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1 Introduction

We analyse the existence question for essential laminations in 3-manifolds. The purpose of the article
is to prove that there are infinitely many closed hyperbolic 3-manifolds which do not admit essential
laminations. This gives a definitive negative answer to a fundamental question posed by Gabai and
Oertel when they introduced essential laminations in [Ga-Oe], see also [Ga4, Ga5]. The proof is obtained
by analysing certain group actions on trees and showing that certain 3-manifold groups only have trivial
actions on trees. There are corollaries concerning the existence question for Reebless foliations and
pseudo-Anosov flows.

This article deals with the topological structure of 3-manifolds. Two dimensional manifolds are ex-
tremely well behaved in the sense that the universal cover is always either the plane or the sphere (for
closed manifolds), the fundamental group determines the manifold and many other important properties.
Similarly for a 3-manifold one asks: When is the universal cover R3? When does the fundamental group
determine the manifold? Are homotopic homeomorphisms always isotopic? An obvious necessary condi-
tion is that the manifold be irreducible, that is, every embedded sphere bounds a ball. As for 2-manifolds,
the existence of a compact codimension one object which is topologically good is extremely useful. A
properly embedded 2-sided surface not S%,D? is incompressible if it injects in the fundamental group
level [He]. A compact, irreducible manifold with an incompressible surface is called Haken. Fundamental
work of Haken [Hakl, Hak2] and Waldhausen [Wa] shows that Haken manifolds have fantastic properties,
answering in the positive the 3 questions above.

But how common are Haken 3-manifolds, that is how common are incompressible surfaces amongst
irreducible 3-manifolds? In some sense they are not very common. Recall that Dehn surgery along an
orientation preserving simple closed curve § is the process of removing a tubular neighborhood N(J)
(a solid torus) and glueing back by a homeomorphism of the boundary - which is a two dimensional
torus 77 [Rol, Bu-Zi]. The surgered manifold is completely determined by which simple closed curve in
Ty becomes the new meridian, that is, which curve of 77 is glued to the null homotopic curve in the
boundary of N(4). Hence this is parametrized by a pair of relatively prime integers (g, p), corresponding
to the description of simple closed curves in T;. When viewed this way, the set of relatively prime (g, p) is
the Dehn surgery space — a subset of Z2 C R2. The same can be done iterating the process doing Dehn
surgery on links [He, Rol, Bu-Zi]. Notice that all closed, orientable 3-manifolds can be obtained from S3
by some Dehn surgery on an appropriate link in S? [Rol]. So one can interpret how common a property
is by verifying how many of the Dehn surgered manifolds have that property. Along these lines some of
the many results on incompressible surfaces are: If K is a two bridge knot in S? then almost all Dehn
surgeries on K yield manifolds without incompressible surfaces [Ha-Th]|. The same is true for any knot
K in a manifold M so that M — K does not have any closed incompressible surfaces [Hat1]. Notice that
there are also results on the other direction: for example Oertel [Oe| proved that for many star links in
S3, then any non trivial Dehn surgery yields a manifold with incompressible surfaces. There are similar
results for Montesinos knots [Ha-Oe]. Basically a lot of it depends on whether the complement has closed
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incompressible surfaces or not. In many cases the complement does not have such surfaces, yielding the
non existence results for most Dehn surgered manifolds.

This amongst other reasons led to the concept of an essential lamination as introduced by Gabai
and Oertel in the seminal paper [Ga-Oe] of the late 80’s. A lamination is a foliation of a closed subset
of the manifold. Roughly a lamination in a closed 3-manifold is essential if it has no sphere leaves,
no tori leaves bounding solid tori, the complement of the lamination is irreducible and the leaves in the
boundary of the complement are incompressible and end incompressible in their respective complementary
components [Ga-Oe|. Gabai and Oertel proved the fundamental result that essential laminations have
far reaching and deep consequences: the manifold M is irreducible, its universal cover is R?, leaves of
the lamination inject in the fundamental group level, efficient closed transversals are not null homotopic;
amongst other consequences [Ga-Ka3]. In addition manifolds with genuine essential laminations satify
the weak hyperbolization conjecture [Ga-Kad]: either there is a Z @ Z subgroup of the fundamental group
or the fundamental group is Gromov hyperbolic [Gr, Gh-Ha]. Genuine means that not all complementary
regions are I-bundles, or equivalently it is not just a blow up of a foliation. Brittenham also proved
properties concerning homotopy equivalences for manifolds with essential laminations [Br2].

In addition essential laminations are extremely common: For example if K is a non trivial knot in S3
then off of at most two lines and a couple of points in Dehn surgery space, the surgered manifold contains
an essential lamination. This is obtained as follows: first Gabai constructed a Reebless foliation F in
(S? — N(K)) which is transverse to the boundary [Gal, Ga2, Ga3]. Reebless means it does not have a
Reeb component: a foliation of the solid torus with the boundary being a leaf, all other leaves are planes
spiralling to the boundary [Re, No]. Then results of Mosher, Gabai [Mo2] show that either there is an
incompressible torus transverse to F or there is an essential lamination in S* — N(K) with solid torus
complementary regions. This lamination remains essential off of at most two lines in Dehn surgery space
[Mo2] - see more on solid torus complementary regions later. Also Brittenham produced examples of
essential laminations which remain essential after all non trivial Dehn surgeries [Br3, Br4]. Roberts has
also obtained many important existence results concerning alternating knots in the sphere [Rol, De-Ro]
(partly jointly with Delman) and punctured surface bundles [Ro2, Ro3].

So succesful was the search for essential laminations that at first one might wonder whether all man-
ifolds that can (irreducible, with infinite fundamental group), in fact do admit essential laminations.
Given that an incompressible torus is an essential lamination, the Geometrization conjecture [Th2] sug-
gests that one should only have to analyse Seifert fibered spaces and hyperbolic manifolds [Sc, Th2].
The Geometrization conjecture may well have been proved at this point: after this article was written
Perelman announced a proof of this conjecture [Pel, Pe2] — this is being very carefully scrutinized by
the experts at this point.

The situation for Seifert fibered spaces has been completely resolved: Brittenham produced examples
of Seifert fibered spaces which are irreducible, have infinite fundamental group, universal cover R3, but
which do not have essential laminations [Brl]. Naimi [Na], using work of Bieri, Neumann and Strebel
[BNS], completely determined which Seifert fibered manifolds admit essential laminations.

For hyperbolic 3-manifolds there were two fundamental open questions: 1) (Thurston) Does every
closed hyperbolic 3-manifold admit a Reebless foliation? 2) (Gabai-Oertel [Ga-Oe], see also [Gad, Gab])
Does every closed hyperbolic 3-manifold admit an essential lamination? In 2001 question 1) was answered
in the negative by Roberts, Shareshian and Stein [RSS] who produced infinitely many counterexamples.
The goal of this article is to answer question 2) in the negative. We now proceed to describe the examples.

Basically one starts with a torus bundle M over the circle and do Dehn surgery on a particular closed
curve. Let ¢ be the monodromy of the fibration associated to a 2 by 2 integer matrix A, so that A is
hyperbolic. Let R be a fiber which is a torus. There are two foliations in R which are invariant under
the monodromy ¢, the stable and unstable foliations. The suspension flow in M induces two foliations
in M with leaves being planes, annuli and Méebius bands. Suppose there is a Moebius band leaf. Blow
up that leaf, producing a lamination with a solid torus complementary component with closure a solid
torus with core § and with some curves 1 removed from the boundary. The curves n are called the
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degeneracy locus of the complementary region of the lamination [Ga-Kal]. One can think of n as lying in
the boundary of N(§), which is a two dimensional torus. Let (1,0) be the curve in ON(4) which bounds
the fiber in M — N(§). Under an appropriate choice for the curve (0,1) of 9N (d) then 7 is represented
by (1,2). Do Dehn surgery along d. If ¢ is the new meridian (the Dehn surgery slope), then results of
essential laminations [Ga-Oe, Ga-Kal] show that A remains essential in the Dehn surgery manifold M if
the intersection number of ¢ and 7 is at least 2 in absolute value. If £ is described as (q,p) then this is
equivalent to |p — 2¢| > 2. Therefore the open cases for essential laminations are |p — 2¢| < 1.

For simplicity of notation we omit the explicit dependence of M on ¢. It is always understood that
M depends on the particular ¢.

