit pseudo-Anosov ows and showed

for example that the Weeks manifold does not admit pseudo-Anosov ows.
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We remark that Dehn surgery on torus bundles over the circle has been widely studied, for example:

a) Which surgered manifolds have incompressible surfaces [Fl-Ha, CJR], b) Virtual homology [Bk1, Bk2],

c) geometrization [Jo, Th1, Th2, Th3, Th4].

Finally we remark that there are algorithms to decide these existence questions. Namely Jaco and

Oertel [Ja-Oe] produced an algorithm to decide whether a 3-manifold has an incompressible surface.

Recently Agol and Li [Ag-Li] did the same for essential laminations. These are theoretical algorithms

and so far for laminations there are no manifolds which can be shown not to have essential laminations

using the algorithm.

We now describe the key ideas of the proof of the main theorem. The proof is done by looking at group

actions on trees. For simplicity �rst consider the case of a Reebless foliation F . Novikov proved that

leaves are incompressible and transversals are never null homotopic [No]. Hence the lift to the universal

cover eF is a foliation by planes and its leaf space is a simply connected 1-dimensional manifold, which may

not be Hausdor�. The fundamental group acts on this object. Roberts et al analysed group actions on

simply connected non Hausdor� 1-manifolds and also on trees � under the conditions p � q and p;m odd,

they ruled out the existence of Reebless foliations [RSS]. Notice that the leaf space of the lifted foliationeF is an orientable object and it makes sense to talk about orientation preserving homeomorphisms. In

order to stay in the orientation preserving world they restricted to p;m odd.

Now consider an essential lamination �. The results of Gabai and Oertel [Ga-Oe] imply that the lift

to the universal cover e� is a lamination by planes in fM . To get the leaf space blow down closures of

complementary regions to points and also non isolated leaves (on both sides) to points. This produces

an order tree as de�ned by Gabai-Kazez [Ga-Ka2] also called a non Hausdor� tree in this situation [Fe].

A further appropriate collapsing of the (possible) non Hausdor� points yields an actual tree where the

group acts non trivially. The strategy is to show there are no nontrivial actions of the group on trees.

An action is trivial if it has a global �xed point. A crucial di�erence from the case of foliations is that in

the case of laminations the tree does not have a group invariant orientation in general. Hence orientation

dependent arguments cannot be used. This was very important and widely used in [RSS]. Since we do

not have an orientation here, the condition m odd does not play a role, which allows us to consider m

even as well. In addition if jp� 2qj � 2 there is an essential lamination in the surgered manifold, so this

exact condition has to appear in the analysis of the laminations case. Also jp� 2qj = 1 obviously implies

that p is odd. On the other hand there are many examples with p even so that Mp=q has a Reebless

foliation - for example p = 4; q = 1 or p = 8; q = 3 (this has p > q!). So to rule out Reebless foliations,

some further condition on p; q should be necessary when p is even. Except for ruling out trivial actions,

the proof here is done entirely in the tree � we never go back to the original non Hausdor� tree. For the

sake of completeness we state this result from which the main theorem is an easy corollary:

Theorem: Let Mp=q be the manifold described above. If m � �4 and jp � 2qj = 1, then every action

of �1(Mp=q) on a tree is trivial.

The fundamental group of Mp=q denoted by G can be generated by two elements � and � . Actions of

a homeomorphism on a tree are easy to understand: either there is a �xed point or in the free case there

is an invariant axis. An axis is a properly embedded copy of the reals where the homeomorphism acts

by translation. The proof breaks down as to whether the generators above act freely or not yielding 3

main cases to consider (when � acts freely it does not matter the behavior of �). The proof subdivides

into various subcases. Invariably the analysis goes like this: apply a certain relation in the group to a

well chosen point. One side of the relation implies the image of the point is in a certain region of the

tree while the other side of the relation implies it is in a di�erent region - contradiction! An important

idea is that of a local axis, which has all the properties of axis except perhaps being properly embedded.

Homeomorphisms with �xed points may have local axes. This is extremely useful in a variety of cases.

We note that Z actions on non Hausdor� trees had been previously analysed in [Fe] and [Ro-St1,
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Ro-St2], with consequences for pseudo-Anosov ows [Fe] and Seifert �bered spaces [Ro-St1, Ro-St2].

There is a large literature of group actions on trees which were brought to the forefront by Serre's

fundamental monograph [Se]. The analyis usually involve a metric which is invariant under the actions

[Mo-Sh1, Mo-Sh2, Mo-Sh3] or actions on simplicial trees [Se]. We stress that the tree involved in here is

not simplicial and it is not presented in general with a group invariant metric � unless there is a holon-

omy invariant transverse measure of full support in the lamination, e.g when there is an incompressible

surface. So the proof is entirely topological and in that sense elementary. The topology of the manifold,

particularly the condition jp � 2qj = 1 plays a crucial role. Notice that in the foliations case there is

a pseudo-metric lying in the background which is used from time to time to deal with some critical

cases in [RSS]. The pseudometric distance between two points measures how many jumps between non

separated points are necessary to go from one point to the other. This pseudometric was analysed and

used previously by Barbot in [Ba1, Ba2] with consequences for foliations. In the laminations case, such

a pseudo-metric does not give useful information, because in some sense the singularities or prongs also

allows one to \change" direction � there is much more exibility.

There has been a urry of activity in this area. We describe the results in more detail here and how

they relate to the results in this article.

Calegari and Dun�eld [Ca-Du] approached the existence problem for foliations, laminations and

pseudo-Anosov ows from a di�erent point of view. Following ideas and results of Thurston [Th5, Th6]

concerning the universal circle for foliations they showed that a wide class of essential laminations also

possess a universal circle. One consequence is that tight essential laminations with torus guts (see [Ca-Du]

for detailed de�nitions) have universal circles. Tight means the lifted lamination to the universal cover

has Hausdor� leaf space. Hence the fundamental groups act on the circle. Under certain conditions re-

lated to orderability of a �nite index subgroup, then the action lifts to a non trivial action in R and they

obtain nonexistence results for these types of laminations. For example they can show that the Weeks

manifold does not have Reebless foliations, pseudo-Anosov ows or general tight essential laminations.

The results on manifolds (eg the Weeks manifold) are computer assisted and so far there are computer

capability restrictions to extending them to other manifolds. In addition these results use heavily the

tight hypothesis.

A more recent article is that of Jinha Jun [Ju] who used the techniques of Roberts, Shareshian and

Stein to analyse Dehn surgery on the (�2; 3; 7) pretzel knot in S3. He proved that there are in�nitely

many hyperbolic Dehn surgeries on this knot, which yield manifolds without Reebless foliations.

A much more recent result (october 2003) is from Kronheimer, Mrowka, Ozvath and Szabo [KMOS].

This is part of a very wide program to use techniques of analysis, sympletic and contact geometry to

analyse 3 and 4-manifolds. Results of Eliashberg and Thurston [El-Th] allow one to perturb a Reebless

foliation to a tight contact structure. Using this the above authors show that in�nitely many hyperbolic

manifolds do not have Reebless foliations [KMOS]. In particular there are in�nitely many Dehn surgeries

on the (�2; 3; 7) pretzel knot which satisfy this. The techniques are extremely complicated and it is yet

unclear whether they can be extended to study essential laminations.

The tools and arguments in this article are more closely associated to those in [RSS], in that both

look at group actions on simply connected 1-dimensional spaces. However, as we explained before there

are 2 critical di�erences: the lack of transverse orientability for general essential laminations and the lack

of a useful group invariant pseudo-metric in the leaf space, both of which were extremely useful in [RSS].

Finally we stress that the results in this article provide the �rst and so far the only examples of

hyperbolic manifolds without essential laminations of any kind.

The results of this article mean that the search for structures more general than essential laminations,

but still useful takes an added relevance. One idea previously proposed by Gabai [Ga5] is that of a

loosesse lamination. We will have more comments on that in the �nal remarks section.

We are very thankful to Rachel Roberts who introduced the idea of considering group actions in the

foliations case and other ideas.
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2 The group

Here we compute the fundamental group of Mp=q. Start with M the torus bundle over the circle with

monodromy induced by

A =

�
m �1
1 0

�
where m � �3

For notational simplicity the dependence of M on A is omitted.

The eigenvalues of A are

m�
p
m2 � 4

4

which are both negative and the matrix is hyperbolic. The eigenvector directions produce two linear

foliations in R2 with irrational slope and invariant under A. They induce two foliations in the torus T 2.

Since A is integral it induces a homeomorphism � of T 2, which leaves the foliations invariant. Let O in

T 2 be the image of the origin. Let M be the suspension of � and let F be (say) the suspension of the

stable foliation of T 2. Then F has leaves which are planes, annuli and M�oebius bands. Identify T 2 with

a �ber in M and let Æ be the orbit through O, which is a closed orbit intersecting T 2 once. Since the

eigenvalues of A are negative, the stable leaf containing Æ is a M�oebius band. We do Dehn surgery on Æ.

We �rst determine the fundamental group of M �N(Æ). To do that let

D = N(Æ) \ T 2 (a disk); V = T 2 �D (a punctured torus):

Choose a basis for the homology of @N(Æ) = T1, a torus. Let (1; 0) be the curve in T1 bounding the �ber

V of M �N(Æ). Blow up the leaf of F through Æ. It blows to a single annulus and the complementary

region is a solid torus with core Æ. The closure of the complementary region is a solid torus with a

closed curve in the boundary removed. The removed curve is the degeneracy locus of the complementary

component [Ga-Ka1]. Since the leaf of F was a M�oebius band, the degeneracy locus intersects the curve

(1; 0) twice. Choose the curve (0; 1) so that the degeneracy locus is the curve (1; 2) in this basis. Let

Mp=q be the manifold obtained from M by doing (q; p) Dehn surgery on Æ. By results about essential

laminations, the lamination � remains essential in Mp=q if jp � 2qj � 2. Let  be the curve (0; 1) in T1
and � be the curve (1; 0). The degeneracy locus is the curve �2. Notice there are two tori here: one

which is a �ber of the original �bration (here denoted by T 2), another which is the boundary of N(Æ)

(here denoted by T1). The Dehn surgery coeÆcients refer to T1.

Suppose the disk D above is a round disk of radius � suÆciently small. The universal abelian cover

of T 2 � D is the plane with disks of radius � around integer lattice points removed. Let E be the one

around the origin. We pick 4 points in @E: a = (��; 0); b = (0;��); c = (�; 0) and d = (0; �), see �g. 1, a.

Let a0 be the image of a under A, etc.., see �g. 1, b.

The image of @E under A is an ellipse which can be deformed back to @E, see �g. 1, b. Notice b0; d0

are in the x axis and d0 = a.

Let the image of a in T 2�D be the basepoint of the fundamental group ofM�N(Æ) for simplicity still

denoted by a and likewise for b; c; d. Let l be an arc along the image of @E under A, going counterclockwise

from d0 to a0.

We pick a basis for �1(T
2 �D): Let � = ac � l1 (see �g. 1, c) where the arc ac � @E is traversed

in the counteclockwise direction and l1 is parametrized as f(t; 0) j � � t � 1 � �g. Here � denotes

concatenation of arcs. Let also

� = adclo � l2 � baclo;
where l2 is parametrized as f(0; t) j � � t � 1� �g, and the \clo" subscript means the arcs are traversed

clockwise in @E. We identify � and � with their images in T2 � D, so they generate the fundamental
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Figure 1: Computing the fundamental group of M �N(Æ).

group of T2 �D. It is easy to see that the curve  = [�; �] is just an counterclockwise turn around @E.

Then

��1�� = l � a0c0 � l01 � l�1:

The composition l�a0c0 is roughly one counterclockwise turn around @E so it is the curve . The straight

arc l01 goes from c0 = (m�; �) to (m(1��); 1��) - roughly going one step up and jmj steps to the left. This
together with l�1 can be isotoped to ��m (where we are identifying �; � with the appropriate covering

translates). We conclude that ��1�� = ��m. Similarly

��1�� = l � a0d0clo � l02 � b0a0clo � l�1

So in the same way it is easy to see that ��1�� = ��1. Notice that �; � generate �1(M �N(Æ)). Hence

�(M �N(Æ)) = f�; � j ��1�� = ��m; ��1�� = ��1;  = [�; �] g
After (q; p) Dehn surgery on Æ we obtain q + p� is the new meridian or �pq = 1. Hence

G = �1(Mp=q) = f�; � j ��1�� = ��m; ��1�� = ��1;  = [�; �]; �pq = 1g
In the proof we will use these and the following variations of these relations extensively:

��1�� = ��1; ����1 = �;

��1�� = ��m = ���m�1 = ����1��1�m�1

�� = ���m = ����m�1

�� = ��; or ����1��1 = ���1��1�

A little manipulation with the relations also yields

����1 = ���m�1 = �1��m

These and circular variations of these will be used throughtout the article.

Since q; p are relatively prime there are e; f in Z with ep + fq = 1. Let � = �f�e. Then � is a

generator of the Z subgroup of G generated by �;  and � = �q;  = ��p.

NOTATION: � In the arguments group elements act on the right.
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3 Outline of the proof

Given the presentation of G above the proof of the main theorem is broken into 4 cases:

� Case R - R-covered case

� Case A - � acts freely

� Case B - � acts freely � has a �xed point.

� Case C - � and � have �xed points.

If � acts freely on a tree, let A� be its axis. If � has a local axis, we denote it by LA�. Unlike a true

axis, a homeomorphism may have more than one local axis. The context will make it clear which one is

being considered.

Case R � R covered case.

The R-covered case is simple. Given that p is odd, this implies that � is orientation preserving in R.

The case � orientation preserving is simple. The other case (which implies m is even) leads to p > 3q

which for our purposes is enough. It also leads us to move away from orientation preserving arguments,

which is more like the laminations case. We note that there is an easy linear non trivial action on R

when p = 4; q = 1. Notice that in this case p is even.

Case A � � acts freely.

This implies that � also acts freely and A� = A� . We analyse how A� intersects A�� and other

translates (here A�� is the image of A� under �). Let u = ��. One uses the relation �� = �� to

analyse how A� intersects A�u which breaks down into various cases as to whether this intersection is

empty, a single point or a segment. One particularly tricky case needs the condition m 6= �3.

Case B � � acts freely, � has a �xed point.

Let z be a �xed point of � . First suppose that z is not in the axis A� of �. Suppose there is no �xed

point of � between z and A�. Here let U be the component of T � fzg containing A�. The case U� 6= U
is easy to deal with. It follows that U� = U producing a local axis LA� of � which is contained in U
and has one limit point in z. The proof breaks down as to whether LA� intersects A� or not. Empty

intersections are easy to deal with, the other case being trickier.

Then suppose z is in A�. We remark this is a crucial case, because this is likely what happens for the

essential laminations we know to exist when jp�2qj � 2. These come from the original stable lamination

on the �bering manifold. In that manifold, � acted freely and � had a �xed point in A�. After the

surgery � would still have at least a local axis, which contains a �xed point of � . So one knows the exact

condition jp� 2qj = 1 will have to be used here!

In this case consider U1 be the component of T �fzg containing z� and U2 the one containing z�
�1.