In a beautiful and fundamental result, Hatcher [Hat2], showed that if p < ¢ then then Dehn surgery
manifold Mg = M, /, has a Reebless foliation. This is done via an explicit construction involving train
tracks and branched surfaces. In 2001 Roberts, Shareshian and Stein considered a particular type of
monodromy, namely generated by the matrix

m —1
A = [1 0] m < —3

The eigenvalues of A are negative. Consider the point (0,0) in R? and its projection O to the fibering
torus R. Let § be the closed orbit of the suspension flow through O. Because the eigenvalues are negative,
the leaf of the stable foliation through O is a Moebius band. When it is blown open into an annulus the
degeneracy locus is (1,2) as described above. In a groundbreaking work, Roberts, Shareshian and Stein
[RSS] considered Dehn surgery on these manifolds and proved a wonderful result: if p is odd, m is odd
and p > q then M)/, does not admit Reebless foliations. In this article we consider a subclass of these
manifolds and prove that they do not admit essential laminations:

Main Theorem: Let M be a torus bundle over the circle with monodromy induced by the matrix
A above. Let ¢ be the orbit of the suspension flow coming from the origin and M, = M, be the
manifold obtained by (g,p) Dehn surgery on §. Here (1,0) bounds the fiber in M — N(6) and (1,2)
is the degeneracy locus. Then if m < —4 and [p — 2¢| = 1, the manifold M, /q does not admit essential
laminations.

The manifold M — ¢ is atoroidal [Th4, Bl-Ca] and fibers over the circle with fiber a punctured torus.
By Thurston’s hyperbolization theorem in the fibering case M — § has a complete hyperbolic structure
of finite volume [Th3]. By Thurston’s Dehn surgery theorem M), , is hyperbolic for almost all p/q [Th1].
Therefore:

Corollary: There are infinitely many closed, hyperbolic 3-manifolds which do not admit essential
laminations.

Another immediate corollary is:
Corollary: If m < —4 and |p—2¢| = 1, then the manifolds M, /q above do not admit Reebless foliations.

About half of this result has already been established by Roberts, Stein and Shareshian [RSS], namely
the situation when m is odd. See more on m odd below. Another consequence is:

Corollary: If m < —4 and |p — 2¢| = 1 then M,,/, does not admit pseudo-Anosov flows.

For basic definitions and properties of pseudo-Anosov flows consult [Mol, Mo2]. This result provides
infinitely many hyperbolic manifolds without pseudo-Anosov flows. We stress that Calegari and Dunfield
[Ca-Du] previously obtained conditions implying manifolds do not admit pseudo-Anosov flows and showed
for example that the Weeks manifold does not admit pseudo-Anosov flows.
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We remark that Dehn surgery on torus bundles over the circle has been widely studied, for example:
a) Which surgered manifolds have incompressible surfaces [F1-Ha, CJR], b) Virtual homology [Bk1, Bk2],
c) geometrization [Jo, Thl, Th2, Th3, Th4].

Finally we remark that there are algorithms to decide these existence questions. Namely Jaco and
Oertel [Ja-Oe] produced an algorithm to decide whether a 3-manifold has an incompressible surface.
Recently Agol and Li [Ag-Li] did the same for essential laminations. These are theoretical algorithms
and so far for laminations there are no manifolds which can be shown not to have essential laminations
using the algorithm.

We now describe the key ideas of the proof of the main theorem. The proof is done by looking at group
actions on trees. For simplicity first consider the case of a Reebless foliation F. Novikov proved that
leaves are incompressible and transversals are never null homotopic [No]. Hence the lift to the universal
cover F is a foliation by planes and its leaf space is a simply connected 1-dimensional manifold, which may
not be Hausdorff. The fundamental group acts on this object. Roberts et al analysed group actions on
simply connected non Hausdorff 1-manifolds and also on trees — under the conditions p > ¢ and p, m odd,
they ruled out the existence of Reebless foliations [RSS]. Notice that the leaf space of the lifted foliation
F is an orientable object and it makes sense to talk about orientation preserving homeomorphisms. In
order to stay in the orientation preserving world they restricted to p, m odd.

Now consider an essential lamination A. The results of Gabai and Oertel [Ga-Oe| imply that the lift
to the universal cover X is a lamination by planes in M. To get the leaf space blow down closures of
complementary regions to points and also non isolated leaves (on both sides) to points. This produces
an order tree as defined by Gabai-Kazez [Ga-Ka2] also called a non Hausdorff tree in this situation [Fe].
A further appropriate collapsing of the (possible) non Hausdorff points yields an actual tree where the
group acts non trivially. The strategy is to show there are no nontrivial actions of the group on trees.
An action is trivial if it has a global fixed point. A crucial difference from the case of foliations is that in
the case of laminations the tree does not have a group invariant orientation in general. Hence orientation
dependent arguments cannot be used. This was very important and widely used in [RSS]. Since we do
not have an orientation here, the condition m odd does not play a role, which allows us to consider m
even as well. In addition if |[p — 2¢| > 2 there is an essential lamination in the surgered manifold, so this
exact condition has to appear in the analysis of the laminations case. Also |p —2¢| = 1 obviously implies
that p is odd. On the other hand there are many examples with p even so that M, , has a Reebless
foliation - for example p = 4,q = 1 or p = 8,¢q = 3 (this has p > ¢!). So to rule out Reebless foliations,
some further condition on p, g should be necessary when p is even. Except for ruling out trivial actions,
the proof here is done entirely in the tree — we never go back to the original non Hausdorff tree. For the
sake of completeness we state this result from which the main theorem is an easy corollary:

Theorem: Let M, be the manifold described above. If m < —4 and |p — 2¢| = 1, then every action
of m1(Mp/,) on a tree is trivial.

The fundamental group of M,,/, denoted by G can be generated by two elements « and 7. Actions of
a homeomorphism on a tree are easy to understand: either there is a fixed point or in the free case there
is an invariant axis. An axis is a properly embedded copy of the reals where the homeomorphism acts
by translation. The proof breaks down as to whether the generators above act freely or not yielding 3
main cases to consider (when 7 acts freely it does not matter the behavior of ). The proof subdivides
into various subcases. Invariably the analysis goes like this: apply a certain relation in the group to a
well chosen point. One side of the relation implies the image of the point is in a certain region of the
tree while the other side of the relation implies it is in a different region - contradiction! An important
idea is that of a local axis, which has all the properties of axis except perhaps being properly embedded.
Homeomorphisms with fixed points may have local axes. This is extremely useful in a variety of cases.

We note that Z actions on non Hausdorff trees had been previously analysed in [Fe] and [Ro-Stl,
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Ro-St2], with consequences for pseudo-Anosov flows [Fe| and Seifert fibered spaces [Ro-St1, Ro-St2].

There is a large literature of group actions on trees which were brought to the forefront by Serre’s
fundamental monograph [Se]. The analyis usually involve a metric which is invariant under the actions
[Mo-Sh1, Mo-Sh2, Mo-Sh3| or actions on simplicial trees [Se]. We stress that the tree involved in here is
not simplicial and it is not presented in general with a group invariant metric — unless there is a holon-
omy invariant transverse measure of full support in the lamination, e.g when there is an incompressible
surface. So the proof is entirely topological and in that sense elementary. The topology of the manifold,
particularly the condition |p — 2¢| = 1 plays a crucial role. Notice that in the foliations case there is
a pseudo-metric lying in the background which is used from time to time to deal with some critical
cases in [RSS]. The pseudometric distance between two points measures how many jumps between non
separated points are necessary to go from one point to the other. This pseudometric was analysed and
used previously by Barbot in [Bal, Ba2] with consequences for foliations. In the laminations case, such
a pseudo-metric does not give useful information, because in some sense the singularities or prongs also
allows one to “change” direction — there is much more flexibility.

There has been a flurry of activity in this area. We describe the results in more detail here and how
they relate to the results in this article.

Calegari and Dunfield [Ca-Du] approached the existence problem for foliations, laminations and
pseudo-Anosov flows from a different point of view. Following ideas and results of Thurston [Th5, Th6]
concerning the universal circle for foliations they showed that a wide class of essential laminations also
possess a universal circle. One consequence is that tight essential laminations with torus guts (see [Ca-Du]
for detailed definitions) have universal circles. Tight means the lifted lamination to the universal cover
has Hausdorff leaf space. Hence the fundamental groups act on the circle. Under certain conditions re-
lated to orderability of a finite index subgroup, then the action lifts to a non trivial action in R and they
obtain nonexistence results for these types of laminations. For example they can show that the Weeks
manifold does not have Reebless foliations, pseudo-Anosov flows or general tight essential laminations.
The results on manifolds (eg the Weeks manifold) are computer assisted and so far there are computer
capability restrictions to extending them to other manifolds. In addition these results use heavily the
tight hypothesis.

A more recent article is that of Jinha Jun [Ju] who used the techniques of Roberts, Shareshian and
Stein to analyse Dehn surgery on the (—2,3,7) pretzel knot in S?. He proved that there are infinitely
many hyperbolic Dehn surgeries on this knot, which yield manifolds without Reebless foliations.