It is easy to show that U1� is not U1 and that U1� is in fact equal to U2. When U1�
�1 = U2 then one

produces a contradiction just using that p is odd. The case U1�
�1 6= U2 or U2� 6= U1 is much more

interesting. Here the exact condition jp � 2qj = 1 is used to show it would imply U1� = U1 which was

disallowed at the beginning. This actually has connections with the topology of the situation, see detailed

explanation in section 7. This is a crucial part of the proof. One very tricky issue is that a priori z is

only a �xed point of � and not of  � part of the proof is ruling this out.

Case C

Generally an axis is good because it gives information about where points go. The case of �xed points

is trickier and one many times searches for local axis.

Given two points a; b in a tree let [a; b] be the unique embedded segment connecting them. Let

(a; b) = [a; b] � fa; bg. Notice (a; b) is exactly the set of points in the tree separating a from b.
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Here let s be a �xed point of � and w a �xed point of � so that there is no �xed point of either in

(s; w). Notice there may be �xed points of � in (s; w)! Let W be the component of T � fsg containing

w and V the component of T � fwg containing s. The �rst part of the proof shows that W� = W
and V� = V . These are moderately involved cases. This immediately produces a local axis LA� of �

contained in V and with one ideal point w. One does not have yet a local axis for � because we do not

know a priori that � has no �xed points in (s; w). Some technical complications ensue.

One then shows that s�; s��1 are inW. Let z be the �xed point of � in [s; w) which is closest to w �
z could be s. Using the previous results show that the component U of T �fzg containing w is invariant

under � . Now this produces a local axis LA� of � in U with ideal point z and some further properties.

One then shows that w is not in LA� and z not in LA�.

We are now in familiar ground. If LA�\LA� has at most one point, then it is easy. When LA�\LA�

has more than one point we use arguments done in case B � this part of the arguments in case B is done

in more generality using local axis (rather than axis as needed in case B) and can be used in case C as

well. This �nishes the proof of case C. This �nally yields the proof of the main theorem.

The arguments in this article are very involved. One possibility to read the article and get a quick

grasp of the proof is to �rst analyse the R-covered proof. Then go to the proof of case B.2 - � acts freely

and � has a �xed point in the axis of � � this case admits essential laminations if jp� 2qj � 2 and the

topology can be detected. Then read the proof of � acts freely and the other proofs.

4 Preliminaries

Let � be an essential lamination on a 3-manifold N . We'll modify � if necessary to eventually obtain a

group action on a tree which is essentially the leaf space of the lifted lamination e� to the universal covereN . First if there are any leaves of � which are isolated on both sides, then blow each of them into an

I-bundle of leaves � needs to be done at most countably many times. Now e� is a lamination by planes

with no leaves isolated on both sides [Ga-Oe].

Suppose L is a leaf of e� which is non separated from another leaf F � that is, there are Li leaves ofe� with Li converging to both L and F . We do not want that L is not separated from some other leaf in

the other side (the one not containing F ). If that happens, blow up L into an I-bundle of leaves. This

can also be achieved by a blow up in �. Since there are at most countably many leaves non separated

from some other leaf we can get rid of leaves non separated from leaves on both sides. If needed use blow

ups so that non separated leaves of e� are not boundary leaves of a complementary region of e� (on the

opposite side). After all these possible modi�cations assume this is the original lamination �.

Now de�ne a set T� whose elements are: closures of complementary components of e� and also leaves

of e� which are non isolated on both sides. Then T� is an order tree [Ga-Ka2, Ro-St2], also called non

Hausdor� tree [Fe]. The fundamental group �1(N) naturally acts on T�. If e is any point of T� which

is non separated another point e0, collapse all points non separated from e together with e. This is OK

since no such e is non separated on more than one side and e also does not come from a complementary

region of e�. The collapsed object is now an actual tree T and the action of �1(N) on T� induces a natural

action of �1(N) on T . In our proof N =Mp=q and we will analyse group actions of G = �1(Mp=q) on the

tree T .

De�nition 4.1. A group action on a tree T is nontrivial if no point of T is �xed by all elements of the

group.

A lot of results on group actions on trees are to rule out non trivial group actions [Cu-Vo].

Given point a; b on a tree T let

(a; b) = fc 2 T j c separates a from bg:
If a = b, then (a; b) is empty, otherwise it is an open segment. Let [a; b] be the union of (a; b) and fa; bg.
Then [a; b] is always a closed segment.
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One fundamental concept here is the following:

De�nition 4.2. (bridge) If x is a point of a tree T not contained in a connected set B, then there is a

unique embedded path [x; y] from x to B. This path has (x; y) \ B = ; and either y is in B or y is an

accumulation point of B. We say that [x; y] is the bridge from x to B and if y is in B we say that x

bridges to B in y or that x bridges to y in B.

For example if T is the reals and B = (0; 1), x = 2, then the bridge from x to B is [2; 1]. One common

use of bridges will be: if x is not in a properly embedded line l (as an axis de�ned below) let [x; y] be

the bridge from x to l. The crucial property of the bridge is that given x and B, the bridge is unique. In

various situations this will force some useful equalities of points. Another fundamental concept is:

De�nition 4.3. (axis) Suppose that g is a homeomorphism acting freely on a tree T . Then g has an axis

Ag, a properly embedded line in T , invariant under g and g acts by translations on Ag.

This is classical. Here y is in Ag if and only if yg is in (y; yg2), that is yg separates y from yg2. Then

it is easy to see that the axis must be the union of [ygi; ygi+1] where i 2 Z [Ba1, Fe]. To obtain an

element in Ag consider any x 2 T . If xg 2 (x; xg2) done. Else there is a unique

y 2 [x; xg] \ [x; xg2] \ [xg; xg2]:

y is the basis of the tripod with corners x; xg; xg2 [Gr, Gh-Ha]. A simple analysis of cases using free

action yields y is in the axis.

Another simple but fundamental concept for us is:

De�nition 4.4. (local axis) Suppose l is a line in a tree T where a homeomorphism g acts by translation.

Then l is a local axis for g and is denoted by LAg. The local axis may not be unique, the context speci�es

which one we refer to.

For example if g acts in R by xg = 2x, then R+;R� are both local axes of g with accumulation point

x = 0. Another characterization of local axis: x is in a local axis of g if and only if xg separates x from

xg2 (same de�nition as for axis except requiring that g acts freely). Another characterization: suppose

xg is not x and let U be the component of T � fxg containing xg. Then x is in a local axis of g if and

only if Ug � U .
Let x be a point in a tree T . A prong at x is a non degenerate segment I of T so that x is one of the

endpoints of I. Two prongs at x are equivalent if they share a subprong at x. Associated to a subprong

I at x there is a unique component U of T � fxg containing I � fxg.
Notation � If x; y; z are elements in a tree we will write x � y � z if y separates x from z, or y is in

(x; z). We say that x; y; z (in this order) are aligned. Also x � y � z if one also allows y = z and so on.

Notice that this is invariant under homeomorphims of the tree.

The following simple results will be very useful:

Lemma 4.5. Let x be a point in a tree T . Then two prongs I1; I2 at x are equivalent if and only if the

associated complementary components U1;U2 are the same.

Proof. If I1; I2 are equivalent, there is y in I1 � fxg also in I2. Then clearly y 2 U1 and y 2 U2, so

U1 = U2. Conversely suppose U1 = U2. If I1 is not equivalent to I2, then I1 \ I2 = fxg because T is a

tree and it also follows that x separates I1 from I2. This would imply U1, U2 disjoint, contradiction.

Lemma 4.6. Let T be a tree and � a homeomorphism so that there are two points x; y of T so that

x � x� � y � y� or x � y � x� � y�. Then x and y are in a local axis of �.
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Proof. We do the proof for the �rst situation, the other being very similar. Let U be the component of

T � fxg containing x�. Using x � x� � y this is also the component of T � fxg containing y. Apply �,

then U is taken to the component of T � fx�g containing y�. Then U� is contained in U and x is in a

local axis. Apply ��1 to y to get y is in a local axis as well. We stress the two local axes produced in

this way a priori may not be the same: there may be a �xed point of � in (x; y).

Global �xed points

Here we consider the case that an essential lamination � on N would produce a trivial group action

on a tree T .

Recall the notion of eÆcient transversal to a lamination: let � be a transversal to a lamination �.

Then � is eÆcient [Ga-Oe] if for any subarc �0 with both endpoints in leaves of � and interior disjoint

from �, then �0 is not homotopic rel endpoints into a leaf of �. Gabai and Oertel showed that if � is

essential then any eÆcient transversal cannot be homotoped rel endpoints into a leaf of �. Also closed

eÆcient transversals are not null homotopic.

Lemma 4.7. If � is an essential lamination in N then the associated group action of �1(N) on a tree T

as described above has no global �xed point.

Proof. Suppose on the contrary that a point x of T is left invariant by the whole group. Look at the

preimage of x in the possibly non Hausdor� tree T�. There are 3 options:

1� x comes from a non singular, Hausdor� leaf E of e�. Then E is left invariant by the whole group

�1(N),

2� x comes from the closure R of a complementary region of e� in the universal cover. Then R is left

invariant by the whole group. In this case let E be a boundary leaf of R.

3� Finally x may come from a non Hausdor� leaf E. Then the orbit of E under �1(N) consists only

of the non separated leaves from E.

By construction of the tree T above these 3 cases are mutually exclusive. It follows that in any of

the 3 options there is at least one component B of eN �E which does not contain any translate of E. In

option 1) any component will do, in option 2) choose the component not containing R�E and in option

3) choose the component not containing leaves non separated from E.

Let A = �(E) where � : eN ! N is the universal covering map. Suppose �rst that A is not compact.

Then it limits on some leaves of � and there is a laminated box where A intersects it in at least 3 leaves

and the box intersects an eÆcient transversal to �. Lifting to eN so that the middle leaf is E then the

other 2 leaves are not E (eÆcient transversal) and one of them is contained in B producing a covering

translate of E in B, contradiction. The same is of course true if A intersects an eÆcient closed transversal.

Now A is compact. If A is non separating, then it intersects a closed transversal associated to g in

�1(N) only once. Same proof yields either Eg or Eg�1 in B, done.

Finally suppose that A is separating. Then C = �(B [E) is a compact submanifold of N which has

A as its unique boundary component. For any g in �1(C) then Eg is contained in B[E, so by hypothesis
must be E, therefore �1(A) surjects in �1(C). As � is essential then �1(A) also injects [Ga-Oe], so �1(A)

is isomorphic to �1(C). As C is irreducible [Ga-Oe], then theorem 10.5 of Hempel [He] implies that C

is homemorphic to A� I with A corresponding to A� f0g. This contradicts the fact that A is the only

boundary component of C. This �nishes the proof of the lemma.

Remark: � Notice that leaves of essential laminations may not intersect a closed transversal. For

example this occurs for separating incompressible surfaces. It also occurs for leaves of Reebless foliations

which have a separating leaf (which necessarily must be a torus or Klein bottle) � there are many

examples of these. So Reebless foliations which are also essential laminations need not be taut foliations!
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5 Case R � the R-covered case

For the remainder of the article we consider the manifoldMp=q as described in section 2 with fundamental

group G. The goal is to show it does not admit an essential lamination. Suppose then on the contrary

that there is an essential lamination � on Mp=q. Let T be the associated tree with non trivial action of

G on it. Notice that since �; � generate G then no point of T is �xed by both � and � .

The conditions on the parameters are jp�2qj = 1 and m � �4. They will not be used in full force for

all the arguments. Many times all we need is p � q or p odd or m negative or none of these. The proof is

done by subdiving into subcases and showing each subcase is impossible leading to various contradictions.

In this section we assume that T is homeomorphic to the real numbers and study non trivial actions

of G in R. Notice that  being a commutator is an orientation preserving homeomorphism of R. Since

�pq = id, then �p is also orientation preserving.

We use the relations from the group presentation of G or variations thereof.

Suppose �rst the action is orientation preserving on R:

Case R.1 � �, � are orientation preserving.

As � = ����1 then � also is orientation preserving and so is the whole group G. We subdivide into

subcases:

Case R.1.1 � � has a �xed point x.

Then x� is not x. Orient R so that x� > x. As  is orientation preserving then x = x. Then

applying ���m = �� to x:

x���m = x�� > x� = x

which uses � orientation preserving. Hence x��m > x or x� > x��m > x (as �m > 0). Hence

x��1 < x. But also

x��1 = x����1 = x���1 > x��1 = x:

This is a contradiction, ruling out this case.

Case R.1.2 � � acts freely, � has a �xed point x.

Assume � is increasing in R. As � = �q and q is positive then � is increasing. Here use x�� = x� =

x���m. Hence x���m = x��. As x� > x then x���m > x. Hence x� > x��1. Here  = ��p and

� = �q�p. As q � p then q � p � 0 and � is monotone decreasing or constant. Hence

x��1 < x� � x:

One fact that will be used in a lot of arguments is that under the condition p � q when ; � act freely

and x� > x then x � x��1. Notice that x��1� = x���1 = x��1. On the other hand

x� = x�� = x�� � x��1�� = x��1� < x� = x:

leading to the contradiction that both x� and x��1 are < x.

Notice a lot of these arguments are using orientation preserving homeomorphims.

Case R.1.3 � � acts freely increasing in R and � acts freely, also increasing in R.

Take any x in R. Then x�� > x so x���m > x. So x�� > x��m > x. Since x� � x this implies

x� > x. On the other hand,

x� = x���1��1 < x���1 = x;

contradiction.

Case R.1.4 � � acts freely and increasing in R, � acts freely and decreasing in R.
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This implies z��1 > z for all z inR. For any x inR, x� = x���1��1 > x���1 = x. Also x��1�� < x

for all x. Hence

x���m�1 = x��1�� < x;

for all x. Hence x�� < x���m < x� for all x (�m > 0). But this contradicts (x�)� > x� because � is

increasing everywhere as proved above.

This �nishes the analysis of T homeomorphic to R and orientation preserving action.

We now deal with orientation reversing cases. The general case of � orientation reversing is hard, so

we use one of the hypothesis to discard it as follows: �p = �q is orientation preserving as  always is.

We are mainly interested in jp�2qj = 1, which implies p odd and if p is odd and �p orientation preserving

then � is also orientation preserving. We now deal with the case � orientation reversing.

Case R.2 � � orientation reversing, � orientation preserving.

Let x be the unique �xed point of �. As x� 6= x, assume x� > x. As � = �q and q > 0, this implies k

is increasing in x. Notice that x��1 is the unique �xed point of �. The subcases depend on the relative

position of x�� and x��1. Notice that x� > x, so x�� < x� = x.

Case R.2.1 � x�� < x��1

Then x����1 = x��1 < x��2. Notice

x���m = x�� = x� > x

so x�� > x��m = x and so

x� < x��1 < x��2

or x�3 < x. As �3 = �3q and  = ��q, then x�3q�p < x. As � is increasing in x then 3q � p < 0 or

p > 3q. Arguments such as this will be used in various parts of the proof. Since in the end we want

p = 2q � 1 we can discard this case.

Remark �What we really wanted was to rule out this case without using p = 2q�1, but we were unable

to do that. Our partial results (without using p = 2q � 1) show that x��3 > x�� so x < x��2 < x� .

Also there is a �xed point of �2 between x� and x�2 and �2 acts expandingly (away from x) in some

point. Something similar is also true in the following case.

Case R.2.2 � x�� > x��1

First notice that x��1 < x��1. Use

(x�)���m = (x�)�� > x��1� = x

so x�2� > x��m = x and

x�2 < x��1 < x��1:

We conclude as in the previous case that x�3 < x or p > 3q, also disallowed.