A much more recent result (october 2003) is from Kronheimer, Mrowka, Ozvath and Szabo [KMOS].
This is part of a very wide program to use techniques of analysis, sympletic and contact geometry to
analyse 3 and 4-manifolds. Results of Eliashberg and Thurston [El-Th] allow one to perturb a Reebless
foliation to a tight contact structure. Using this the above authors show that infinitely many hyperbolic
manifolds do not have Reebless foliations [KMOS]. In particular there are infinitely many Dehn surgeries
on the (—2,3,7) pretzel knot which satisfy this. The techniques are extremely complicated and it is yet
unclear whether they can be extended to study essential laminations.

The tools and arguments in this article are more closely associated to those in [RSS], in that both
look at group actions on simply connected 1-dimensional spaces. However, as we explained before there
are 2 critical differences: the lack of transverse orientability for general essential laminations and the lack
of a useful group invariant pseudo-metric in the leaf space, both of which were extremely useful in [RSS].

Finally we stress that the results in this article provide the first and so far the only examples of
hyperbolic manifolds without essential laminations of any kind.

The results of this article mean that the search for structures more general than essential laminations,
but still useful takes an added relevance. One idea previously proposed by Gabai [Gab] is that of a
loosesse lamination. We will have more comments on that in the final remarks section.

We are very thankful to Rachel Roberts who introduced the idea of considering group actions in the
foliations case and other ideas.
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2 The group

Here we compute the fundamental group of M, /.. Start with M the torus bundle over the circle with
monodromy induced by

m —1
= < —
A [ 1 0 ] where m < —3
For notational simplicity the dependence of M on A is omitted.
The eigenvalues of A are

m+vm?2 -4
4

which are both negative and the matrix is hyperbolic. The eigenvector directions produce two linear
foliations in R? with irrational slope and invariant under A. They induce two foliations in the torus 7°2.
Since A is integral it induces a homeomorphism ¢ of T, which leaves the foliations invariant. Let O in
T? be the image of the origin. Let M be the suspension of ¢ and let F be (say) the suspension of the
stable foliation of T2. Then F has leaves which are planes, annuli and Mdebius bands. Identify 72 with
a fiber in M and let § be the orbit through O, which is a closed orbit intersecting 72 once. Since the
eigenvalues of A are negative, the stable leaf containing ¢ is a M6ebius band. We do Dehn surgery on 4.
We first determine the fundamental group of M — N(§). To do that let

D = N@)NT? (adisk), V = T?—-D (a punctured torus).

Choose a basis for the homology of ON (§) = T, a torus. Let (1,0) be the curve in T} bounding the fiber
V of M — N(9). Blow up the leaf of F through 4. It blows to a single annulus and the complementary
region is a solid torus with core . The closure of the complementary region is a solid torus with a
closed curve in the boundary removed. The removed curve is the degeneracy locus of the complementary
component [Ga-Kal]. Since the leaf of F was a Mdebius band, the degeneracy locus intersects the curve
(1,0) twice. Choose the curve (0,1) so that the degeneracy locus is the curve (1,2) in this basis. Let
M,,, be the manifold obtained from M by doing (q,p) Dehn surgery on 0. By results about essential
laminations, the lamination A remains essential in M), , if [p — 2q| > 2. Let « be the curve (0,1) in T3
and 7 be the curve (1,0). The degeneracy locus is the curve y72. Notice there are two tori here: one
which is a fiber of the original fibration (here denoted by T?), another which is the boundary of N(¢)
(here denoted by T7). The Dehn surgery coefficients refer to 7T7.

Suppose the disk D above is a round disk of radius e sufficiently small. The universal abelian cover
of T? — D is the plane with disks of radius e around integer lattice points removed. Let E be the one
around the origin. We pick 4 points in OE: a = (—¢,0),b = (0, —€),c = (¢,0) and d = (0, €), see fig. 1, a.
Let a’ be the image of a under A, etc.., see fig. 1, b.

The image of F under A is an ellipse which can be deformed back to dF, see fig. 1, b. Notice v/, d’
are in the r axis and d' = a.

Let the image of @ in T? — D be the basepoint of the fundamental group of M — N (§) for simplicity still
denoted by a and likewise for b, ¢, d. Let [ be an arc along the image of OF under A, going counterclockwise
from d' to a'.

We pick a basis for 7 (T? — D): Let « = ac*1l; (see fig. 1, c) where the arc @ac C OF is traversed
in the counteclockwise direction and Iy is parametrized as {(¢,0) | e < ¢t < 1 — €}. Here % denotes
concatenation of arcs. Let also

B = adey * l2 * bag,,

where [y is parametrized as {(0,%) | e <t <1 —¢€}, and the “clo” subscript means the arcs are traversed
clockwise in 0F. We identify « and 8 with their images in T5 — D, so they generate the fundamental
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Figure 1: Computing the fundamental group of M — N(9).

group of Th — D. It is easy to see that the curve v = [a, (] is just an counterclockwise turn around OF.
Then

rlar = Ixdd«lpx1L

The composition [ xa’c’ is roughly one counterclockwise turn around dF so it is the curve . The straight
arc [} goes from ¢ = (me, €) to (m(1—e),1—¢) - roughly going one step up and |m| steps to the left. This
together with [=! can be isotoped to fa™ (where we are identifying «, 8 with the appropriate covering
translates). We conclude that 7~ 'ar = yBa™. Similarly
T8 = Ixdd okl xVal g k17T
So in the same way it is easy to see that 7~ '37 = a~!. Notice that «, 7 generate m (M — N(J)). Hence
(M —-N(@©) = {7 | 7 ar =4Ba™, 7'fr=0a"", y=1[a,6]}
After (¢q,p) Dehn surgery on § we obtain ¢y + p7 is the new meridian or 77?7 = 1. Hence
g = 7T1(Mp/q) = {a,7| rlar =48a™, T 8r=0a"", y= [a, ], TPy =1}
In the proof we will use these and the following variations of these relations extensively:

ripr=at, Tar ! =34,

r~lar = yBa™ = afa™ ! = aralr 7™t

ar = 7yfa™ = rafa™ !
af =vBa, or ara lr7! =1ya"r e

A little manipulation with the relations also yields

17l = ot = ylap"

These and circular variations of these will be used throughtout the article.
Since q,p are relatively prime there are e, f in Z with ep + f¢ = 1. Let k = 7/y™¢. Then & is a
generator of the Z subgroup of G generated by 7, and 7 = K%,y = k7P.

NOTATION: — In the arguments group elements act on the right.
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3 Outline of the proof
Given the presentation of G above the proof of the main theorem is broken into 4 cases:

e Case R - R-covered case
e Case A - 7 acts freely
e Case B - « acts freely 7 has a fixed point.

e Case C - a and 7 have fixed points.

If v acts freely on a tree, let A, be its axis. If ;1 has a local axis, we denote it by £LA,,. Unlike a true
axis, a homeomorphism may have more than one local axis. The context will make it clear which one is
being considered.

Case R — R covered case.

The R-covered case is simple. Given that p is odd, this implies that 7 is orientation preserving in R.
The case « orientation preserving is simple. The other case (which implies m is even) leads to p > 3¢
which for our purposes is enough. It also leads us to move away from orientation preserving arguments,
which is more like the laminations case. We note that there is an easy linear non trivial action on R
when p = 4,q = 1. Notice that in this case p is even.

Case A — 7 acts freely.

This implies that s also acts freely and A, = A,. We analyse how A, intersects A,«a and other
translates (here Ai« is the image of A, under o). Let u = af. One uses the relation aff = vBa to
analyse how A, intersects A,u which breaks down into various cases as to whether this intersection is
empty, a single point or a segment. One particularly tricky case needs the condition m # —3.

Case B — « acts freely, 7 has a fixed point.

Let z be a fixed point of 7. First suppose that z is not in the axis A, of «. Suppose there is no fixed
point of 7 between z and A,. Here let & be the component of T'— {z} containing A,. The case Ut # U
is easy to deal with. It follows that &7 = U producing a local axis LA, of 7 which is contained in U
and has one limit point in z. The proof breaks down as to whether LA, intersects A, or not. Empty
intersections are easy to deal with, the other case being trickier.

Then suppose z is in A,. We remark this is a crucial case, because this is likely what happens for the
essential laminations we know to exist when |p —2¢| > 2. These come from the original stable lamination
on the fibering manifold. In that manifold, « acted freely and 7 had a fixed point in A,. After the
surgery « would still have at least a local axis, which contains a fixed point of 7. So one knows the exact
condition |p — 2¢| = 1 will have to be used here!

In this case consider U be the component of T — {2} containing za and Uz the one containing za~?.
It is easy to show that I/{7 is not I/; and that /7 is in fact equal to U5. When U7~ = Uy then one
produces a contradiction just using that p is odd. The case U7~ # Uy or UsT # U, is much more
interesting. Here the exact condition |p — 2¢| = 1 is used to show it would imply U7 = U which was
disallowed at the beginning. This actually has connections with the topology of the situation, see detailed
explanation in section 7. This is a crucial part of the proof. One very tricky issue is that a priori z is
only a fixed point of 7 and not of y — part of the proof is ruling this out.