The reader may think we just got lucky to get p > 3q as we have the hypothesis p = 2q � 1. The

remaining case explains why this has happened.

Case R.2.3 � x�� = x��1.

This case is much more interesting. First

x�� = x����m�1
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Since x�� = x��1 this is left invariant by �, so the right side is x���m�1 = x��m equal to x� . Since m

is even, �m preserves orientation, therefore x��2 = x� . Also x�� = x���1 = x��1. Now notice that

x���m = x�� = x�; so x� = x���m��1;

or x� = x���1. Now we show that x�2� = x��2. To show this use x��1� = x�� = x��1, hence

x��1 = x��2. Use

��2��2 = ��1��1� = �1�m��1��1

applied to x:

x��2��2 = x�1�m��1��1

or x��1��2 = x��1��1 so

x�2 = x��2��1:

Then

x��2 = x�2� = (x�)�� = x���1� = x��

or

x�4 = x

As seen before this implies p = 4q or p = 4, q = 1. This is disallowed by p being odd.

We remark that in this case the group in fact acts non trivially in R. For instance let

x� = �x; x� = x+ 1

It is easy to check they satisfy the equations if m is even!

It may be true that this is the only possibility and when x�� 6= x��1 we get a perturbation of this,

namely that p is close to 4q and in fact p > 3q.

6 Case A � � acts freely

In this section we consider the case that � acts freely in T . This implies that �q acts freely in the tree,

and therefore � itself acts freely. In addition the axes are the same A� = A� . Here we will use the

relation �� = �� in the following form, de�ning an element u of G:

u = ����1��1 = ���1��

We will consider the intersections A� \ A�� and A� \ A�u. The axis A� is homeomorphic to the real

numbers. Put an order < in A� so that x < x� for any x in A�. This induces an order <� in A�� so

that x < y in A� if and only if x� <� y� in A�� and similarly put order <u in A�u so that x < y in

A� if and only if xu <u yu in A�u.

Case A.1 � A�� \A� has at most one point.

If the intersection is a single point x, let y = x as well.

If they are disjoint, there is a single point x in A� bridging to A��. For intance x is the unique point

so that there is a path from x to A�� intersecting A� only in x. Another way to characterize x, it is

the only point so that x separates the rest of A� from A��. In other words the components of T � fxg
containing A�� and the rest of A� are all disjoint. In the same way there is a single y in A�� which is

the closest to A�. Then [x; y] is a path from A� to A�� so that (x; y) does not intersect either A� or
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Figure 2: The case A� \ A�� = ;. The same arguments can be used for intersection a single point. a. Using

A�u = A��
�1��1�, b. Using A�u = A����

�1��1.

A�� � this is an equivalent way to get the segment [x; y]. This path [x; y] is called the bridge from A� to

A��. This extended notion of bridges will also be used in the article. It is invariant by homemorphisms

of the tree. The bridge between connected sets is also unique.

We now use the relation above. The proof is very similar to ping pong lemma arguments. Since A�

is invariant under  and � , the right side says that A�u = A��
�1��1�.

The bridge from A� to A�� is [x; y] - degenerate [x; x] when they intersect in a point. Therefore

the bridge from A��
�1 to A� is [x��1; y��1], see �g. 2, a. Then the bridge A��

�1��1 to A� is

[x��1��1; y��1��1]. This implies that the bridge from

A��
�1��1� to A�� is [x��1��1�; y��1��1�]:

Notice that y��1��1 is not y��1. Therefore y��1��1� is not y. It now follows that

the bridge from A�u = A��
�1��1� to A� is [x��1��1�; x]:

On the other hand use that A�u = A����
�1��1. The bridge from A��� to A� is [y�; x� ], see �g. 2, b.

The bridge from A����
�1 to A��

�1 is [y���1; x���1] and the bridge from A��
�1 to A� is [x�

�1; y��1].

Since x��1 is not equal x���1 then the bridge from A����
�1 to A� is [y���1; y��1]. Finally

the bridge from A�u to A� is [y���1��1; y��1��1]:

Since the bridge from A�u to A� is uniquely de�ned this implies

y��1��1 = x; y���1��1 = x��1��1�:

So y = x�� and

x��1��1� = x�����1��1; or x��1��1��� = x���:

Use ��1�� = ���m�1, so

��1��1��� = ��1���m�1� = ��m = �1��1��;
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Figure 3: Evaluating A�u \ A�, using A�u = A��
�1��1�, a. y��1��1�<�x, b. y��1��1� >� x, c.

y��1��1� = x.

so x�1��1�� = x��� , or x�1��1 = x� . This implies x�2 = x and as seen before implies p = 2q. This

is disallowed by p odd.

We now consider intersections with more than one point.

Case A.2 � A� \A�� = [x; y].

Here x is not equal to y and x < y in A�. We include some ideal point cases: x could �1 and y could

be +1, in which case the intersection is a ray in A�. On the other hand we can never have A� = A��.

Otherwise �; � leave A� invariant, so the whole group does. But A� is homemorphic to R � this was

disallowed by no actions on R.

Since the intersection is a non trivial interval one considers separately whether the orders <, <� agree

on the intersection.

Case A.2.1 � The orders < and <� agree on A� \A��.

It is easy to check that this is equivalent to x��1 < y��1 inA�, by applying � to the pair x��1; y��1

both of which are in A�.

We now consider A�u. We �rst use A�u = A��
�1��1�. Notice that

A� \A��
�1 = [x��1; y��1] so A��

�1��1 \A� = [x��1��1; y��1��1];

in the correct order. Hence

A�u \A� = [x��1��1�; y��1��1�]:

In addition x��1��1� <� y��1��1�.

Notice that x��1��1 < x��1 in A�, hence x��1��1� <� x in A��. Also y��1��1� <� y in A��.

Given this there are 3 options:

1) If y��1��1� <� x in A�� then A�u \A� = ; and the bridge from A� to A�u is [x; y��1��1�],

�g. 3, a.

2) If y��1��1� >� x in A�� then y��1��1� is in (x; y) and A�u \ A� = [x; y��1��1�]. In

addition the orders < and <u agree on A� \A��, see �g. 3, b.

3) If y��1��1� = x, then A�� \ A� = [z; x]. In addition if z is not x then the orders < and <u

disagree on A�\A�u, see �g. 3, c. In this case both x and y are �nite. The last option can occur because
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Figure 4: Using A�u = A����
�1��1, a. x� > y, b. x� < y, c. x� = y.

A�u can enter A� in x but rather than going up, going in the opposite direction � the one containing

x��1.

Notice that the 3 options are mutually exclusive. We now consider A�u = A����
�1��1. Use

A�u \A� = (A��� \A��)�
�1��1:

Here A��� \A� = [x�; y� ]. So whether A����
�1 and A� intersect, depends on the relative positions of

x� and y. Notice that x� > x in A�.

1') If x� > y in A� then A��� \A�� = ;, so A����
�1 \A� = ;. Therefore A�u\A� = ; and the

bridge from A� to A�u is [y��1��1; x���1��1], see �g. 4, a. Here x; y �nite.

2') If x� < y in A� then A��� \ A�� = [x�; y], then A� \ A�u is [x���1��1; y��1��1] (the �rst

term smaller in A�), and the orders < and <u agree on A� \A�u, see �g. 4, b.

3') If x� = y, then A��� \ A�� = [y; v]. Notice we may have v 6= y. So A�u \ A� = [y��1��1; w],

where w = v��1��1. Here x and y are �nite and if w is not equal to x���1��1, then the orders < and

<u disagree on A�\A�u. Notice that order in A��� goes from v to y, so the increasing order <u in A�u

from w = v��1��1 to y��1��1, see �g. 4, c.

Notice that again all 3 cases are mutually exclusive. Therefore we can match the 2 pairs of 3 possi-

bilities to get 3 mutually exclusive cases:

I � y��1��1� <� x in A�� or x� > y in A� and A� \A�u = ;. In this case

[x; y��1��1�] = [y��1��1; x���1��1]

II � y��1��1� >� x in A�� or x� < y in A� and

A� \A�u = [x; y��1��1�] = [x���1��1; y��1��1]

III � y��1��1� = x or x� = y. Then

A� \A�u = [z; x] = [y��1��1; w]
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If z is not x then the orders < and <u disagree on A� \A�u.

We now deal with each situation separately.

Situation II �
Here x�� = x� and x� is in (x; y). Let U1, (respectively U2) be the component of T �fx�g containing

y (respectively x). Here [x; y] = A� \A��, x� is in the interior of [x; y] and then the orders <, <� agree

on [x; y]. It follows that the prongs [x�; y], [x�; y�] are equivalent. By lemma 4.5, U1� = U1. In the same

way U2� = U2. This situation is disallowed by the following lemma.

Lemma 6.1. Suppose that L is a local axis for � and r is a point in L with r� = r. Suppose that U1

(U2 respectively) is the component of T � frg containing r� (r��1 respectively). Then at least one of U1

or U2 is not invariant under �.

Proof. On the contrary suppose that U i� = U i for i = 1; 2. We will arrive at a contradiction. Let

Vi = U i�
�1. Then the conjugation of � with ��1 by � implies that V i� = Vi, i = 1; 2. Use

r��1�� = r��m

Since p � q, then r � r��1 in L (with � increasing in L and so r� is in V2 [ fr��1g contained in U2.

Therefore r��m is in U2. Consequently r��1�� is in U2 and r��1� is in U2�
�1 = V2 (*).

On the other hand r 2 V2 [ fr��1g, so

r���1 = r� 2 V2 [ fr��1g;
so r��1 is in [r���1; r). Apply � to obtain

r��1� 2 [r�; r) (��):
Now

r� = r���1��1 and r� 2 U1 ) r���1 2 U1 ) r� = r���1��1 2 V1:

As r is also in V1, it follows from (**) that r��1� is also in V1. This contradicts (*) above and �nishes

the proof.

Situation III � Here A�u \A� = [z; x] with z � x in A�. Then

A�u� \A� = A����
�1 \A� = [z�; x� ] = [z�; y]:

Hence A��� \A�� = [z��; y�] and z�� = y �� y� in A�� � this is the crucial fact. Now

x�1� = x����1 = x���1��1���1 = y��1��1���1

= x��1 = x����1 = y���1:

Here the bridge of y� to A� is [y�; y] (which a priori could be the single point y). So the bridge from

y���1 to A� is [y���1; y��1] = [y���1; x]. On the other hand y � x�1 in A� so y� �� x�1� in

A��. It follows that the bridge from x�1� to A� is [x�1�; y]. This would imply x = y, contradiction.

Situation I � Surprisingly this is the most diÆcult case. Here

y��1��1�<�x in A��; x� > y in A�; x = y��1��1; y��1��1� = x���1��1:

As y��1��1� <� x in A�� then y��1��1� is not in A�. Also
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x� = (y��1��1)� = x���1��1 = x�;

so x� = x� � this is a crucial fact in this proof. The bridge from x� to A� is [x�; x]. Notice also that

x��1��1� <� y��1��1� <� x in A��;

so the bridge from x��1��1� to A� is [x��1��1�; x]. It follows that

the bridge from x���1�� to A� is [x��1��1��; x� ] = [x��1��1��; y��1]:

Now

x��1��1�� = (x��1)���m�1 = x��m�1 = x��m�1 = x�m

Here x� � x � y � y��1 � they are aligned. It follows from lemma 4.6 that x; x� are in a local

axis LA� for �, similarly y is also in a local axis. Since y is in [x�m; x], then also y; y��1 are in LA�. In

the same way (LA�)�
�1 = LA� is a local axis for � and x�; x; x��1 are in LA�. Now

x� = x���1��1 = x�; so x�� = x���1 = y��2

Apply ���m�1 = ��1�� to y��1:

(y��1)���m�1 = y��m�1 = (y��1)��1�� = (x�)��1�� = x�� = y��2:



x6. Case A � � acts freely 20

The conclusion is y� = y��m�1 and it is in LA�. Now y is not in LA� and the bridge from y to LA�

is [y; x], so the bridge from y� to LA� is [y�; x�] = [y��m�1; x�]. Therefore LA� and LA� split away

from each other in x� = x�, or

LA� \ LA� = [x; x�] = [x; x�]:

The homeomorphism � conjugates the action of ��1 in LA� to the action of � in LA� (see �g. 6). Now

apply ����m = �� to x:

(x��)��m = (y��2)��m = y��2�m = x��:

As x� is in LA�, then x�� is in LA� and it follows that x�� is in LA�. If x� � x��1 in A�, then

the bridge from x� to LA� is [x�; x��1] and so the bridge from x�� to LA� is [x��; x��1�]. But

x��1� = x��1��1 and

x��1��1 < y��1��1 < x in A�:

This would imply x�� is not in LA�, contradiction. Notice

x��1 = x����1 = y��1 2 (x��1; x):

If x� is in [x��1; x��1) then x�� is in [x��1�; x) and not in LA� either, contradiction again. Therefore

x� is in [x��1; x]. The case x� = x can only occur when p = q = 1. This case can also be ruled out

by a further argument, but as we are mainly interested in jp� 2qj = 1 we assume here that p > q. Then

x� is in [x��1; x) and x�� is in [x; x�). We conclude that

y��2�m 2 [x; x�):

Claim � y�� is in LA�.

If y� � x in A�, then x � y� � y in A�. So y�� is in [x�; y�] or

y�� 2 [x�; y��m�1] � LA�:

Notice x�� 2 LA�. If on the other hand y� < x in A�, then x� < y� < x in A�, and

y�� 2 (x��; x�) = (x��; x�) � LA�

and again y�� is in LA�.

Therefore the claim is proved.

It now follows that y���m = y�� is in LA�. If y� >� x in LA�, then y� > x in A� as well. Then

y�� > x� = y��1 in A� and y�� is not in LA� contradiction.

Therefore y� �� x in LA� and so y� is in [x; x�). But y��2�m 2 [x; x�). Since y is in a local axis

for � it follows that

y� = y��2�m; or m = �3:
Since we are assuming m < �3 this rules out this case as well.

This �nishes the analysis of situation I and completes the analysis of the situation orders < and <�

agree on A� \A��.

Case A.2.2 � The orders < and <� disagree on A� \A��.

Notice this is equivalent to y��1 < x��1 in A�. Again use u = ����1��1 = ���1��1�. Then

A�u \A� = (A����
�1 \A�)�

�1 = (A��� \A��)�
�1��1
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There are the following possibilities:

1) If x� > y in A�, then A��� \A�� is empty and the bridge from A��� to A�� is [x�; y]. Therefore

A�u \A� = ; and the bridge from A�u to A� is [x���1��1; y��1��1], see �g. 7, a.

2) If x� < y in A�, then A��� \ A� = [x�; y]. Hence A����
�1 \ A� = [y��1; x���1], where the

�rst endpoint is smaller than the second in A�. Finally

A�u \A� = [y��1��1; x���1��1]

and the orders <, <u agree on A�u \ A�, see �g. 7, b � because y��1 < x��1 in A� and their images

under u satisfy y���1��1 <u x���1��1 in A�u.

3) Finally if x� = y, then A��� \ A�� = [y; v], where v �� y in A��. It follows that the

intersection A����
�1 \A� = [v��1; y��1], the �rst point precedes in A�. And then

A�u \A� = [v��1��1; y��1��1] = [t; y��1��1]:

Here if t is not y��1��1 then < and <u disagree on A�u \A� � because y��1��1 � v��1��1 in A�.

Now use A�u \ A� = (A��
�1��1 \ A��

�1)�. Here A��
�1 \ A� = [y��1; x��1] the �rst term

precedes in A�. Again there are 3 possibilities

1') If x��1��1 < y��1 in A� then A��
�1��1 \A��

�1 = ; and the bridge from A��
�1��1 to A��

�1

is [x��1��1; y��1]. Hence A�u \A� = ; and the bridge from A�u to A� is [x��1��1�; y], see �g. 8, a.
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2') If x��1��1 > y��1 in A�, then A��
�1��1 \ A��

�1 = [y��1; x��1��1] and hence A�u \ A� =

[x��1��1�; y] and the orders < and <u agree on A� \ A�u, see �g. 8, b � because x < y in A� and

x��1��1� <u y��1��1� in A�u.

3') If x��1��1 = y, then A��
�1��1 \ A��

�1 = [c; y��1] and A�u \ A� = [y; z] where z = c��1.

If z is not equal to y, then the orders < and <u disagree on A�u \A�.

Notice both pairs of 3 alternatives are all mutually exclusive. We match them and obtain 3 possible

situations:

I � x� > y in A�, x�
�1��1 < y��1 in A� and

A�u \A� = ;; [y��1��1; x���1��1] = [y; x��1��1�]:

II � x� < y in A�, x�
�1��1 > y��1 in A�,

A�u \A� = [y��1��1; x���1��1] = [x��1��1�; y]

and the orders <, <u agree on A�u \A�.

III � x� = y, x��1��1 = y��1 and

A�u \A� = [y; z] = [t; y��1��1]:

If z is not y then the orders <, <u disagree on A�u \A�.

We analyse each case in turn:

Situation II �
Here x� < y, x��1��1 > y��1 and

y = x���1��1; y��1��1 = x��1��1�:

Suppose �rst that [y��1; x��1] \ [x; y] = ;. Since y� = x���1 then [y��1; x��1] is contained in the set

of points > y in A�.

In addition y� is in A�� �A� and y<�y�. Hence y is in (y��1; y�), producing a local axis LA� of

� which contains y. Now use ��1�� = ����1��1�m�1 applied to x��1:

x��1��1�� = x��1����1��1�m�1 = x���1��1�m�1

Substitute x���1��1 = y in the last term and x��1��1� = y��1��1 in the �rst term to get

(y��1��1)� = y��1 = y�m�1

or y = y�m. This is impossible because y is in a local axis of � and m is not zero.

From now on in situation II suppose that [y��1; x��1]\ [x; y] is not empty. Since x���1 = y� > y in

A�, then x��1 > y in A�. It follows that y�
�1 � y in A�.

Suppose �rst that y��1 < y in A�. There is r in [y��1; y] which is �xed by �. Either r is equal to y

or r < y in A�. Let U1 (respectively U2) be the component of T �frg containing r� (respectively r��1).

Since

x��1 2 U1; x 2 U2 then U1� = U2:

If r < y in A� then also we have U2� = U1. Otherwise U2� = U3 which is another component of T �frg
which is not U1;U2. We will rule out this case, but the result will be used later on as well, so we state it

in more generality:

Lemma 6.2. Let LA� be a local axis for � . Let r in LA� which is �xed by �. Let U1 (respectively U2 be

the component of T � frg containing r� (respectively r��1). Then U1� is not U2 and U2� is not U1.
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Proof. The proof is as follows: suppose that either U1� = U2 or U2� = U1 and arrive at a contradiction.

First assume that U1� = U2. Either U2� = U1 or U2� is another component U3 of T � fug.
Let Vi = U i�

�1. Since V1� = V1��
�1��1 = U1�

�1��1 6= V1, we have that V1� is contained in

U2. Therefore r� is in U2 and r��m�1 is in U2�
m�1. Also

r��1�� = r���m�1 = r��m�1

As r��1 2 U2 then r��1� is in U2�, which is either U1 or U3. Therefore r�
�1�� is either in U1� � U1

or in U3� again a subset of U1. So r�
�1�� 2 U1. Therefore U2�

m�1 \U1 6= ;. But both are components

of T � frg, because r� = r, so it follows that they are equal. As U2 = U1� then

U1��
m�1 = U1; or U1�

m = U1; U2�
m = U2; U3�

m = U3 if needed:

In case r 6= y this immediately implies m even.

Now use r���m = r�� = r� 2 U1. Therefore r�� 2 U1�
m = U1. It follows that

r��1 � r � r��

� recall this means r separates r��1 from r��. Applying ��1 one gets

r��1 � r��1 � r� (�)
Use r��1 = r����1:

r� 2 U1 ) r�� 2 U2; r��1 = r���1��1 2 V2:

As r��1 is an accumulation point of V2, equation (*) above implies that r� is in V2 or r� < r��1 in

A�, which immediately implies p > 2q.

As in the R-covered case, look at r��. If r�� is not in V2 then r��� 62 U2 so

r��� = (r�2)��1�� = (r�2)��m 62 U2 and r�� 62 U2:

So r��1 � r � r�2� and r�2 � r��1 � r��1. As r��1 = r����1 2 V2, then

r�2 2 V2; so r�2 < r��1 in A�:

As seen before this implies p > 3q, which is disallowed and �nishes this case.

If r�� 2 V2 then r��1 2 V2�
�1. By (�) r��1 � r��1 � r�, so

r� 2 V2�
�1 ) r� < r��2 in A�:

As seen before this also implies p > 3q contradiction.

This �nishes the analysis of the case U1� = U2.

Now suppose that U2� = U1. If U1� = U2, then this is taken care by the previous situation. So now

assume U2�
�1 = U3 which is not U1 or U2.

Here use r��1�� = r���m�1 = r���1��1�m�1. First

r��1 2 U2 ) r��1� 2 U2� = U1 ) r��1�� 2 U1:

On the other hand

r� 2 U1 ) r���1 2 U1�
�1 = U2 ) r���1��1 2 U2�

�1 � U2 ) r���1��1�m�1 2 U2�
m�1:

From which we conclude that U2�
m�1 = U1 = U2�.
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Now use r��1�� = r��m. The right side is in U1 = U2�. The fact that U2�
�1 is not U1 implies

that V2� is not V1, hence V2� is contained in U2. We know that r is � r��1 in LA� so it is either in

V2 or is equal to r�
�1. Hence r� is either r��1 or is in V2� � in either case it is in U2. Finally r��

m

is in U2�
m which must be U1. But then U2�

m = U2�
m�1 contradiction.

This �nishes the analysis of the case U2� = U1 and so �nishes the proof of lemma 6.2.

This �nishes the analysis of situation II.

Situation I �
In this case x��1��1 < y��1 in A� and y < x� in A�. In addition

y� = y��1; x��1��1� = x���1��1 (�)
Here x��1 > y��1 = y� in A� (orientation reversing case) so x��1��1 > y in A�. Therefore

x��1��1 2 (y; y��1). Also x� < y� = y��1 in A�, so one concludes

x��1��1; x� 2 (y; y��1)

On the other hand y � y��1 � x��1, so y� � y � x and y� is in A�� � A�. It follows that

y��1 � y � y� and y is in a local axis LA� for �. This implies that the translates [y�i; y�i+1) are all

disjoint (as i varies in Z). Use the relation ��1�� = ����1��1�m�1 in the form

��1��1���1�m = ���1��1

applied to x to get

(x��1��1�)��1�m = x���1��1 (��)
Now apply the second equality of (�) both sides of (��) to get

(x���1��1)��1�m = x��1��1� or (x�)��m = (x��1��1)�:

But x� 2 (y; y��1), so x���m 2 (y; y��1)��m. Similarly x��1��1� is in (y; y��1)�. Since they are

equal then �m = 1 or m = �1, impossible.

Situation III �
Here x� = y, x��1��1 = y��1 and

A�u \A� = [y; z] = [t; y��1��1]

and if t 6= y, then <, <u disagree on A�u \A�.

Notice that y � z = y��1��1 so y < y��1 in A�, and y��1 is in A� �A��. Also y� � y��1 in A�.

Now

y � y��1 � x��1 ) x � y � y� all in A��:

Hence y� <u y in A� and y� is in A���A�. Hence y is in (y��1; y�) and there is a local axis LA� of

� with y in LA�. Consider the relation ��1�� = ���m�1. Substitute � = ���1��1 and rearrange the

terms to get ��1��1� = ���1��1�m�1��1. Now apply it to x:

y = x��1��1� = x���1��1�m�1��1;

or y��1�m = y��1��1. Now y� 2 [y; y��1], so y� is in LA� and

y��1�m 2 [y�1�m; y��m];
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so y��1�m is not in A�. But y�
�1��1 is in A�, contradiction.

This �nishes the analysis of A�u \ A� = [x; y] with x not equal y. Consequently this �nishes the

analysis of Case A, � acts freely, which we now proved cannot happen.

7 Case B � � has a �xed point, � acts freely

Here � has an (actual) axis A� and so does � with axis A� = A��
�1. Let Fix(�) be the set of �xed

points of � . As usual there are various possibilities. This case is very interesting because the topology of

the manifold Mp=q will play a key role.

Recall that if t is a point not in a connected set B of the tree T , then the segment [t; u] is the bridge

from t to B if the subsegment [x; u) does not intersect B and if u is either in B or is an accumulation

point of B. Again the important fact is that the bridge from x to B is unique: it is the only embedded

path from x to B because T is a tree. As in case A this will be explored here. If u is in B we say that t

bridges to u in B.

We say that a point a is an ideal point of a local axis l if a is not in l but is an accumulation point

of l. Obviously this implies that l is not properly embedded in T in the side accumulating to a.

There are two main cases depending on whether Fix(�) intersects A� or not.

Case B.1 � Fix(�) \A� = ;.
Then � also has a �xed point s. Choose s closest to A�, that is, the bridge [s; c] from s to A� has no

other �xed point of �. Let z in [s; c] �xed by � and closest to A�, that is, the bridge [z; c] from z to A�

has no other �xed point of � besides z. A priori we do not know whether z is equal to s or not. Let U
be the component of T � fzg containing A�.

Then A� is a subset of U� 6= U and z bridges to c��1 in A�.

Case B.1.1 � Suppose U� 6= U .
Then U��1 6= U as well. Apply �� = ����m�1 to z: the point z bridges to c in A�, so z� bridges

to c� in A�. As c� is not c then z� is in U , so z�� is in U� , see �g. 9, a. On the other hand z�� = z�

is in U and hence z separates it from A�. It follows that z� also bridges to c��1 in A�. Then

z��� bridges to c��1� in A� and c��1� 6= c��1; so z��� 2 U��1:
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Therefore z��� bridges to c in A�, so z����
m�1 bridges to c�m�1 in A�. This implies z����m�1 is in

U , impossible since it is equal to z�� 2 U� .
We conclude that U� = U , which will be assumed from now on in this proof.

Choose a prong � at z which is a subset of [z; c]. This prong is associated to the component U of

T � fzg, hence the prong �� also is associated to the component U = U� and � \ �� is not just z. Let e

be another point in the intersection. Then e��1; e are both in � and e��1 is not equal e � by choice of z

as the �xed point of � in [z; c] closest to A�. So either e is in [z; e�) or e� is in [z; e). In the �rst case

(say) apply � to get e� is in [z; e�2) and it now follows that e � e� � e�2. The same alignment of points

happens in the second case. We conclude that there is a local axis LA� for � , with e in the local axis.

This construction of a local axis is crucial in case B and also in case C of the proof.

Conclusion � If U� = U and there is no �xed point of � in (z; w], then there is a local axis of � contained

in U with one ideal point z.

Case B.1.2 � Suppose that LA� \A� is at most one point.

Let [d; c] be the bridge from LA� to A� � here d = c if LA� \A� is a single point. We do the proof

for LA� \ A� = ;, the case of single point intersection being entirely similar. The bridge from c�� to

LA� is [c��; d� ], see �g. 9, b. Now the bridge from c� to LA� is [c�; d�]. Here use p odd to get

d� 6= d��1, so the bridge from c� to A� is [c�; c��1]. Therefore

c�� bridges to c��1� in A�; hence bridges to d��1 in LA� and to c in A�:

Finally c���m bridges to A� in c�m 6= c and so bridges to LA� in c.

As c�� = c���m, this implies c = c� , impossible. This rules out this case.

We conclude that LA� \ A� is more than one point. If LA� \ A� is (z; d], then either z� = z or �

has a �xed point in LA� , both impossible. Therefore from now on in case B.1 let LA� \A� = [a; b], with

a 6= z and a closest to z. By an abuse of notation b can be +1, meaning the intersection is a ray in LA� .

Put an order < in LA� so that a < b in LA� . Also let <� be the order in A� with a <� b.

From now on in case B.1 the proof will depend on whether U is equal to U or not. The arguments

here are also very similar to what will be needed for case C, therefore we will make the arguments in

more generality so that they can be used in case C, namely when � has a �xed point but has a local axis

with certain properties. We �rst specify the conditions under which the analysis works.

Conditions � Consider two conditions:

Condition F � � has a �xed point z, � acts freely and z is not in the axis A�. Let A� be in the

component U of T �fzg. There is a �xed point s of � so that s is either z or z separates s from A�. Let

(s; c] be the bridge from s to A�. Then (s; c] has no �xed point of � and (z; c] has no �xed point of � .

Also U� = U and there is a local axis LA� of � in U with ideal point z. Finally LA� \A� = [a; b] where

a 6= z and a is in (z; b).

Condition N � � has a �xed point z; � has a �xed point s and � has a �xed point w so that (s; w)

has no �xed point of either � or �. In addition either z = s or z 2 (s; w) and (z; w) has no �xed point

of � . In addition let U be Tz(w) and V be Tw(z). Then U� = U and V� = V. There is a local axis LA�

of � in U with one ideal point z and a local axis LA� of � in V with ideal point w. The intersection of

LA� and LA� is [a; b] where a is the closest point to z and b can be +1 in LA� .

Here condition F is for free action of � (which is used here) and condition N is for non free action of

� (which is used in Case C). In either case the order <� in LA� corresponds to a <� b. This implies the

orders <;<� coincide in the intersection. Beware that the order <� here is in LA� and not in (A� )� as

in case A.
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Figure 10: The case LA� \ LA� = [a; b]: a. Case a� <� a, b <� a��1, b. Case b = a� = a��1, c. Case

a� > b.

Caution � An axis is also a local axis. For the sake of simplicity and to use it for case C, we will use

the notation LA� even in the case of � acting freely for the rest of the proof of case B.1. In case B.2, we

will return to use the notation A� for the axis of �.

Case B.1.3 � U 6= U .
We �rst claim that this implies that U \ U is empty. Recall that @U = z and z� = z. Notice we

do not know a priori that z = z. If z = z then  permutes the components of T � fzg so one has

U \ U = ;. Suppose then that z is not z. Recall that there is a �xed point s of � with z 2 [s; w] �
maybe s = z. If z 6= z, then

[s; z] \ [s; z] = [s; t] with t 2 [s; z); hence t 2 (z; z):

In particular z is not equal to s. Notice t may be equal to s. Here z separates U from s, hence z separates

U from t. Also z separates U from s, hence z separates U from t. It follows that t separates U from

U and U \ U = ;. This proves the claim.

Situation I � Suppose a� <� a in LA�.

Situation I.1 � Suppose a��1 >� b in LA�, see �g. 10, a.