Case C

Generally an axis is good because it gives information about where points go. The case of fixed points
is trickier and one many times searches for local axis.

Given two points a,b in a tree let [a,b] be the unique embedded segment connecting them. Let
(a,b) = [a,b] — {a,b}. Notice (a,b) is exactly the set of points in the tree separating a from b.
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Here let s be a fixed point of ¥ and w a fixed point of « so that there is no fixed point of either in
(s,w). Notice there may be fixed points of 7 in (s, w)! Let VW be the component of 7' — {s} containing
w and V the component of T — {w} containing s. The first part of the proof shows that Wr = W
and Va = V. These are moderately involved cases. This immediately produces a local axis LA, of «
contained in ¥V and with one ideal point w. One does not have yet a local axis for 7 because we do not
know a priori that 7 has no fixed points in (s, w). Some technical complications ensue.

One then shows that sa, sa ! are in W. Let 2z be the fixed point of 7 in [s,w) which is closest to w —
z could be s. Using the previous results show that the component ¢ of T'— {2z} containing w is invariant
under 7. Now this produces a local axis LA, of 7 in U with ideal point z and some further properties.
One then shows that w is not in LA, and z not in LA,.

We are now in familiar ground. If LA, NLA; has at most one point, then it is easy. When LA, NLA;
has more than one point we use arguments done in case B — this part of the arguments in case B is done
in more generality using local axis (rather than axis as needed in case B) and can be used in case C as
well. This finishes the proof of case C. This finally yields the proof of the main theorem.

The arguments in this article are very involved. One possibility to read the article and get a quick
grasp of the proof is to first analyse the R-covered proof. Then go to the proof of case B.2 - a acts freely
and 7 has a fixed point in the axis of @ — this case admits essential laminations if |p — 2¢g| > 2 and the
topology can be detected. Then read the proof of 7 acts freely and the other proofs.

4 Preliminaries

Let A be an essential lamination on a 3-manifold N. We’ll modify A if necessary to eventually obtain a
group action on a tree which is essentially the leaf space of the lifted lamination A to the universal cover
N. First if there are any leaves of A which are isolated on both sides, then blow each of them into an
I-bundle of leaves — needs to be done at most countably many times. Now A is a lamination by planes
with no leaves isolated on both sides [Ga-Oe].

_ Suppose L is a leaf of A which is non separated from another leaf F' — that is, there are L; leaves of
A with L; converging to both L and F. We do not want that L is not separated from some other leaf in
the other side (the one not containing F'). If that happens, blow up L into an I-bundle of leaves. This
can also be achieved by a blow up in A. Since there are at most countably many leaves non separated
from some other leaf we can get rid of leaves non separated from leaves on both sides. If needed use blow
ups so that non separated leaves of X are not boundary leaves of a complementary region of X (on the
opposite side). After all these possible modifications assume this is the original lamination A.

Now define a set T\ whose elements are: closures of complementary components of A and also leaves
of A which are non isolated on both sides. Then T is an order tree [Ga-Ka2, Ro-St2], also called non
Hausdorff tree [Fe]. The fundamental group 71 (V) naturally acts on T. If e is any point of T, which
is non separated another point €/, collapse all points non separated from e together with e. This is OK
since no such e is non separated on more than one side and e also does not come from a complementary
region of A\. The collapsed object is now an actual tree T' and the action of 71 (N) on T induces a natural
action of 71 (V) on T'. In our proof N = M,,, and we will analyse group actions of G = 7 (M,/,) on the
tree T'.

Definition 4.1. A group action on a tree T is nontrivial if no point of T is fixzed by all elements of the
group.

A lot of results on group actions on trees are to rule out non trivial group actions [Cu-Vo].
Given point a,b on a tree T let
(a,b) = {c€T | c separates a from b}.

If a = b, then (a,b) is empty, otherwise it is an open segment. Let [a,b] be the union of (a,b) and {a, b}.
Then [a, b] is always a closed segment.
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One fundamental concept here is the following:

Definition 4.2. (bridge) If x is a point of a tree T not contained in a connected set B, then there is a
unique embedded path [x,y] from x to B. This path has (z,y) N B = ( and either y is in B or y is an
accumulation point of B. We say that [z,y] is the bridge from x to B and if y is in B we say that z
bridges to B in y or that x bridges to y in B.

For example if T' is the reals and B = (0, 1), z = 2, then the bridge from z to B is [2,1]. One common
use of bridges will be: if z is not in a properly embedded line [ (as an axis defined below) let [x,y] be
the bridge from z to [. The crucial property of the bridge is that given x and B, the bridge is unique. In
various situations this will force some useful equalities of points. Another fundamental concept is:

Definition 4.3. (azxis) Suppose that g is a homeomorphism acting freely on a tree T. Then g has an azis
Ag, a properly embedded line in T, invariant under g and g acts by translations on A,.

This is classical. Here y is in A, if and only if yg is in (y, yg?), that is yg separates y from yg?. Then
it is easy to see that the axis must be the union of [yg’, yg’**'] where i € Z [Bal, Fe]. To obtain an
element in A, consider any z € T. If zg € (z,zg*) done. Else there is a unique

y € [z,2q] N[z, 79°] N [29,29%].

y is the basis of the tripod with corners z,1g,rg? [Gr, Gh-Ha]. A simple analysis of cases using free
action yields y is in the axis.
Another simple but fundamental concept for us is:

Definition 4.4. (local azis) Suppose l is a line in a tree T where a homeomorphism g acts by translation.
Then [ is a local axis for g and is denoted by LA,. The local axis may not be unique, the context specifies
which one we refer to.

For example if g acts in R by xg = 22, then R, R_ are both local axes of g with accumulation point
x = 0. Another characterization of local axis: z is in a local axis of g if and only if zg separates = from
zg? (same definition as for axis except requiring that g acts freely). Another characterization: suppose
xg is not x and let U be the component of T' — {z} containing zg. Then z is in a local axis of ¢ if and
only if g C U.

Let z be a point in a tree T. A prong at z is a non degenerate segment I of T' so that x is one of the
endpoints of I. Two prongs at x are equivalent if they share a subprong at . Associated to a subprong
I at z there is a unique component ¢ of T'— {z} containing I — {z}.

Notation — If z,y, z are elements in a tree we will write z < y < z if y separates z from z, or y is in
(x,z). We say that z,y,z (in this order) are aligned. Also = < y < z if one also allows y = z and so on.
Notice that this is invariant under homeomorphims of the tree.

The following simple results will be very useful:

Lemma 4.5. Let x be a point in a tree T'. Then two prongs I, Is at x are equivalent if and only if the
associated complementary components U1,Us are the same.

Proof. If I, I, are equivalent, there is y in I} — {x} also in I,. Then clearly y € U; and y € Us, so
U1 = Usy. Conversely suppose Uy = Uq. If I} is not equivalent to Iy, then I} NIy = {z} because T is a
tree and it also follows that x separates I from I>. This would imply U/, U5 disjoint, contradiction. [J

Lemma 4.6. Let T be a tree and n o homeomorphism so that there are two points x,y of T so that
r<an<y<yn or x<y=<zxn=<yn. Then x and y are in a local azis of 7.
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Proof. We do the proof for the first situation, the other being very similar. Let U be the component of
T — {z} containing zn. Using x < xn < y this is also the component of T' — {z} containing y. Apply 7,
then U is taken to the component of 7' — {zn} containing yn. Then Un is contained in U and z is in a
local axis. Apply n~! to y to get y is in a local axis as well. We stress the two local axes produced in
this way a priori may not be the same: there may be a fixed point of 1 in (z,y). O

Global fixed points

Here we consider the case that an essential lamination A on N would produce a trivial group action
on a tree T'.

Recall the notion of efficient transversal to a lamination: let n be a transversal to a lamination A.
Then 7 is efficient [Ga-Oe] if for any subarc 7y with both endpoints in leaves of A and interior disjoint
from A, then 7y is not homotopic rel endpoints into a leaf of A. Gabai and Oertel showed that if \ is
essential then any efficient transversal cannot be homotoped rel endpoints into a leaf of A. Also closed
efficient transversals are not null homotopic.

Lemma 4.7. If X is an essential lamination in N then the associated group action of w1 (N) on a tree T
as described above has no global fized point.

Proof. Suppose on the contrary that a point z of T is left invariant by the whole group. Look at the
preimage of z in the possibly non Hausdorff tree Ti. There are 3 options:

1— x comes from a non singular, Hausdorff leaf E of A. Then F is left invariant by the whole group
™1 (N), "

2— z comes from the closure R of a complementary region of A in the universal cover. Then R is left
invariant by the whole group. In this case let E be a boundary leaf of R.