This implies that a� is not in LA� , see �g. 10, a. Also this implies b is �nite. Notice that

z��1��1� = z��m��1�1 = z��m����1�1

The point z bridges to LA� in a. Hence z��1��1 = z��1 bridges to LA� in a��1, so z��1 is in U and

z��1� is also in U , which is invariant under � . Since U \ U = ;, then

z��m�� 62 U and it bridges to LA� in a ) z��m� bridges to LA� in a��1

and hence bridges to LA� in b. But z��m bridges to LA� in a��m so bridges to LA� in a. So z�m�

bridges to LA� in a� . This implies a� = b and also that � is increasing in (LA� ; <).

In addition

LA� = (LA�)�
�1 so LA� \ LA� = [a��1; a] = [a��1; b��1]

and a��1 is not in LA� and bridges to LA� in a��1. So this point bridges to LA� in a and a��1��1

bridges to LA� in a��1. As a result a��1��1 is in U .
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Also a��1 bridges to LA� in b = a� . Hence it bridges to LA� in a. This implies that a��1��1 bridges

to LA� in a��1 so again a��1��1 is in U . Now (a��1��1) = a��1��1. Which implies U \ U is

not empty. This contradicts the �rst claim in Case B.1.3.

Situation I.1 cannot happen.

Situation I.2 � Suppose a��1 �� b in LA�.

Similarly to the arguments in situation I.1, z��1� is in U , so z��m�� is not in U so

z��m�� bridges to LA� in a; z��m� bridges to LA� in a��1:

Also a��1 �� b in LA�, hence a�
�1 is in LA� and a��1 � b in LA� as well. On the other hand z��m

bridges to LA� in a so z��m� bridges to LA� in a� . From this it follows that a� � a��1 in LA� . There

are two possibilities:

The �rst possibility is that a��1 6= b. In this case z��m� bridges to LA� in a��1 which is in the

interior of [a; b], hence this point also bridges to LA� in a��1. It follows that

a� = a��1 ) a��1 = a��1 bridges to LA� in a:

Then a��1��1 bridges to LA� in a��1 so is in U . As before consider a��1��1. Here a��1 is either in

LA� or bridges to LA� in b��1 (the top intersection of LA� with LA� ). If a�
�1 in LA� then a��1��1

is in LA� so in U , as above contradiction. If it bridges to LA� in b��1 then a��1��1 bridges to LA� in

b��1��1 = b���1. Since in this case

b� > a in LA� ; then b���1 > a��1 in LA� ) a��1��1 2 U ;
again a contradiction.

The second possibility is that a��1 = b. Here we have to split further into two options:

Recall that a� � a��1 in LA� . First consider the case that a� = a��1, see �g. 10, b. We have the

equalities a��1 = a����1 = a��1. Use

(a�m)��1��1� = a�m��m��1�1 = a��1�1 = a��1�1 62 U
Hence a�m��1��1 is not in U and bridges to LA� in a, a�m��1 bridges to LA� in a�. But

a�m 2 LA� ) a�m��1 2 LA� ) LA� \ LA� = [a; a�];

see �g. 10, b. Now evaluate �1 = ����1��1 on a��1:

(a��1)�1 = (a��1)����1��1 = a���1��1:

Notice that a� is in LA� so a���1 is in LA�. Either a��
�1 is in LA� and then a����1 is in LA� � U

(contradiction) � or

a���1 62 LA� so bridges to LA� in a and a����1 bridges to LA� in a��1

and again this point is in U . In either case U \ U 6= ;, contradiction.
The last option of the second possibility a��1 = b is that a� > b = a��1 in LA� . Then

b��1 = a��1� < a in LA� ) LA� \ LA� = ;;
see �g. 10, c. Here use �� = ����m�1 applied to z: The point z� bridges to a in LA� and z�� bridges

to a� in LA� . Since a� > b, then z�� bridges to b = a��1 in LA�.

On the other hand z� bridges to b��1 in LA� hence z�� bridges to b��1� in LA�, hence to a in

LA�. Finally z���m�1 bridges to a�m�1 in LA�. Since m is not 0 this is a contradiction.
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We conclude that situation I cannot happen.

Situation II � a��1 <� a in LA�.

Situation II.1 � a��m is not in LA� . Here use

z��1� = z��1��1� = z��m����1�1

is in U , so z��m�� is not in U . It bridges to LA� in a, hence z��m� bridges to LA� in a��1 and hence

bridges to LA� in a. On the other hand z��m bridges to LA� in a��m, so bridges to LA� in b. It follows

that z��m� bridges to LA� in b� which then must be a. So a < a��1 in LA� .

Notice LA� \ LA� is equal to [a��1; b��1] and this intersects LA� in a��1 = b.

Suppose �rst that a� is not a��1 = b. Here

a��1 bridges to LA� in a��1��1; so bridges to LA� in a��1:

Then a��1��1 bridges to LA� in a��1��1 6= a. It follows that a��1��1 is in U .
On the other hand a��1 bridges to LA� in a��1 = b, so a��1��1 bridges to LA� in b��1 which

is not b and it follows that a��1��1 is also in U . As seen before this implies U \ U is not emptyset,

contradiction.

The second option in situation II.1 is that a� = a��1, see �g. 11, a.

Apply ��m��1�1 = ��1��1� to a�m. The right side becomes a��1�1. Here

a��1 2 U ) a��1�1 62 U ) a�m��1��1 62 U
and bridges to LA� in a. It follows that a�m��1 bridges to LA� in a� = a��1 = b. But a�m is in LA�,

so a�m��1 is in LA�. Consequently LA� \ LA� = a��1 = b, see �g. 11, a.

The point a��1 is in U , hence

a��1�1 = a���1��1 = a��1��1��1 = a��2��1

is not in U . Not only that, but also a��1�1 is not equal to z � else some point near a��1 in U will have

image under  in U , which is disallowed. Then

z 2 (a; a��2��1) ) z� 2 (a�; a��2) = (a��1; a��2) ) z�� 2 (a; a��1):
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In particular z�� is in LA� and z���1�m is in LA� as well. This point is equal to z��.

On the other hand

z� 2 (a��1; a��2) = (a��1; a��1��1) ) z�� 2 (a��1; a��1�):

But then z�� is not in LA�, contradiction.

This �nishes the analysis of situation II.1, a��m is not in LA� .

Situation II.2 � a��m is in LA� .

In particular a� is in (a; b]. Here z��m��1�1 = z��1��1� is in U . As usual this implies z��m�� is

not in U and bridges to LA� in a and z��m� bridges to LA� in a��1, see �g. 11, b; so z��m� bridges

to LA� in a. So

z��m bridges to LA� in a��1 ) a��1 > a in LA� :

Notice z��m bridges to LA� in a��m. If a��m<� b in LA�, then z��m also bridges to LA� in

a��m and a��m = a��1. If

a��m = b then z��m bridges to LA� in a point � a��m;

that is, a��1 � a��m in LA� . In any case a��m � a��1 in LA� and a� < a��1 in LA� .

Now compute a = a����1��1. Here a� is in [a; a��1] and bridges to LA� in a��1. Hence a��

bridges to LA� in a��1�. There are two options: First if a��1� is not in LA�, then a�� bridges to a

point v in LA� and v 2 (a; a��1�) � see �g. 12, b. Here v could be in LA� . Then

a����1 bridges to a point v��1 in LA� ) it bridges a point c in LA�; c 2 (b��1; a��1�):

It follows that a = a����1��1 bridges to a point in LA� which is not a��1, hence a is in U , contra-
diction.

The second option here is that a��1� is in LA�. Here a�
�1 is in LA�. Then consider a��1��1 which

is in LA� and hence in U . Then

(a��1��1)����1 = a��1���1

is in LA� and a��1���1 <� a��1� in LA�. Therefore

a��1���1 bridges to a point in LA� contained in (b��1; a��1�):

Apply ��1 � the resulting point bridges to a point in LA� which is not a��1, hence (a��1��1) is in U ,
again a contradiction.

This �nishes the analysis of situation II. Hence this �nishes the analysis of case B.1.3, U is not

equal to U .

Case B.1.4 � Suppose U = U .
Since the boundary @U in T is the point z this implies that z = z. Here (LA� ) \ LA� 6= ;, choose

c in this intersection. So c; c are disjoint and in LA� . If follows that z; c; c are aligned (the particular

order is not important) and c is in a local axis of . But c�q = c�p is also in LA� and it follows easily

that the local axis is contained in and therefore equal to the local axis LA� of � so ; � and hence � leaves

LA� invariant. This sort of argument will be used from time to time from now on.

Here the ideal would be to apply the proof of case A, where � acted freely and A� was invariant by

 and � . We already have LA� invariant under  and � , however LA� is not properly embedded in T

- at least in the z direction. In order to apply the proof of case A, we analyse the relative positions of
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(LA� )�; (LA� )�� and so on. In particular for that analysis to work we must have (LA� )� contained in

U and so on. So �rst we do preparation work, showing all images of the local axis are in U and then we

can apply the proof of case A.

For simplicity of notation in case B.1.4 we do the following: K will denote the local axis LA� which

is contained in U and has an ideal point z. Again as we want to use this in section C as well, we will

consider a local axis LA� for �. The key result is the following:

Lemma 7.1. We have K� � U , K��1 � U and K����1 � U .

Proof. We treat each case in turn:

Problem 1 � Is K� � U?
Suppose not. Then as a� is in LA� contained in U there is t in K with t� = z or z��1 is in K, see

�g. 13, a. Here z bridges to a in LA� so z��1 bridges to a��1 in LA�. So z�
�1 can only be in K if b is

in (z; z��1) and a��1 = b. In particular a� <� a in LA�.

There are two possibilities depending on whether � is expanding away from z or not:

First suppose a� is in [z; a), see �g. 12, a. As z� bridges to a in K then z�� bridges to a� in K so

bridges to a in LA�. Then z����m bridges to a��m in LA�. The point z����m is equal to z� and

bridges to a in K so bridges to a��1 in LA�. But z also bridges to a��1 in LA�, contradiction.

The second option is a� > a in K, see �g. 12, b. Here z��1 bridges to a��1��1 in LA� and so to a

in LA�. Hence

z��1��1 bridges to a��1 in LA� ) z��1��1 2 U :
On the other hand z��1��1 = z��1����1. Here

z��1� 2 K ) z��1 2 (z; z��1�) ) z��1�� 62 U ) z��1��1 62 U :
But z��1��1 = z��1��1, leading to U 6= U , contradiction to case B.1.3.

So we obtain z��1 2 U is impossible. Hence K� � U . If K� intersects K in at most one point we can

use the analysis of Case B.1.2 (or of case A) and disallow it. If

K \ K� = (z; t); then K; K� share a ray:

The orientations in K and K� may agree or not. In the �rst case z� = z and in the second case there is a

�xed point r of � in LA� = K. If z� = z, then z is a global �xed point, impossible by non trivial action.
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In the second option let U1 (respectively U2) be the component of T � frg containing r� (respectively

r��1). The condition K� \ K = (z; t) implies that U1� = U2. This is now disallowed by lemma 6.2.

Now consider the situation that K has another ideal point v. Then v� = v. Suppose �rst that v is in

LA�. Here we split into cases: if � acts freely then v is a �xed point of � in the axis of � and this falls

under case B.2. Consider then the case that � does not act freely. Then (w; v) has no �xed point of �

(as v is in LA�) and also no �xed point of � or . Also Tw(v) is invariant under � and Tv(w) is invariant

under � . Then v in LA� is disallowed by lemma 8.4.

It follows that v has the same properties as z. In any case one obtains that

K� \ K = [t; r]; t 6= r; t closest to z

and if K is not properly embedded in the other direction then r is an actual point in K. Then K�� \K =

[t�; r� ]. So the intersections are the same as occurred in Case A so far.

Problem 2 � Is K��1 � U?
This is similar to problem 1. As before if K��1 not contained in U , then z 2 K��1 and z� 2 K. This

can only happen if b 2 (z; z�), a� = b and a��1 <� a in LA�.

First suppose that a��1 2 [z; a]. Then

a��1� 2 [z�; a�] = [b; z�] ) a��1� 2 K ) a��1�� 2 K
and this last point bridges to b in LA�. Then a��1����m = a� bridges to b��m in LA�. But

b��m <� b in LA� ) a� bridges to b��1 in LA�:

On the other hand a 2 [z; a��1] and bridges to a in LA�, so a� bridges to a��1�. Since a��1� is a

point in LA� �K it is not equal to b��1, leading to a contradiction.

The second option is a��1 > a in K. Here use

z��1 = z���1 2 K; z� 2 [z; z��1) ) z��1��1 62 U :
On the other hand z��1 bridges to a��1 in LA� so bridges to a��1 in LA�. So z��1��1 bridges to

a��1��1 in LA� and is in U . As above this is a contradiction.

We conclude that problem 2 does not occur.

As in problem 1, this implies that

K��1 \ K = [t0; r0]; with t0 6= r0; t0 6= z

and if K not properly embedded on the other side then r0 has to be �nite in K.
Then clearly K��1��1 � U and intersects K in a segment.

The last problem is the following:

Problem 3 � Does K����1 � U?
Suppose not, that is, K����1 6� U . We have to be careful here. First a preliminary claim:

Claim � z 2 K����1.

If this is not true then K����1 \ U = ;. Notice that

K�� \ LA� 6= ; ) K����1 \ LA� 6= ; and K����1 \ U 6= ;;
contrary to assumption here.

So consider K�� \ LA� = ;. Also here K�� \ K is a non trivial segment. If K�� bridges to a in

LA� then K����1 is contained in U and we are done. If follows that K�� has to bridge to b in LA�
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Figure 13: Situation a��1 <� a in LA�: a. Picture when a� < a in K, b. Picture when a��1 < a in K.

and hence z� has to be in the this bridge. But then z� is in K, which was disallowed in problem 2. This

proves the claim.

We now analyse what happens when

z 2 K����1 so z��1 = z 2 K�� and z��1��1 2 K:
Also z��1��1 = z��1��1 is in K as well.

Situation I � a��1 <� a in LA�.

Situation I.1 � a� < a in K.
Here z��1 bridges to a��1 in LA�, so it bridges to a��1 in LA�. Also

z��1��1 2 K and a��1 � a � a��1 � z��1:

As ��1 moves points up along K, it follows that z��1��1 > b in K and a��1��1 = b��1. Here a��1 2
[a��1; z��1], see �g. 13, a. Then

a��1��1 = b��1 � a��1 � a��1��1 = v1 � z��1��1 = v2

and all are in K. Also a��1 2 (b; a��1��1) � K and z��1 bridges to K in a��1 so bridges to LA� in b.

Then z��1��1 = v2
�1 2 K bridges to a in LA� and a��1��1 = v1

�1 is in (z��1��1; a), see �g. 13,

a. Then

z��1��1 � a��1��1 � a��1��1 � z��1��1

all points in K. This contradicts the fact that  acts as a translation in K.

Situation I.2 � a� > a in K.
Here z��1 bridges to a in K, see �g. 13, b. If a � b��1 in K then z��1 bridges to a point t �� b�

�1

in LA� , so

z��1��1 bridges to LA� in a point �� b��1� and z��1��1 62 K;
contradiction. Hence a < b��1 in K and z��1 bridges to a in LA� so z��1��1 bridges to a��1 in LA�

and as z��1��1 is in K then



x7. Case B � � has a fixed point, � acts freely 34

z��1��1 > b��1 in K and a��1 = b��1 or a�� = b:

Now

a��1 = b��1 so a� = a��1��1� < a��1� = b

so in particular a� is in K. Also z� bridges to a in LA� and so does z. Hence z�� = z�� and z� bridge

to a� in LA�. Since a� < b then z�; z�� bridge to a� in LA� as well.

If a� < b��1 in K then z�; z�� bridge to a� in LA� , impossible � they have to bridge to distinct

points in LA�. If

b��1 2 (a; a�) ) z�; z�� bridge to b��1 in LA�;

also contradiction. Therefore a� = b��1 or a�� = b. Now

a����1��1 = b��1��1 = a so a = a��1��1:

Notice a 2 [z; a��1]. But a��1 bridges to a in LA� so a��1��1 bridges to a��1 = b��1 in LA� and

a��1��1 cannot be a, contradiction.

This �nishes the analysis of situation I.

The remaining options are extremely similar and have shortened proofs.

Situation II � a� <� a in LA�.

Situation II.1 � a��1 < a in K.
This is as situation I.1 above. Here z��1 bridges to a in LA�, so z��1��1 bridges to a��1 in LA�

and a��1 = b. It follows that

b � a��1��1 � a��1��1��1 � z��1��1;

all points in K.
On the other hand a��1��1 2 (b; (a��1)��1��1) � K. The point z��1 bridges to (a��1)��1 in K.

It follows that

z��1��1 � (a��1)��1��1 � (a��1)��1��1 � z��1��1;

all points in K. As before this contradicts the fact that  acts as a translation in K.

Situation II.2 � a� < a in K.
This is very much like situation I.2. Here z��1 bridges to a��1 in K. If a��1 � b in K, then

z��1��1 bridges to a point >� b in LA� ) z��1��1 62 K;
contradiction. Hence

a��1 < b in K; z��1��1 > b in K and a��1��1 = b or a = b��:

In addition

z�; z bridge to LA� in a��1 ) z�� = z��; z� bridge to LA� in a��1�

and similarly to situation I.2, this implies a��1� = b or a = b��. Then b�� = b and b = b��1��1. But

b � b��1 in K and b��1 bridges to b in LA�, so b�
�1��1 bridges to b��1 = a��1 and cannot be equal

to b��1.

This contradiction shows that problem 3 cannot occur. This �nishes the proof of lemma 7.1.
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It follows from lemma 7.1 that K����1 � U , so K�� � U as is K��. So all of the sets K; K�; K�� ,
K����1; K��; K��1; K��1��1 and K��1��1� are contained in U and none has z as an ideal point.

If K has another ideal point v, then v has the same properties as z and the same situation occurs with

respect to this other ideal point.

Given these facts, an analysis exactly as in case A.2 can be applied here. That analysis then shows

that case B.1.3 is not possible.

Hence case B.1.4 is disallowed. This also �nishes the proof of case B.1.

For case B.2 we return to the study of � acting freely using the axis A�.

Case B.2 � Fix(�) \A� 6= ;.
This is the key case of the proof for essential laminations. In this case the topology will be important,

in particular, the exact condition jp� 2qj = 1 will be used in a crucial manner. Let z 2 Fix(�)\A�. Let

U1 (respectively U2) be the component of T �fzg containing z� (respectively z��1). A priori we do not

know whether z is also a �xed point of . In some subcases, the tricky part will be in fact to show that

z = z.

Case B.2.1 � U1� = U1.

Notice that U1� is contained in U1. Here use z�� = z���m = z��m.

z� 2 U1 ) z�� 2 U1 ) z����m 2 U1�
�m � U1 ) z� 2 U1:

So z���1��1 is in U1 and then z��1 is in U1 or z is in U1�. In particular z � z� � z, see �g. 14,

a. We stress that in this case z is not equal to z!

Use now z�� = z���m�1 = z����1��1�m�1.

z���1�m 2 U1 ) z����1��1 2 U1 ) z����1 2 U1 ) z�� 2 U1�:

In particular z � z� � z�� and z � z���1 � z� and so z���1��1 2 (z��1; z). In other words

z���1��1 = z����1��1 = z��1��1 2 (z��1; z):

Then z��1��1 is in U2 so z��1��1 is in U2. Notice z��1 = z����1 = z���1 with z� 2 U1, z��
�1

also in U1.

Recall that z 6= z. If U1 � U1 this implies that z is in a local axis for  contradicting zq = z��p = z.

Therefore U1 is not contained in U1 and consequently U2 is contained in U1 and so z separates U2

from z. Hence
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z� separates U2 from z and z��1��1 2 U2:

But z��1��1 = z��1��1 = z��1����1. Now z� separates z from z��1����1 which is in U2. Apply

� : z�� separates z from z��1��. Then

z�� 2 U1� ) z��1�� 2 U1� ) z��1� 2 U1 and z��1 2 U1�
�1 = U1:

But this contradicts z��1 is in U2. This is an impossible case.

We conclude that U1� 6= U1.

Case B.2.2 � U1� 6= U2.

Then z�� is not in U2, which implies z���1�m is in U1, or z�� 2 U1 and z����1��1 is in U1. By

assumption z�� 62 U1, hence z���
�1 2 U2 and z����1��1 2 U2�

�1. This would imply U2�
�1 = U1 or

U1� = U2, so the assumption is incompatible.

We conclude that U1� = U2.

Case B.2.3 � U1�
�1 = U2.

This is a very interesting case. Here we only use the fact that p is odd.

First consider z� = z���1��1 = z��1��1 which is in U2�
�1 = U1. Then z�; z� are in the component

U1, hence [z; z�], [z; z�] share a subprong. Suppose �rst that

[z; z�] \ [z; z�] = [z; t]; t 6= z�; z�; that is z� 62 [z; z�]; z� 62 [z; z�]

see �g. 14, b. Then z�� bridges to t in A� and z���m�1 bridges to A� in t�m�1 which is a point in

(z�m; z�m�1). But

z���m�1 = z�� ) z��1��1 2 [z; z�) ) z� = z��1��1 2 [z; z�);

contradiction.

So either z� 2 [z; z�] or z� 2 [z; z�].

Situation I � z� is in [z; z�].

Use z�� = z���1 = z��1. As z� is in [z; z�], then z�� 2 [z; z�� ] = [z; z��1] and z���1�m 2
[z��m; z�1�m]. But

z���1�m = z��1���1�m = z��; so z�� 2 [z��m; z�1�m] � A�:

We stress that z�� 2 A�. Here z�
�1 � z � z�, hence z � z� � z��. It follows that

z� 2 A� and z� 2 [z; z��] ) z����1 2 [z�m�1; z��m]:

We want z = z or z�� = z��. We �rst analyse the other two possibilities.

Situation I.1 � z����1 > z� in A�.

Then z� � z����1 � z��, so z � z � z�, or z 2 (z; z�), so z 2 U1. Clearly z�� 2 A�. Here

z�� > z�� in A�. Then

z � z�� � z�� all in A� ) z��1 � z����1 � z� and z��1��1 � z�1 � z:

But z��1 = z���1 2 U2, hence z�
�1��1 is in U2. Now z 2 U1; z

�1 2 U2, therefore z is in a local axis

for , hence zq 6= z, contradiction.

Situation I.2 � Suppose z�� <� z��.
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Then

z � z����1 � z� ) z��1 � z � z:

As z��1 = z���1 is in U2, then z is in U2.

Now z�� <� z��. If A� contains elements in A� above z��, that is, A�\A� � [z; t) with t >� z��.

Then

z � z� � t��1 � z����1; with t��1 2 A� ) z � t��1��1 � z�1

with t��1��1 in A� so z�1 is in U1 and not in U2.

On the other hand if A� escapes A� in z��, then z����1 bridges to A� in z�, hence bridges to A�

in z� as z� 2 (z; z�). Hence z����1 62 U2� and z����1��1 = z�1 bridges to A� in z and z�1 is not

in U2. In any case z�1 is not in U2 and z is in U2 so z separates z from z�1 and z is in a local axis

for , impossible.

We conclude that z�� = z�� or that z = z.

Situation I.3 � z = z.

Then  leaves invariant the set of components of T � fzg. Recall that U1�
�1 = U2 and U1� = U2 in

situation I. Use z��1��1 = z��1��1. The left side is z����1��1 = z���1��1.

z� 2 U1 ) z���1 2 U1�
�1 6= U1; so z���1��1 2 U2 and z���1��1 2 U2:

On the other hand the right side is z��1����1:

z��1 2 U2 ) z��1� 2 U2� = U1; z��1�� 2 U1 and z��1����1 2 U1�
�1 = U2:

So U2 \ U2 6= ;. Since  now preserves the set of components of T � fzg it follows that U2 = U2 and

U1 = U2� = U2� = U2� = U1. Now we use p odd and �pq = id:

U1 = U1
q�p = U1�

p = U1�
p(mod2) = U1�:

This contradicts U1� 6= U1 and �nishes the analysis of situation I.

Situation II � z� 2 [z; z�].

This is very similar to the previous case if we think of it in the appropriate way. The trick here is to

switch the roles of � and �, which can be done. Notice �rst that z� 2 U1 and z�
�1 = z����1 = z���1 is

in U2. So the component of T � fzg containing z� (respectively z��1) is the U1 (respectively U2). First

rewrite the relations as

����1 = ��1 ����1 = �1��m = ���m�1

As z� is in [z; z�] then z���1 is in [z��1; z���1] = [z; z��1]. So

z����1�1�m = z���1�1�m = z�� 2 [z��m; z�1�m] � A�:

As z� 2 [z; z�], then z�� is in [z�; z�2] and

z� 2 [z; z��] � [z; z�1�m] � A�:

Therefore z� is in A� and similarly z��, z�� are in A�.

From this point on the proof is entirely similar to the analysis in situation I: consider whether

z�� <� z��, z�� >� z��, or z�� = z��, with completely analogous proofs.

Therefore this case is disallowed. This �nishes the analysis of case B.2.3, U2� = U1.
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Case B.2.4 � U1� = U2, U1�
�1 6= U2.

This is the most interesting case which relates to the topology in a crucial way.

Use z��1��1 = z��1��1. The right side is z����1��1 = z���1��1.

z� 2 U1 ) z���1 2 U1�
�1 6= U1 ) z���1��1 2 U2:

Hence z��1��1 is in U2. On the other hand z��1��1 = z��1����1:

z��1� 2 U2� 6= U2 ) z��1�� 2 U1 ) z��1����1 2 U1�
�1 6= U2:

We conclude that

U2 \ U1�
�1 6= ;; or U1� \ U1�

�1 6= ; (�):
What we actually want is that these two sets are equal. A priori we have to be careful because  may

not preserve the set of components of T �fzg, or equivalently we may have z 6= z. So we �rst deal with

this case. We will need the following useful lemma:

Lemma 7.2. Let � be a homeomorphism of a tree V so that �l has a �xed point a, where l is not 0.

Then there is a �xed point of � in [a; a�].

Proof. Consider a�2. If a�2 is in [a; a�] and not equal to a�, then � sends [a; a�] into itself and has a

�xed point there, done. If a� is in (a; a�2) then a is in a local axis of � and a�l is not a, impossible. If a

is in (a�; a�2), then ��1 sends [a�; a�2] into itself (into [a; a�]) producing a �xed point there, done.

We can now assume a�2 bridges to [a; a�] in a point r which is in (a; a�), see �g. 15, a. If r� = r we

are done. Assume r� 6= r. Then r� is in [a�; a�2].

Suppose �rst that r� is in [r; a�], see �g. 15, a. Then r�2 is in [r�; a�2] so either [r�; r] is contained

in its image under � or vice versa. In any case there is a �xed point of � in [r; r�].

Suppose now that r� is in (r; a�2] see �g. 15, b. Hence a � r � r� and a� � r� � r�2. Then

r 2 (a�; r�) and r� 2 (r; r�2), so r is in a local axis for �. This implies that a�t 6= a for any nonzero t in

Z, contradiction. This �nishes the proof.

We are back to case B.2.4.

Situation I � z 6= z.

Suppose �rst that z 2 U2. Notice U2� 6= U1 and also 6= U2. Then there is c in [z; z] �xed by  so c

is in U2. This implies

U2� � U2 ) U1�
2 � U2; or U1� � U1:



x7. Case B � � has a fixed point, � acts freely 39

But by (�) U1� \ U1�
�1 6= ;, which now implies U1�

�1 \ U1 6= ;. This is impossible and rules out this

case.

The second possibility is that z 2 U1. Here U2 � U1 so U1� � U1. As U1� \ U1�
�1 6= ; then

U1�
�1 \ U1 6= ;, also impossible.

The �nal option is z 62 U1 \U2, z 2 U3 (which may be U2� or not). Here there is y �xed by  with

y 2 U3. Here �rst use

U2 � U3; or U1� � U3 ) U1�
�1 \ U3 6= ; and U1�

�1 = U3:

Use U1 � U3, so

U1� � U3� and U1�
�1 \ U3� 6= ; or U1�

�1 = U3�:

Then U3 = U3� or U1�
�1 = U1�

�2, so U1� = U1, impossible. This rules out this �nal option.

We conclude that:

Situation II � z = z.

This is a crucial case. In fact there is an essential lamination in Mp=q whenever jp � 2qj � 2 and

this essential lamination may satisfy these properties: � has a �xed point, � has an axis (or at least a

local axis) which contains the �xed point of � . See more below. So here is a part of the proof where the

speci�c condition jp� 2qj = 1 needs to be used. See remark below on the topological signi�cance of this

condition.

Here is the proof. Since z = z , then  permutes components of T � fzg. Since U1� \ U1�
�1 6= ;,

it now follows that

U1� = U1�
�1 or U1�

2 = U1:

We now compute

U1 = U1�
pq = U1�

p�2q�2qq = U1(�
2)q�p�2q = U1�

p�2q:

When jp�2qj = 1 then either U1 = U1� or U1 = U1�
�1 � so in either case U1 = U1� ! But this contradicts

that we proved before that in case B, U1� is not equal to U1. This is a contradiction showing that case

B.2.4 cannot happen. This is quite straightforward, but it needed all the previous steps.

This �nishes the proof of case B: Fix(�) 6= ;, Fix(�) = ;.

Remark � We now analyse the topology of this situation. Consider the original stable foliation in the

torus bundle over the circle (the manifold M). This produces a lamination �1 in M � N(Æ). The solid

torus complementary component of �1 have degeneracy locus (1; 2) that is �2. This means the �2 is

a curve in the boundary leaf of the complementary component and it also preserves the \outer" side of

this complementary component. Now do p=q Dehn �lling on M �N(Æ) and look at the tree T produced.

The leaf through Æ collapses to a �xed point z of � (and  too). Usually neither � nor  preserves the

complementary components of z, but the above fact about the degeneracy locus means that �2 does

preserve these components � if U1 is one such component of T �fzg then U1�
2 = U1 After (q; p) Dehn

surgery, the leaf space T of the lamination has a singularity at z with exactly jp � 2qj prongs. The

transformation � rotates by one in the set of prongs, hence �p�2q preserves each of the prongs. This

is also detected by �2 preserving the set of prongs and �pq being null homotopic. All is well when

jp�2qj � 2, because we have 2 or more prongs and the lamination is essential and the action is very nice.