3— Finally x may come from a non Hausdorff leaf E. Then the orbit of E under 7 (/N) consists only
of the non separated leaves from F.

By construction of the tree T above these 3 cases are mutually exclusive. It follows that in any of
the 3 options there is at least one component B of N — E which does not contain any translate of F. In
option 1) any component will do, in option 2) choose the component not containing R — E and in option
3) choose the component not containing leaves non separated from E.

Let A = w(E) where 7 : N — N is the universal covering map. Suppose first that A is not compact.
Then it limits on some leaves of A and there is a laminated box where A intersects it in at least 3 leaves
and the box intersects an efficient transversal to A. Lifting to IV so that the middle leaf is £ then the
other 2 leaves are not F (efficient transversal) and one of them is contained in B producing a covering
translate of F in B, contradiction. The same is of course true if A intersects an efficient closed transversal.

Now A is compact. If A is non separating, then it intersects a closed transversal associated to g in
71 (N) only once. Same proof yields either Fg or Eg~! in B, done.

Finally suppose that A is separating. Then C = n(B U E) is a compact submanifold of N which has
A as its unique boundary component. For any ¢ in 71 (C) then Eg is contained in BU FE, so by hypothesis
must be £, therefore 7 (A) surjects in 71 (C). As X is essential then 7 (A) also injects [Ga-Oe], so m1(A)
is isomorphic to 71 (C). As C is irreducible [Ga-Oe], then theorem 10.5 of Hempel [He| implies that C
is homemorphic to A x I with A corresponding to A x {0}. This contradicts the fact that A is the only
boundary component of C'. This finishes the proof of the lemma. O

Remark: — Notice that leaves of essential laminations may not intersect a closed transversal. For
example this occurs for separating incompressible surfaces. It also occurs for leaves of Reebless foliations
which have a separating leaf (which necessarily must be a torus or Klein bottle) — there are many
examples of these. So Reebless foliations which are also essential laminations need not be taut foliations!
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5 Case R — the R-covered case

For the remainder of the article we consider the manifold M, /, as described in section 2 with fundamental
group G. The goal is to show it does not admit an essential lamination. Suppose then on the contrary
that there is an essential lamination A on M, . Let T' be the associated tree with non trivial action of
G on it. Notice that since a, 7 generate G then no point of T is fixed by both « and 7.

The conditions on the parameters are |p —2q| = 1 and m < —4. They will not be used in full force for
all the arguments. Many times all we need is p > ¢ or p odd or m negative or none of these. The proof is
done by subdiving into subcases and showing each subcase is impossible leading to various contradictions.

In this section we assume that T is homeomorphic to the real numbers and study non trivial actions
of G in R. Notice that v being a commutator is an orientation preserving homeomorphism of R. Since
TPy? = id, then 7P is also orientation preserving.

We use the relations from the group presentation of G or variations thereof.

Suppose first the action is orientation preserving on R:

Case R.1 — a, 7 are orientation preserving.
As B = Tar~! then B also is orientation preserving and so is the whole group G. We subdivide into
subcases:

Case R.1.1 — 7 has a fixed point x.
Then za is not x. Orient R so that xa > z. As < is orientation preserving then xy = z. Then
applying y78a™ = ar to x:

xyTpa™ = xar > T =12

which uses 7 orientation preserving. Hence zfBa™ > z or zf > za™™ > x (as —m > 0). Hence
B! < x. But also

1 -1

8t = zrart = zar ! > 2! = 2.

This is a contradiction, ruling out this case.

Case R.1.2 — 7 acts freely, a has a fixed point z.

Assume 7 is increasing in R. As 7 = k% and ¢ is positive then & is increasing. Here use zat = z7 =
zyTBa™. Hence x7a~ ™ = xy7f3. As 7 > z then z7a™ > x. Hence zyr > z3~'. Here v = kP and
7 = k9P, As ¢ < p then ¢ — p < 0 and 7 is monotone decreasing or constant. Hence

7l <zyr <

One fact that will be used in a lot of arguments is that under the condition p > ¢ when v, 7 act freely
and z7 > x then zy < z7~!. Notice that 277!8 = zar~! = z7~!. On the other hand
8 = zaf = zyfa < z1 Pa = 27 la < za = .
leading to the contradiction that both 23 and z3~" are < z.
Notice a lot of these arguments are using orientation preserving homeomorphims.

Case R.1.3 — 7 acts freely increasing in R and « acts freely, also increasing in R.
Take any z in R. Then zar > z so zyrfa™ > z. So xy7f > xa™™ > x. Since zyr < z this implies
zf > x. On the other hand,

8 = zra it !t < gzl = g,

contradiction.

Case R.1.4 — 7 acts freely and increasing in R, « acts freely and decreasing in R.
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1 1

This implies za~! > zforall zin R. Forany z in R, 28 = z7a 17! > g77 ! = 2. Alsoz7 tar <z

for all z. Hence

m—1 1

rzafa = z7 ar < z,

for all z. Hence zaff < zaa™ ™ < za for all z (—m > 0). But this contradicts (za)S > za because f is
increasing everywhere as proved above.
This finishes the analysis of T' homeomorphic to R and orientation preserving action.

We now deal with orientation reversing cases. The general case of 7 orientation reversing is hard, so
we use one of the hypothesis to discard it as follows: 77 = y~? is orientation preserving as ~ always is.
We are mainly interested in |p— 2¢g| = 1, which implies p odd and if p is odd and 7P orientation preserving
then 7 is also orientation preserving. We now deal with the case « orientation reversing.

Case R.2 — « orientation reversing, 7 orientation preserving.

Let x be the unique fixed point of a. As x7 # z, assume z7 > z. As 7 = k% and ¢ > 0, this implies k
is increasing in x. Notice that 27! is the unique fixed point of 3. The subcases depend on the relative
position of z7a and z7~!. Notice that 7 > z, so z7a < T = .

Case R.2.1 — zra < o7 !
Then zrar~! = 28~ < z772. Notice

rxryfa™ = xar =T > ¥

m

so x7yfB > xa™™ =z and so

zry < zf7t < 2

or 273y < z. As 7 = k37 and 7 = k9, then zk37 P < z. As & is increasing in z then 3¢ —p < 0 or
p > 3q. Arguments such as this will be used in various parts of the proof. Since in the end we want
p = 2q £ 1 we can discard this case.

Remark — What we really wanted was to rule out this case without using p = 2¢+1, but we were unable
to do that. Our partial results (without using p = 2¢q £ 1) show that z7a® > z7a so r < z7a? < z7.
Also there is a fixed point of o between z7 and z72 and o2 acts expandingly (away from z) in some
point. Something similar is also true in the following case.

Case R.2.2 — z7a > o7 !
First notice that 237! < z7~!. Use

(z7)TyBa™ = (z7)ar >zt r =z

m

so z72yB > za ™ = r and

iy < 2Bt < zr L
We conclude as in the previous case that 273y < z or p > 3¢, also disallowed.
The reader may think we just got lucky to get p > 3¢ as we have the hypothesis p = 2¢ £ 1. The
remaining case explains why this has happened.
Case R.2.3 — z7a = z77 .
This case is much more interesting. First

zar = zrafBa™ !
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I = z7a™ equal to z7. Since m

L' — z7—!. Now notice that

Since 7 = x7~ ! this is left invariant by 3, so the right side is z7aa™~
is even, o™ preserves orientation, therefore z7a? = z7. Also z7a = 7™
zryBa™ = zaT = xT, so xTy=xzTa” ™AL,

or 7y = z7~'. Now we show that z7%a = x7 2.

B~ = 2772, Use

To show this use 287 '7 = zra = 27!, hence

72872 = 7ol = QMg !
applied to z:
$T—267—2 — IL'O[I_m,B_IO[_l

or zf 182 = 2Bt so

o7’ = x7 207!
Then
7?2 = z7’a = (z7)Ta = £ 1T = zTYT
or
oyt =z

As seen before this implies p = 4q or p = 4, ¢ = 1. This is disallowed by p being odd.
We remark that in this case the group in fact acts non trivially in R. For instance let

ra=—-x, xT=x+1

It is easy to check they satisfy the equations if m is even!
It may be true that this is the only possibility and when z7a # 7~ we get a perturbation of this,
namely that p is close to 4¢ and in fact p > 3q.

6 Case A — 7 acts freely

In this section we consider the case that 7 acts freely in T'. This implies that x? acts freely in the tree,
and therefore x itself acts freely. In addition the axes are the same A, = A,. Here we will use the
relation a8 = yBa in the following form, defining an element u of G:
u = ara"lr7t = ’)’TOé_lTa

We will consider the intersections A, N A, and A, N Agu. The axis A, is homeomorphic to the real
numbers. Put an order < in A, so that z < x7 for any = in A,. This induces an order <, in Az« so
that z < y in A if and only if za <, ya in Aga and similarly put order <, in A,u so that x < y in
A if and only if zu <, yu in A,u.