However when jp � 2qj = 1 there is only one prong and the lamination is not essential. It is amazing

that this sort of diÆculty can still be detected on the level of group action on trees. Notice that this is

exactly what the proof shows that U1� = U1, which must happen if there is only one prong.
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8 Case C � � has a �xed point and � has a �xed point

Let s in Fix(�), w in Fix(�) with (s; w] \ Fix(�) = ; and [s; w) \ Fix(�) = ;. The following notation

will be very useful in this section. Given u 6= v in T let

Tu(v) = fcomponent of T � fug containing v g:
Let W = Ts(w), V = Tw(s). First in this section we will try to prove that W is invariant under � and V
is invariant under �. This will produce local axes for � and (eventually) for � and we will see how the 2

axes interact.

Case C.1 � Suppose W� 6=W.

Case C.1.1 � Suppose w 2 [s; s�].

This is equivalent to V� 6= V. Notice s� 6= w. We know s�� = s��, and s�� = s��1��1�. Then

s��1 62 V ) s��1 2 W ) s��1��1 2 W��1 � V ) s��1��1� 2 V� � W:

On the other hand s�� = s����1��1. Here

s� 2 V� � W ) s�� 2 W� � V ) s���1��1 2 V��1 � W
and s�� is in W� . These two facts together imply W =W� , contrary to assumption.

Conclusion: if W� 6=W , then V� = V.

Case C.1.2 � s��1 62 [s; w], s� 62 [s; w].

This implies s�; s��1 are in W. For otherwise if s� is not in W , then s is in (w; s�] and so s��1 is

in [w; s].

In this case s��1 bridges to [s; w] in a point r with r 2 (s; w) � the important fact is that r is not

one of the endpoints which would occur if s��1 is not in W or V. Then

r 2 [w; s] \ [w; s��1] ) r��1 2 [s; w��1]:

Notice r��1 is not equal to r. If r��1 is in (r; s��1), then s��2 bridges to [r; s��1] in r��1, hence s��2

bridges to [s; w] in r. The same happens for all s�n with n negative. If on the other hand r��1 is in

(w; r) then s��2 bridges to r��1 in [s; w] and s�n bridges to [s; w] in r�n+1 for all n negative. Notice

then r�n are all in (w; r) � (w; s). The important conclusion is that under the hypothesis s�; s��1 both

not in [s; w] then any s�n bridges to [s; w] in a point in the interior of [s; w], Hence all s�n are inW and

V.
Use s��1�� = s��m. Here s� is inW, so s�� is inW� . Also s� = s��1��1 is inW��1 and bridges

to s in [s; w]. Hence s��m bridges to s�m in [s�m; w]. But s�m is in W and bridges to [s; w] in a point

in the interior of (s; w). This implies s��m is in W, contradiction.

This case is impossible.

Case C.1.3 � Suppose s� 2 [s; w].

This implies for instance that W� � W and Ts(w�
�1)��1 � Ts(w�

�1).

Case C.1.3.1 � Suppose s��1 2 W� .

Then s��1 = s���1 is in (s; w��1) � W��1. Also s��1 = s���1��1. Here s� = s��1��1 is in W .

In this case suppose �rst that s� is not in V. Then

w 2 [w��1; s�] and w��1 2 [w��1; s] ) w��1��1 2 W�;
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Figure 16: a. Case C.1.3.1, b. Case C.1.3.2.

as s��1 is in W� . Notice w��1��1 is not s. Then

w��1��1 = w��1��1 = w��1 is in W��1:

Notice if w��1 = s, then

w��1��1 = w��1�1 = s�1 = s = w��1;

contradiction because s is not �xed by �.

Collecting all of this together: w��1��1 is in W�. This point is equal to w��1 which is in W��1.

Therefore

W� = W��1 or W�2 =W; impossible when jp� 2qj = 1;

as in case B.2.4.

The second option in case C.1.3.1 is that s� 2 V. Recall that s��1��1 = s� is in W. Notice that

LA� = (LA�)�
�1 has a segment [w��1; s] � W��1 [ fsg

and then it goes into W, as s� is in W . Then either s� = t 2 (w; s) or s� bridges to [w; s] in t 2 (w; s),

so bridges to t in LA�. In either case s���1 bridges to t��1 in LA� or is t��1. If t��1 is in [w; s), then

s���1 bridges to t��1 in LA�, see �g. 16, a. Here t�
�1 is in [w��1; s�). If

s 2 [t��1; w] then s���1 bridges to LA� in r; with r 2 [s; w��1]:

This depends for instance on whether W� =W��1 or not. In any case s���1 bridges to LA� in a point

in [w��1; s�). It follows that s���1��1 bridges to a point t in LA� with t in [w��1; s), that is, s���1��1

is in W��1. Then

s��1 2 W�; s���1��1 = s��1 2 W��1 ) W� = W��1;

contradiction when jp� 2qj = 1.

This shows that case C.1.3.1 cannot occur.
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Case C.1.3.2 � s��1 is not in W� .

Here s� = s��1��1 is not in W . Also s��1 = s���1 is not in W . It follows that

LA� \ [w; s] = fsg;
so s� bridges to LA� in s and s�� = s�� bridges to LA� in s�. Hence [s; s�] � (s�; s��) and there is

a �xed point r of � in (s; s�), see �g. 16, b. It also implies that

s��1 2 [s; r] and s��1 2 Ts(s�) = Ts(s�)�;

because s��1 = s���1. Now apply ��� = ���1�m to r: r��� = r��1�m.

As s�� = s��1 and as r 2 (s; s�), then

r� 2 (s; s��1) ) r�� 2 (s; s�) ) r��� 2 (s�; s��) � Tr(s�):

As r�� is in (s; s��1) � Tr(s) this implies r��1�m is also in Tr(s). Therefore r separates r��1�m from

r���, contradiction.

This shows that case C.1.3, s� 2 [s; w] cannot occur. Finally consider:

Case C.1.4 � Suppose s��1 2 [s; w].

This implies that W��1 � W and (W��1)� � (W��1).

Case C.1.4.1 � Suppose s� 62 W��1.

This case is very similar to case C.1.3.2. Here s� 2 Ts(w�
�1) which is not equal to either Ts(s�) or

Ts(s�
�1). Hence s� bridges to LA� in s and s�� = s�� bridges to LA� in s�. Hence

s� � s � s� � s��

and there is a �xed point r of � in (s; s�). Then s��1 2 (s; r) � (s; s�). Now use ���1�1�m = ��1��

applied to r: r��1�1�m = r��1��. As s���1 = s��1 then

r��1 2 (s; s��1) so r��1�1�m 2 (r; s�1�m) � Tr(s):

On the other hand r��1�� is in (s�; s��) � Tr(s�). As Tr(s�) 6= Tr(s), this is a contradiction, ruling

out this case.

Case C.1.4.2 � s� is in W��1.

This is similar to case C.1.3.1. Suppose �rst that W��1 = W� . Then s���1 = s��1 is in W . Also

W��1 is contained in W. It follows that

s��1��1 2 W and s��1��1�1 = s��1��1 2 W :

Hence W =W, W�2 =W, leading to contradiction when p is odd.

Suppose now that W��1 6= W� . Then s� 2 W��1 and s���1 = s��1 is not in W. Also s��1 is in

W��2. So s��1 bridges to s in LA� and s��1��1 bridges to s��1 in LA� implying s��1��1 is in W.

Also s��1��1 = s��1��1. Here s��1 bridges to s in LA�, s�
�1��1 bridges to s��1 in LA�. But

s��1 2 W��2 ) s��1��1 2 W��2 ) W = W��2;

again impossible when jp� 2qj = 1.

This �nishes the analysis of case C.1.4, s��1 2 [s; w].

We conclude that case C.1, W� 6=W is impossible. This implies W� =W. We stress that this does

not yet produce a local axis of � in W, because we may have other �xed points of � in (s; w).
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Case C.2 � Suppose that V� 6= V.
Here we will use s�� = s��m = s���m�1 many times.

Case C.2.1 � Suppose w�;w��1 are not in [s; w].

The bridge from w� to [s; w] is [w�; t], where t is in (s; w). Since s� 62 V, then s�� bridges to t in

[s; w], so s�� is in V. Hence s����m is in V��m. This point is equal to s� = s��1��1. In the same way

s��1 is not in V and bridges to [s; w] in w. It follows that s��1��1 bridges to a point r in [s; w], where

r is in in (s; w), hence s� 2 V. Therefore V�m = V.
On the other hand

s�� = s���m�1 = s����1��1�m�1:

The point s�� is in V and bridges to t in [s; w]. So s����1 is in V��1 and bridges to w in [s; w] so

s����1��1 bridges to r in [s; w] (r as above) and as a result this point is in V. Hence s���m�1 is in

V�m�1 and V�m = V�m�1, contradicting V� 6= V.

Case C.2.2 � w��1 2 [s; w].

Here V��1 is contained in V.
The condition implies that w is in a local axis LA� of � (this case will be ruled out, we only establish

the existence of a local axis of � inW later). Put an order < in LA� so c < d in LA� in LA� if s � c � d

- the order decreases as points get closer to s.

Case C.2.2.1 � w� 2 V�, w� 62 V��1, see �g. 17, a.

Here V�� � V�.
The conditions imply in particular that V� 6= V��1. Here s�� 2 V�, so s��m 2 V�. Also s��1

bridges to LA� in w so s� = s��1��1 bridges to LA� in w��1. It follows that s� is in V and s��m is in

V�m. Hence V�m = V�.
On the other hand s�� = s���m�1. Use s�� = s����1��1. Here

s� 2 V� ) s�� 2 V� ) s����1 2 V ) s����1��1 2 V :
Finally s���m�1 is in V�m�1. So V�m�1 = V� and V = V�, again contradicting the assumption in this

case.
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Case C.2.2.2 � Suppose w� is not in V� and w� is not in V��1.

Then w� is in R another component of T � fwg. Then s�� is in R. Now s��m = s��1��1�m. But

w� 62 V��1 ) s��1 bridges to LA� in w ) s��1��1 bridges to LA� inw��1

and s� is in V . Therefore s��m 2 V�m = R. Notice R��1 6= R because R = V�m and V��1 6= V . Use

s�� = s���m�1 = s����1��1�m�1 and s����1 2 R��1 6= R:
Hence s����1 bridges to LA� in a point � w in LA� (it is in [s; w]) and s�� bridges to LA� in a point

� w��1 in LA� . Hence

s�� 2 V ) s���m�1 2 V�m�1 ) V�m = V�m�1;

contradiction. Notice that here it doesn't matter whether V� = V��1 or not.

Case C.2.2.3 � w� is in V��1, see �g. 17, b.

This implies V��1� is a subset of V��1.

Use s�� = s��m = s��1��1�m. Here

s� 62 V ) s�� 2 Tw(w�) = V��1 ) s����1 2 V��2 6= V��1;

so it bridges to a point r in LA� with r � w in LA� . Hence s�� is in V and s���m�1 is in V�m�1.

Hence V�m�1 = V��1 or V�m = V.
On the other hand s�� = s��m is in V��1, so

s��1��1 = s� is in V��1�m = V��1:

Then s� bridges to a point > w in LA� . But s� = s��1��1, so s��1 bridges to a point > w� in LA� ,

which implies w� 2 (w; s��1). It follows that w�� 2 (w; s) and w��1 = w����1 is in (w��1; s) is in W
and in V.

The following arguments use the strategy of case R.2:

Now w��1��1 = w��1 is in W and w��1��1 = w��1��1� . Use

w��1��1 2 V��1 = Tw(w�) so w��1��1� is in Tw� (w�
2) = V��1��1 � V��1 � W :

Hence w��1��1 2 W . From this it follows that W =W. As usual this implies that (LA� ) = LA� so

; � have the common local axis LA� . In addition w��1��1 = w��1 and as w��1 is in LA� , so does

w��1��1.

If w�� � w��1 in LA� then w��1 = w����1 � w��2 in LA� . Also w�;w��1��1 are in LA� and

w� < w��1��1 in LA� . Hence

w� < w��1��1 = w��1 � w��2 in LA� ) p > 3q;

contradiction to jp� 2qj = 1.

If w�� > w��1 in LA� then w����1 = w��1 2 (w��2; w��1). Here use

(w�2)��m = w��� 2 Tw(w�) = V��1 ) w�2� 2 V��1;

because V�m = V. Therefore w�2� bridges to v in LA� with v > w in LA� . Hence w�2 < w��1 in

LA� and as w��1 < w��1 we also obtain p > 3q, contradiction.

This rules out the case C.2.2.3 and hence �nishes the analysis of case C.2.2, w��1 2 [s; w]. The next

case is:
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Case C.2.3 � w� 2 [s; w].

This implies that V� � V. The case is similar to case C.2.2.

Case C.2.3.1 � w��1 2 V��1; w��1 62 V�.
This implies that V��1��1 � V��1.

Here w��1� is in V, w��1�� is in V so w���m�1 = w��m�1 is in V. Also

w���1 2 V��1 ) w� = w���1��1 2 V��1 ) w��m�1 2 V�m�2

which must be equal to V.
On the other hand s�� = s��m. Here s� 2 V� and bridges to w in LA� , so s�� bridges to w� in

LA� and s�� 2 V. Also

s� = s��1��1 2 V��1 and s��m 2 V�m�1:

It follows that V�m�1 = V�m�2, contradiction to V 6= V�.

Case C.2.3.2 � w��1 62 V��1; w��1 62 V�, see �g. 18, a.
Use s�� = s��m = s���m�1. In this case the point s� brides to w in LA� and s�� 2 V. Also s��1

bridges to w in LA� and s� = s��1��1 bridges w��1 in LA� so

s� is in R = Tw(w�
�1) 6= V�;V��1 ) s��m 2 R�m = V:

So in particular R 6= R�.
On the other hand s����1 2 V��1 and bridges to w in LA� so s�� = s����1��1 bridges to w��1

in LA� and is in R. Then s���m�1 2 R�m�1 = V��1. This would imply V = V��1, contradiction.

The �nal case in C.2.3 is:

Case C.2.3.3 � w��1 2 V�.
Let [s�; r] be the bridge from s� to LA� with r in LA� . Then r > w in LA� . Here we have to

subdivide.

Situation I � r is in (w;w��1).

Then s�� bridges to LA� in r� 2 (w;w�) and s�� 2 V. Hence

s����1 62 V ) s����1��1 = s�� 2 V� ) s���m�1 2 V�m ) V = V�m:

On the other hand s��m = s��1��1�m. Here s��1��1 is in V� so s��m is in V�m+1, implying

V�m = V�m+1 again a contradiction.

Situation II � r = w��1.

Here s�� bridges to LA� in w hence s�� 62 V� and s�� 62 V. So s�� is in R, another component of

T � fwg. Also

s��1 62 V ) s� = s��1��1 2 V� ) s��m 2 V�m+1 ) R = V�m+1:

On the other hand s���m�1 2 V�m+1, so s�� 2 V�2. Now V�2 6= V� so V�2� is contained in V.
Hence s����1 = s��� is in V. This would imply s�� is in V�, contradiction to the �rst conclusion in

this case.

Situation III � w��1 < r in LA� .

This is a little more tricky. Here s�� 2 V�, see �g. 18, b. Also
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Figure 18: a. Case C.2.3, b. Case C.2.3.3, Situation III.

w��1 = w����1 2 V� � W :

Now use w��1��1 = w��1��1� . Here

w��1 2 [w; s�] ) w��1��1 2 [w; s] ) w��1��1� 2 [s; w� ] � LA� � W:

So w��1��1; w��1 are both inW, with the usual implications thatW =W and  leaves LA� invariant.