Case A.1 — A.anN A, has at most one point.

If the intersection is a single point z, let y = = as well.

If they are disjoint, there is a single point z in A, bridging to Axa. For intance x is the unique point
so that there is a path from z to A« intersecting A, only in z. Another way to characterize z, it is
the only point so that x separates the rest of A, from A,a. In other words the components of T' — {z}
containing A,a and the rest of A, are all disjoint. In the same way there is a single y in A, which is
the closest to A,. Then [z,y] is a path from A, to Asa so that (z,y) does not intersect either A, or
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Ak a
kat
Ay Aka
ﬂka-lt _1a Xt ¢ yt
X y
xa-lt -la
yalt-la
yals—gxa-l
ka?
ya.'lt 'l-_(xa-lt -1
Aralt1
(@) (b)

Figure 2: The case A, N Axa = 0. The same arguments can be used for intersection a single point. a. Using

Awu = Ao~ v e, b. Using Agu = Acara=tr71,

Ay — this is an equivalent way to get the segment [z, y]. This path [z,y] is called the bridge from A, to
Axa. This extended notion of bridges will also be used in the article. It is invariant by homemorphisms
of the tree. The bridge between connected sets is also unique.

We now use the relation above. The proof is very similar to ping pong lemma arguments. Since A
is invariant under  and 7, the right side says that A.u = Ao 77 o
The bridge from A, to Axa is [z,y] - degenerate [z,z] when they intersect in a point. Therefore

the bridge from Axa ! to A, is [ra !ya '], see fig. 2, a. Then the bridge Axa '771 to Ay is

[za~'7~! ya~'7~!]. This implies that the bridge from

Ao l77la to Aga is [za 't a, yalrtal.

1 1 1 1

Notice that ya 77! is not ya~!. Therefore ya '7 'a is not y. It now follows that

the bridge from A,u = A.a 77 a to A, is [xa_lT_la,m].

On the other hand use that Au = Axara '7 L. The bridge from A, a7 to Ay is [y7, 27], see fig. 2, b.
The bridge from A,ara~! to Aga~!is [yra™!, z7a~!] and the bridge from A.a~! to Ay is [za~!, ya™!].
Since za ! is not equal z7a ! then the bridge from Acara ! to A, is [y7a !, ya!]. Finally

the bridge from Au to A, is [yra”'77! ya~ 7.
Since the bridge from A,u to Ay is uniquely defined this implies

yoflel = z, yToflT*1 = za l77la.

So y = 7« and

za lr7la = ITO[TCY_IT_I, or za 't7lara = zrar.

1

Use 7 lar = afa™ 1, so

o 'r7lara = a7 laBa™ e = Ba™ = 4y,
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a
A A K Axa

yn/ Axu

Axu
X
ﬂka
(a) Ak Axa
(b)
y
ya-lt _la Xa-lt -la
X wﬂka
z \ Axu
Apu

717_71 1 1

Figure 3: FEwvaluating A.u N A, using Axu = Aga a, a yaltla<ez, b yaltla >, z, C

ya’lT’la =z.

SO :E’)’ilelCMT = xTQT, or x’y*ITfl

is disallowed by p odd.

= x7. This implies 2y7% = x and as seen before implies p = 2¢. This

We now consider intersections with more than one point.

Case A.2 — A, NAca = [z,y].

Here z is not equal to y and = < y in A,. We include some ideal point cases: = could —oo and y could
be +00, in which case the intersection is a ray in A,. On the other hand we can never have A, = Axa.
Otherwise a, T leave A, invariant, so the whole group does. But A, is homemorphic to R — this was
disallowed by no actions on R.

Since the intersection is a non trivial interval one considers separately whether the orders <, <, agree
on the intersection.

Case A.2.1 — The orders < and <, agree on A, N A,a.

It is easy to check that this is equivalent to za ' < ya~! in A, by applying « to the pair za !, ya !
both of which are in A,.

We now consider A,u. We first use A,u = A.a~ 77 a. Notice that

A.NAa™ = [zatya™]  so A" rTINA, = [za v yamlrTl,

in the correct order. Hence
AunA, = [za 77, ya~'r7 0]

In addition za 77 la <, ya v ta.

Notice that za~'7~! < za~! in A, hence za~
Given this there are 3 options:

1) If ya v ta <4z in Aga then Agun A, = 0 and the bridge from Ay to Acu is [z,ya 17 tal,
fig. 3, a.

2) If yalr7la >, x in Aga then ya 77l is in (z,y) and Agu N A, = [z,ya 77 ta]. In
addition the orders < and <, agree on A, N A,a, see fig. 3, b.

3) If ya v la = z, then Aya N Ag = [2,2]. In addition if z is not z then the orders < and <,
disagree on A, N A,u, see fig. 3, ¢. In this case both z and y are finite. The last option can occur because

1

Lr-la <4 2z in Aga. Also ya'77'a <, y in Aga.
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A
k Agat Ax Aat A Aat

yt — yt yb—
Xt /{ka i
k& Y9 .
y'/7/ﬁ “’_Z[kat xt y v ﬂka
X/ th/ X
ya’ Agatal Aralt-1 Ayu
Xa—].;_’é’— % ’/l
altl
yt ak-l yatit Axu
xtak-1 ——<— yalt-l
-1 -1 7 xtalt-1 +r—
ya ku Ayu

xalt -%}-——m

(@) (b) )

Figure 4: Using A u = Agara 77!, a. 27>y, b. 27 <y, c zT =y.

Aiu can enter A, in z but rather than going up, going in the opposite direction — the one containing

xr L

Notice that the 3 options are mutually exclusive. We now consider A,u = A,ara~ 77!, Use

Acun A, = (Agar N A,ﬁoz)oflel.

Here A.at N A, = [z7,y7]. So whether A, ara~! and A, intersect, depends on the relative positions of
27 and y. Notice that 27 > 2 in A.

1) If 27 >y in A, then AcarNAa=0,s0 Acata N A, = 0. Therefore A,un A, = and the
bridge from Ay to Acu is [ya 771, zra i, see fig. 4, a. Here z,y finite.

2) If o7 < y in A, then A.ar N Az = [z7,y], then A, N Agu is [z7a 77! ya~ 771 (the first
term smaller in A4,), and the orders < and <, agree on A, N A,u, see fig. 4, b.

3) If x7 =y, then A.ar N Aga = [y,v]. Notice we may have v # y. So A.uN A, = [ya~ 771 w],
where w = va 77!, Here x and y are finite and if w is not equal to z7a~'7~!, then the orders < and
<, disagree on A, N Acu. Notice that order in A,ar goes from v to y, so the increasing order <, in A,u
from w = va~ 77! to ya~ 771, see fig. 4, c.

Notice that again all 3 cases are mutually exclusive. Therefore we can match the 2 pairs of 3 possi-
bilities to get 3 mutually exclusive cases:

I-yo'77'a <, in A,a or 27 >y in A, and A, N A.u = (. In this case
[z, ya'r7a] = [yatr7 zralrT
II — yo~'r7'a >, z in Age or z7 < y in A, and

AN A = [z, yaflela] = [:L“Toflel, yoflel]
III — ya ‘77 'a =2 or z7 =y. Then

A NAgu = [z,z] = [ya_lT_l,w]
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If z is not z then the orders < and <, disagree on A, N A.u.
We now deal with each situation separately.

Situation IT —

Here z7a = z7 and z7 is in (z,y). Let U1, (respectively Us) be the component of T'— {z7} containing
y (respectively z). Here [z,y] = A, N Ag, 27 is in the interior of [z, y] and then the orders <, <, agree
on [z,y]. It follows that the prongs [z7,y], [T, y«a| are equivalent. By lemma 4.5, U1« = U;. In the same
way Usa = Us. This situation is disallowed by the following lemma.

Lemma 6.1. Suppose that L is a local axis for T and r is a point in L with ra = r. Suppose that U,
Uy respectively) is the component of T — {r} containing r7 (rr=' respectively). Then at least one of U
or Us 1s not invariant under «.

Proof. On the contrary suppose that U;a = U; for ¢+ = 1,2. We will arrive at a contradiction. Let
V; = U;7—'. Then the conjugation of B with ! by 7 implies that V;3 = V;, i = 1,2. Use
rrlar = ryBa™
Since p > ¢, then ry < r7~ ! in £ (with 7 increasing in £ and so 7y3 is in Vo U {r7 '} contained in Us.
Therefore ryBa™ is in Us. Consequently r7~tar is in Uy and r7 e is in Ut~ = Vo (¥).
On the other hand ry € Vo U {r7 1}, so

rBa”t = ryB € VZU{T‘T_I},

1

so rr!isin [rBa !, 7). Apply « to obtain

rr e € [rByr) (%)
Now

1

rf = rra” v and rrely = rra”l el = rB=rra” ey

As 7 is also in Vy, it follows from (**) that r7 '« is also in V1. This contradicts (*) above and finishes
the proof. O

Situation ITI — Here A, u N A, = [2,z] with z < z in A,. Then

Aur N A, = Agara ' NA, = [zr,27] = [27,9]

Hence Agar N Aga = [z7a,ya] and zTra =y <, yoa in Aga — this is the crucial fact. Now
zy o = zfaft = zralr o = yalr et

= 67" = zrar™! = yarl.

Here the bridge of ya to Ay is [ya,y] (which a priori could be the single point y). So the bridge from
yar~ ' to A, is [yar™!, yr7!] = [yar~!,z]. On the other hand y < zy~! in A, so ya <, 2y 'a in
Aya. Tt follows that the bridge from zv '« to Ay is [zy 'a,y]. This would imply z = y, contradiction.

Situation I — Surprisingly this is the most difficult case. Here

1 1 1 1 1 1, -1

ya lrta<ar in Az, zT>yin A, z=ya vt yo ltla=gra vl

1 1 1

As yoa~'r7'a <4 z in A.a then yo~'77 ' is not in A,. Also
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Figure 5: Situation III leading to a contradiction.
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Figure 6: Situation I, the hard case.

za = (yoa~ v Ha = zra”lr7l = 28,
so xa = zff — this is a crucial fact in this proof. The bridge from z« to A is [za, z]. Notice also that

1,_—1 -1,_-1

raT T a <4 ya T a <o r in Aga,

1

so the bridge from za~'77 e to A, is [ra~!77 a, z]. Tt follows that

the bridge from zar 'ar to A, is [za 't lar, z7] = [za v tar, ya .

Now

za 'r7ar = (zaHafa™ ! = 2™ = zaa™ ! = za™

Here za < & < y < ya ' — they are aligned. It follows from lemma 4.6 that z,za are in a local

axis LA, for a, similarly y is also in a local axis. Since y is in [za™, z], then also y, ya~! are in LA,. In
the same way (LAq)7 ! = LAg is a local axis for 8 and z3,z, 27! are in LAz. Now

f = zra” vl = ra, SO0  xaT = rTa”l = ya_2
Apply aBa™ ' = rlar to ya~l:

(ya Hapa™ 1t = ypa™ 1 = (yaHrtar = (z7r)r tar = zar = ya~
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The conclusion is yB =ya ™ ! and it is in LA,. Now y is not in LAz and the bridge from y to LAz
is [y,z], so the bridge from yf to LAz is [yB,zB] = [ya~™!, za]. Therefore LA, and LAz split away
from each other in za = z3, or

LA NLAs = [z,za] = [z,20].
The homeomorphism 7 conjugates the action of o' in LA, to the action of 3 in LAg (see fig. 6). Now
apply ara™™ = 76 to x:

(zat)a™ = (ya™?)a™ = ya 2™ = z71vp.

As za is in LAg, then zart is in LA, and it follows that x7yf is in LA,. If z7y < 27! in A,, then
the bridge from 27y to LAg is [z77y,277!] and so the bridge from z7y8 to LAg is [z7y8, 277 B]. But
27 1B =za v ! and

11 1,1

xa T < ya T 0 < x oin Ag.

This would imply z7vf is not in LA, contradiction. Notice

1

7t = zrar ! = yr! € (zr!

,T).

If z7 is in [z7 !, 81) then z7yB is in [z7 !B, z) and not in LA, either, contradiction again. Therefore
x77y is in [z~ !, z]. The case 27y = z can only occur when p = ¢ = 1. This case can also be ruled out
by a further argument, but as we are mainly interested in |p — 2¢| = 1 we assume here that p > ¢. Then
z7yis in [zB87!, x) and z7yf is in [z, z3). We conclude that

ya 2™ € [z,z0).

Claim — y7yf is in LA,.
If y7y > @ in A, then z < y7y < yin A,. So ymyf is in [z3,yp] or

ytyB € [za,ya ™Y C LA
Notice z7vf € LA,. If on the other hand y7vy < z in Ay, then z7y < y7y < z in A, and

ytyB € (zmyB,zB) = (vmyB,20) C LA,

and again y7yf is in LA,.
Therefore the claim is proved.

It now follows that y7ySa™ = yar isin LA,. If ya >4 z in LA,, then ya > x in A, as well. Then
yat > z7 = ya~' in A, and yaT is not in LA, contradiction.

Therefore ya <, z in LA, and so ya is in [z, za). But ya 2™ € [x,za). Since y is in a local axis
for « it follows that

ya = ya 2™, or m=—3.

Since we are assuming m < —3 this rules out this case as well.

This finishes the analysis of situation I and completes the analysis of the situation orders < and <,
agree on A, N A, a.

Case A.2.2 — The orders < and <, disagree on A, N A,«.

Notice this is equivalent to ya~! < za~! in A,. Again use u = ata™!

1

77! =yra~'77'a. Then

Aun A, = (A,.con'of1 N .A,ﬂ)Tf1 = (Agar N A,ﬁa)oflel
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Figure 7: The orientation reversing situation, a. 7 >y, b. z7 <y, c. T =Y.
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Figure 8: Using Axu = Acara™771: a. za™ 77 <ya™, b. za™ 77t > ya™t, a za 't =ya~t.

There are the following possibilities:

1) Ifz7 > y in A, then A ar N Aga is empty and the bridge from Aot to Ay is [z7,y]. Therefore
AcuN A, = 0 and the bridge from A,u to A, is [zra~ 77!, ya=l771, see fig. 7, a.

2) If 7 < y in A, then Agar N A, = [27,y]. Hence Axara ' N A, = [ya !, z7a '], where the
first endpoint is smaller than the second in A,. Finally

AN A, = [ya 77t zra 7Y

and the orders <, <, agree on A,uN A, see fig. 7, b — because ya~ ! < za~! in A, and their images
under u satisfy yra~'t7! <, zra”'77! in A.u.

3) Finally if z7 = y, then Agsar N Aga = [y, v], where v <, y in Aga. It follows that the
intersection Axara™! N A, = [va~!, ya~!], the first point precedes in A,. And then

AunA, = [UOFIT*I, yoflel] = [t, yoflT*l].

-1 1

Here if ¢ is not yo~'77! then < and <, disagree on A,u N A, — because y7~'a~! <vr~'a~! in A,.

Now use A,u N Ay = (Awa 77PN Aga Ha. Here Aca ' N A, = [ya !, za '] the first term
precedes in A,. Again there are 3 possibilities

1) Ifza '77! <ya'in A, then Aya 77 'NA.a ! = () and the bridge from A.a '77! to Aca?

is [ra~'77!, ya~']. Hence AcuN A, = 0 and the bridge from A.u to A, is [za~ 771, ], see fig. 8, a.
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2) faoa vt >yatin Ay, then Aga 7 !N dga !t = [ya !, za'771] and hence A,un A, =
[za~'77'a,y] and the orders < and <, agree on A, N A,u, see fig. 8, b — because z < y in A, and
zoa 1l <, ya v e in Agu.

3) If ra~'r7! =y, then Ava~ 77N A =[¢, ya~'] and Acun A, = [y,2] where z = ca™!.

If z is not equal to y, then the orders < and <, disagree on A, u N A.

Notice both pairs of 3 alternatives are all mutually exclusive. We match them and obtain 3 possible
situations:
I-2r>yin Ae, za '77! <ya!in A, and

AunA, = 0, [ya vl zra vl = [y, zatr 0]
II — z7r <yin A, za 77! > ya~ ! in A,,
AunA, = [ya v zra 7 = [zalr e, 9

and the orders <, <, agree on A,u N Ay.
III — 27 =y, za~'77 ' =ya~ ' and

AunNA, = [y,2] = [t,yatr71.
If z is not y then the orders <, <, disagree on Acu N A.
We analyse each case in turn:

Situation IT —

Here z7 <y, za ‘77! >ya!

and
y = zra v ya Tl = 2ot

—1 za~!] is contained in the set

Suppose first that [ya~!, za~'] N [z,y] = 0. Since y7 = z7a~! then [y«
of points > y in A,.
In addition ya is in Aga — A, and y<,ya. Hence y is in (ya~!, ya), producing a local axis LA, of

« which contains y. Now use 7 tar = ara 177 ta™ ! applied to za '

zo v ar = o laraT i T = zra !

Substitute z7a~'7~! =y in the last term and za 7 'a = ya~ 77! in the first term to get

(yo lr 1 = yaot = ya™ !

or y = ya'. This is impossible because y is in a local axis of a and m is not zero.

From now on in situation IT suppose that [ya !, za '] N[z, y] is not empty. Since z7a ! = y7 >y in
Ay, then za™! >y in A,. It follows that ya~! <y in A,.