As w��1��1 is in LA� then w��1 is in LA� as well. Also

w��1��1 = w��1��1� < w� 2 LA� ) w�� 2 LA� :

The proof is now analogous to previous arguments. If

w � w��1 � w�� ) w��1 � w��2 � w����1 = w��1:

But

w��1��1 = w��1 and w��1��1 2 (s; w�)

implies as before that p > 3q, contradiction.

On the other hand if w � w�� � w��1, then w��1 � w����1 = w��1 � w��2 all in LA� . Here

s�� 2 V�. Now s��m = s��1��1�m. Also

s��1 62 V ) s��1��1 2 V� ) s��m 2 V�m+1 ) V� = V�m+1 or V = V�m:

Now use w�2��m = w��� . Here

w� � w��� � w in LA� ) w��� 2 V ; w�2� 2 V��m = V:
So w�2 � w��1 � w��1 � w, implying again p > 3q, contradiction.

This �nishes the analysis of case C.2.3, w� 2 [s; w] and so proves that the case V� 6= V cannot occur.

From now on in case C assume:

Case C.3 � W� =W and V� = V.
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Since there is no other �xed point of � in (s; w), this immediately implies there is a local axis LA�

of � contained in V with w as an ideal point of LA�. We stress that at this point we do not yet have an

axis for � , because there may be other �xed points of � in (s; w).

Lemma 8.1. s�; s��1 2 W, so s�; s��1 are not in [s; w).

Proof. Suppose �rst that s� is not in W. Then

s��1 2 (s; w) � W ) s��1��1 2 W� = W :

So s� 2 W and bridges to [s; w] in a point r which is in (s; w]. Then s��m bridges to [s; w] in r�m and

s��m is in W. Therefore s�� is in W and s� is in W��1 =W, contradiction.

On the other hand suppose that s��1 62 W. Then s� 2 (s; w]. Also s� = s��1��1 62 W, so bridges

to [s; w] in s. Then s��m bridges to [s�m; x] in s�m. Since s�m 62 W this implies s��m 62 W, therefore

s�� 62 W . But then s� is not in W , contradiction. This �nishes the proof.

We conclude that s�; s��1 are in W \ V . Let s� bridge to r in [s; w], hence r 2 (s; w) and s��1

bridges to [s; w] in a point t also in (s; w).

Let z be the �xed point of � in [s; w] which is closest to w. Then z may be equal to s, but is not w.

Let U = Tz(w). One important goal is to prove that U� = U .

Lemma 8.2. Let U = Tz(w). Then U� = U . If z 6= s then z; w 62 W, and z�; z��1 62 (z; w).

Proof. If z = s then U =W and the result follows from Case C.1. For the rest of the proof of the lemma

assume that s 6= z.

We �rst analyse the possibility that z 2 W. As � �xes s then z�1 2 W also. If z = z, then

z� = z, contradiction.

Suppose that z or z�1 is in [s; z). Then as s = s, it follows that z is in a local axis for  and

zq 6= z, contradiction to z �xed by � . Hence z; z�1 62 [s; z].

Let [z; r] be the bridge from z to [s; z]. Notice that r is in (s; z), because z; z�1 are not in [s; w].

Then

r 2 [s; z] \ [s; z] ) r�1 2 [s; z]:

If r = r, then r�p = r�q = r. But ([s; z])� = [s; z], so this would imply r� = r. Together these imply

r� = r, contradiction to s the �xed point of � in [s; w] which is closest to w.

We conclude that r 6= r. But as s = s, this implies that r is in a local axis LA of . Compute

rnq; n 2 Z. Assume without loss of generality that rnq moves away from s as n! +1. Then

rnq = r��np 2 [s; w]; 8n and rnq ! c 2 (s; z] as n! +1:

Then c = c and also c� = c, contradiction.

This contradiction shows that z 2 W is impossible. Notice that if z is not in W , then z separates

W from s and hence from W. It follows that W \W = ;, so w 62 W. This proves one assertion of

lemma 8.2.

We now consider where z� and z��1 are. Notice they are both in V. Remember that for the rest of

the proof s 6= z.

Situation I � Suppose �rst that z� 2 (z; w).

Use �� = ���m, applied to z. Here z� is in U so z�� is in U� . Suppose �rst that U� 6= U��1. Then

z�� bridges to LA� in a point in [z; w] and hence a = z����m bridges to LA� in a point in [z��m; w]

and a is in U . Here

z����m = z� = z��1��1 ) z��1 2 U� 6= U :
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Figure 19: a. Situation I, Situation III.

Again z��1 bridges to LA� in a point in [z; w] and it follows that z is in U , hence z 2 W contradicting

W \W = ;.
The remaining possibility is U� = Tz(z�

�1), so in particular U� 6= U , see �g. 19, a. Consider

w��1��1� . The point w��1 is not in U , hence it bridges to LA� in a point not in (z; w]. Therefore

w���1 bridges to LA� in a point not in (z��1; w], so w���1 is in Tz(z�
�1) = U� . Hence

w��1��1� = w��1��1 is in U�2 6= U�; Tz(s):
Notice that

(Tz(s))� = Tz(s); since s� = s; so Tz(s) 6= U�2:
In particular w��1��1 is in W and also bridges to LA� in a point which is in [z; w]. Then w��1 bridges

to LA� in a point which is in [z�;w] so in particular w��1 is in U � W . But then w��1��1 and w��1

are both in U , contradicting W \W = ;.
This �nishes the analysis of possibility z� 2 (z; w).

Situation II � Suppose z��1 2 (z; w).

Consider �rst the case when z� 2 U��1, that is Tz(z�) = Tz(w�
�1). This is very similar to Situation

I, second part. Since z� is not in U , this in particular implies U� 6= U . Here w� 62 U , hence it bridges

to LA� in a point which is not in (z; w]. It follows that w�� bridges to LA� in a point which is not in

(z�;w]. This implies that w�� is in Tz(z�) = Tz(w�
�1). Hence

w��1 = w����1 is in Tz(w�
�2) 6= Tz(s); Tz(w�

�1):

The �rst fact means that w��1 is in W . The second fact means that w��1 is not in Tz(z�), hence w�
�1

bridges to LA� in a point contained in [z; w]. Hence w��1��1 bridges to LA� in a point contained in

[z��1; w] and is in W. As w��1��1 = w��1, this would imply W = W, again contradiction. Hence

this cannot occur.

Now we know z� is not in Tz(w�
�1). The point z� = z��1��1 is in Tz(w�

�1), hence it bridges to

LA� in a point contained in [z; w]. It follows that z��m bridges to LA� in a point contained in [z�m; w].

But

z�m 2 U ) z��m 2 U ) z�1�� 2 U or z�1� 2 Tz(w�
�1)
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and bridges to LA� in a point in [z; w]. It follows that z�1 bridges to LA� in a point in [z��1; w], hence

z�1 2 U � W, impossible.

We conclude that situation II cannot occur. This proves the last 2 assertions of the lemma 8.2. It

also implies that the following situation must occur:

Situation III � z� 62 (z; w); z��1 62 (z; w), see �g. 19, b.

What is left to prove of lemma 8.2 is that U� = U . So suppose that U� 6= U .
Here z��1 bridges to [z; w] in a point r which is in (z; w). Also z� bridges to t in [z; w] with t also

in (z; w).

The point w is not in W, so it is in Tz(s) and bridges to [w��1; z] in z. Hence w� bridges to

[w��1; z�] in z�. But z� = z��1��1 bridges to [z; w��1] in r��1. Then w� bridges to [z; w] in z (this

uses U� 6= U !). Then

w��m bridges to [z; w] in a point in (z; w) so w��m 2 U :
On the other hand w��1 bridges to [z; w] in z so w��1� bridges to [z; w] in a point in (z; w) and

w��1� is in U . Then w��1�� is in U� . Of course this implies U� = U , contrary to assumption.

So in any case we conclude that U� = U . This �nishes the proof of lemma 8.2.

This lemma is very useful. Since there is no �xed point of � in (z; w) and Tz(w)� = Tz(w) it follows

that there is a local axis LA� of � contained in U = Tz(w) with an ideal point z.

Lemma 8.3. w is not in LA� .

Proof. Suppose not, that is, w 2 LA� . Here we will use lemma 4.6: Suppose that LA� is a local axis for

� and w is a point in LA� with w� = w. Then at least one of the components of T � fwg containing

w�;w��1 is not invariant under �.

Situation I � w��1 2 [z; w).

Here V = Tw(z) = Tw(w�
�1) is invariant under �. By lemma 4.6, the set R = Tw(w�) is not invariant

under �. Notice that R� is not equal to V either.

Use w�� = w� = w����m�1. Here

w� 2 R ) w�� 2 R� 6= V ) w��� 2 R� � R ) c = w�����1 2 R��1 6= R:

So c bridges to w in LA� and then w�����1��1 = w��� bridges to w��1 in LA� and is then in V.
Finally w����m�1 is in V�m�1 = V. This is not R, contradiction.

Situation II � w� 2 (z; w).

Here V = Tw(w�) = Tw(z) is invariant under �. Let R = Tw(w�
�1), which is not invariant under

�. Use w��1�� = w���m�1. Then w��1 is in R, so w��1� is not in R or V and bridges to w in LA� .

Then w��1�� bridges to w� in LA� and is in V. It follows that

w��1���1�m = w�� = w� = w���1��1 is in V:
Hence w���1 is in V� . This implies

w���1 � w� � w ) w� � w�� � w ) w � w����1 = w��1 � w��1:

In particular w��1 is inR and w��1��1 is inR��1 which is not equal to V. Also w��1��1 = w��1��1� .

Here w��1��1 is in R��1 and bridges to w in LA� and so w��1��1� bridges to w� in LA� and so is in

V. As V is not equal to R��1, this is a contradiction.

We conclude that situation II cannot happen either. This �nishes the proof of the lemma.
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Now we know that w is not in LA� .

Lemma 8.4. z is not in LA�.

Proof. Suppose not, that is, z 2 LA�. This implies that either z� or z��1 is in (z; w). Then lemma 8.2

implies that s = z.

Suppose �rst that z� 2 (z; w]. So z��1 62 Tz(w) = U . Use z�� = z��m As z� 2 U , then z�� is in U
also. Then

z��1 62 U ) z��1��1 62 U ) z� bridges to [z; w] in z

and z��m bridges to [z�m; w] � [z; w] in z�m. It follows that z��m is not in U , contradiction.
Suppose now that z��1 is in [z; w]. Then z��1��1 = z� is in U and bridges to [z; w] in a point t

which is not z. Then z��m bridges to [z; w] in t�m and z��m is in U . On the other hand z� is not in U
and so z�� is not in U either. This is a contradiction.

This �nishes the proof of the lemma.

Summary in Case C.3 � So far we have proved: suppose that w� = w, s� = s, no �xed points of �

or � in (s; w). Let z 2 [s; w), the closest to w with z� = z. Then

Tz(w)� = Tz(w); Tw(z)� = Tw:

If LA� ;LA� are the corresponding local axes of � and � then z 62 LA�, w 62 LA� .

Case C.3.0 � Suppose that LA� \ LA� has at most one point.

This is very simple. Let [c; d] be the bridge from LA� to LA�, where c = d if the intersection is one

point. We do the proof for c 6= d, the other is very similar. Use z��1�� = z���m�1. The right side is

z�� . Here z� bridges to LA� in d�, hence bridges to LA� in c. So z�� bridges to LA� in c� .

So z�� bridges to LA� in d so z����1 bridges to LA� in d��1 and to LA� in c. So z���
�1��1 = z��

bridges to LA� in c��1 hence to LA� in c. Finally z���m�1 bridges to LA� in d�m�1 hence to LA� in

c. Since c 6= c� this is a contradiction.

Case C.3.1 � Now assume LA� \ LA� has more than one point. We will use the analysis done in case

B.

If U is not equal U then we use the proof of case B.1.3 � which was done also for local axis of �.

This disallows this case.

The remaining case is that U is equal to U . As explained in case B.1.4 this implies  leaves LA�

invariant. Here we consider the intersection B = LA� \ LA� . First notice that z is not in B. If z were

a limit point of B then B would be (z; r] (recall that w is not in LA� ). Then as � leaves invariant LA�

we would have z� = z also ruled out by non trivial action of the group on T . If LA� is not properly

embedded on the other side let v be the other ideal point of LA� . Then

v� = v; (Tw(v))� = Tw(v); (Tv(w))� = Tv(w):

Also (w; v) has no �xed points of � . Suppose that v is in LA�. Then (w; v) also has no �xed points of �.

But then v has the same properties as z and this case is ruled out by lemma 8.4. It follows that v is not

in LA�. So if LA� has another ideal point v, then B is [r; t] with t an actual point in LA� .

Now we can apply the analysis of case B.1.4 which was also done for � with a local axis. The analysis

rules out this situation.

This shows that case C.3.1 cannot happen either.

This �nishes the proof of the main theorem.
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9 Remarks

There are a lot of interesting questions still open. First we discuss some internal questions about the

proofs in this article. The proof of the R-covered case uses p > 3q for � orientation reversing. It would

be useful to get a more general proof � for instance showing that p must be equal to 4 or that p has to

be even. We obtained some preliminary results, but not conclusive. The same argument and condition

p > 3q are then used in various places of the article so it would be very good to discover a more general

proof.

Also the best possible result for the manifolds Mp=q described in this article would be the following:

If p � q, p odd, m � �4 then the only possible essential laminations are those coming from either stable

or unstable lamination in the original manifold M � these remain essential whenever jp� 2qj � 2. One

way to interpret such a goal is a rigidity result � all laminations in this manifold have to be of this

type. Notice that Brittenham's results for Seifert �bered spaces [Br1] are of this form. Also Hatcher and

Thurston's results for surgery on 2-bridge links [Ha-Th] are along these lines.

Now on for more general goals: How far can the methods of this article be generalized? Can they

be used whenever M is a punctured torus bundle over S1 with Anosov monodromy and degeneracy

locus (1; 2)? Probably a mixture of topological methods and group action methods needs to be used.

How about surface bundles, where the surface has higher genus? What about other degeneracy locus as

discovered by Gabai-Kazez [Ga-Ka1]?

Since essential laminations do not exist in every closed hyperbolic 3-manifold, one looks for useful

generalizations. One possible idea was introduced by Gabai in [Ga5]: a lamination � in M , compact,

orientable, irreducible is loosesse if � satis�es:

0) � has no sphere leaves and

1) for any leaf L of �, the homomorphism �1(L) ! �1(M) induced by inclusion is injective, and

for any closed complementary region V , the homomorphism �1(V ) ! �1(M) induced by inclusion is

injective.

Gabai [Ga5] conjectured that under these conditions and M closed then e� is a product lamination

and fM is homeomorphic to R3. One test case is the class of manifoldsMp=q studied in this article. When

jp�2qj = 1 the lamination coming from the stable lamination has monogons. The leaves are either planes

or have Z fundamental group. The complementary region is a solid torus. So to check for loosesse one

only needs to understand if leaves inject in the fundamental group level.

Another direction involves general group actions on trees. When does a group acts non trivially on a

tree? Perhaps there are theoretical characterizations of when such an action exists. This is one aspect of

one dimensional dynamics because a tree is a one dimensional object.
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