Suppose first that ya ' < y in A,. There is r in [ya !, y] which is fixed by a. Either r is equal to y
or r <y in A,. Let U; (respectively Us) be the component of T — {r} containing r7 (respectively r7~1).
Since

za ' €Uy, T €Us then Uia = Us.

If r <y in A, then also we have Usax = Uy. Otherwise Usaw = Us which is another component of T — {r}
which is not Uy,Us. We will rule out this case, but the result will be used later on as well, so we state it
in more generality:

Lemma 6.2. Let LA, be a local axis for 7. Let r in LA, which is fived by . Let Uy (respectively Us be
the component of T — {r} containing r7 (respectively rr="). Then Ui is not Uy and Usa is not Uy .
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Proof. The proof is as follows: suppose that either U1« = Us or Usa = U7 and arrive at a contradiction.
First assume that Uy = Us. Either Usaw = Uy or Uz« is another component Us of T — {u}.
Let V; = U;7~'. Since Vi = Vita 'v7! = Ujalv7! # Vi, we have that V13 is contained in
Usy. Therefore rf3 is in Uy and rBa™ ! is in Ua™ L. Also
rr tar = rafa™ !t = rBa™ !

As 777! € Uy then r7 ' is in Uscer, which is either U/ or Usz. Therefore r7tar is either in U7 C U,

or in U3 again a subset of U. So r7lar € U;. Therefore Usa™ ' NU; # (. But both are components
of T'— {r}, because ra = r, so it follows that they are equal. As Uy = Ui« then

Uiad™ b = Uy, or U™ =Uy, Ua™ =Uy, Uzad™ =Us if needed.

In case r # y this immediately implies m even.
Now use r7yfa™ = rat = r1 € U;. Therefore rryf € U a™ =U;. It follows that

rr << rTyf3

— recall this means r separates r7—! from r7y3. Applying 3! one gets

rr < T‘B_l <rry (%)

Use rB~ ! =rrar—n:

1

rT €Uy = rra € Us, 7“571 =rra vl e Vs.

1 1

As r77" is an accumulation point of Vs, equation (*) above implies that 777 is in Vg or r7y < 77" in
A, which immediately implies p > 2q.
As in the R-covered case, look at rra. If rr« is not in Vo then rrar € Us so
rrar = (rr?)7 tar = (rt?)yBa™ €Uy and rTyB € Us.

Sorr ! <r<rr?yB8 and rriy <rBt <rrt AsrB !=rrar ! €V, then

rr?y € Vi, so r2y <rr !t in A,.

As seen before this implies p > 3¢, which is disallowed and finishes this case.
If rra € Vg then v~ € Vor~L. By (¥) rr~! <rp~! <r77y, so

1

rry € Vor ~ = r7y < rr2 in A,.

As seen before this also implies p > 3¢ contradiction.
This finishes the analysis of the case U1 = Us.

Now suppose that Usa = U1. If U = Us, then this is taken care by the previous situation. So now
assume Usa~ ' = Us which is not U, or Us.
Here use r7tar = rafa™ ! = rra v 1a™ L. First
rrl € U, = rr la € Usae = U7 = rr tar € U.
On the other hand

1, -1

rr € U = rra”l € ula—1:u2 = rta T € ZJ{QT_I CUy = rra”lr o™l € Ugam_l.

From which we conclude that Usa™ 1 =U; = Usar.
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Now use 77 'ar = ryBa™. The right side is in U; = Usa. The fact that Usa~! is not U, implies
that Vof is not V1, hence Vo3 is contained in Us. We know that rv is < r7~! in LA, so it is either in
Vs, or is equal to r7— . Hence ry/3 is either 77! or is in Vo3 — in either case it is in U. Finally ryBa™
is in U3a™ which must be ¢/;. But then Usa™ = Usa™ ! contradiction.

This finishes the analysis of the case o = U1 and so finishes the proof of lemma 6.2. O

This finishes the analysis of situation II.

Situation I —

In this case za 177" < ya!

in A, and y < z7 in A,. In addition

yr = ya l, zo trta = zratr ! (%)
Here za ! > ya ! = y7 in A, (orientation reversing case) so za 7! > 1y in A,. Therefore

zoa~ 771 € (y,ya~l). Also zr < y7 =ya~ " in A, so one concludes

za trt ar o€ (y,yofl)

On the other hand y < ya™! < za ™!, so ya < y < = and ya is in Ay — A,. It follows that

ya~! <y < ya and y is in a local axis LA, for a. This implies that the translates [ya’, yai*!) are all

disjoint (as i varies in Z). Use the relation 7-'ar = ara~'r"!a™~! in the form
o lrtara! ™™ = 7o st
applied to x to get
(za ' )T ™™ = zra ! ()

Now apply the second equality of (x) both sides of (x*) to get
(wToflT*l)Tal*m = zo 77l or (zT)a ™ = (woflel)a.

1 1

But z7 € (y,ya™!), so zTa™™ € (y,ya~')a~™. Similarly za~'77'a is in (y,ya~')a. Since they are

equal then —m =1 or m = —1, impossible.

Situation III —

Here z7 =y, o !

1

71 =ya! and

Acun A, = [y,2] = [t,ya_lT_l]

and if ¢ # y, then <, <, disagree on A,u N A,.
Notice that y < z = ya 77! so y < ya~! in A, and ya~
Now

Visin A, — Aga. Also y7 < ya~ ! in A,.

1

y <ya !l < zal! = 1z <y < ya alin A

Hence ya <, y in A and ya is in Ay — A,. Hence y is in (ya~!,ya) and there is a local axis LA, of
a with y in LA,. Consider the relation 7~ 'ar = afa™ . Substitute 8 = 7o~ !77! and rearrange the

terms to get o '77la = ra~ v o™ 171 Now apply it to x:

y = za tr e = wToflT*lamflel,

or yra!™™ = ya~tr . Now y7 € [y, ya '], so yr is in LA, and

yTal_m € [yozl_m, ya~ "

)
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Figure 9: a. The case UT #U, b. The case LA, N Ay = 0.

1 1

so yTa! =™ is not in A,. But ya 77! is in A,, contradiction.
This finishes the analysis of A,u N A, = [z,y] with z not equal y. Consequently this finishes the
analysis of Case A, 7 acts freely, which we now proved cannot happen.

7 Case B — 7 has a fixed point, o acts freely

Here o has an (actual) axis A, and so does 8 with axis Ag = A,7 !, Let Fiz(r) be the set of fixed
points of 7. As usual there are various possibilities. This case is very interesting because the topology of
the manifold M, ,, will play a key role.

Recall that if ¢ is a point not in a connected set B of the tree T', then the segment [¢, u] is the bridge
from ¢ to B if the subsegment [z,u) does not intersect B and if u is either in B or is an accumulation
point of B. Again the important fact is that the bridge from z to B is unique: it is the only embedded
path from z to B because T is a tree. As in case A this will be explored here. If u is in B we say that ¢
bridges to u in B.

We say that a point a is an ideal point of a local axis [ if @ is not in [ but is an accumulation point
of [. Obviously this implies that [ is not properly embedded in T in the side accumulating to a.

There are two main cases depending on whether Fiz(7) intersects A4, or not.

Case B.1 — Fiz(1) N A, = 0.

Then « also has a fixed point s. Choose s closest to A, that is, the bridge [s, ¢] from s to A, has no
other fixed point of k. Let z in [s, ¢| fixed by 7 and closest to A, that is, the bridge [z, ] from z to A,
has no other fixed point of 7 besides z. A priori we do not know whether z is equal to s or not. Let U
be the component of T — {z} containing A,.

Then Ag is a subset of Ut # U and z bridges to c7 ! in Ag.

Case B.1.1 — Suppose UT £ U.

Then U7t~ #U as well. Apply a7 = rafa™ ! to z: the point z bridges to ¢ in A, so za bridges
to ca in A,. As ca is not ¢ then za is in U, so zat is in UT, see fig. 9, a. On the other hand z7a = z«
is in U and hence z separates it from Ag. It follows that za also bridges to ¢! in Az. Then

zarf bridges to er~!'f in Ag and er 'B#cer™, so zraf € UrTL.
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Therefore zraf3 bridges to ¢ in Ag, so zraBa™ ! bridges to ca™ ! in A,. This implies zraBa™ ! is in
U, impossible since it is equal to zat € UT.

We conclude that U7 = U, which will be assumed from now on in this proof.

Choose a prong 1 at z which is a subset of [z,¢]. This prong is associated to the component U of
T — {z}, hence the prong n7 also is associated to the component & = U7 and n N n7 is not just z. Let e
be another point in the intersection. Then er ™!, e are both in  and er ™! is not equal e — by choice of z
as the fixed point of 7 in [z, ¢] closest to A,. So either e is in [z, eT) or eT is in [z,e). In the first case
(say) apply 7 to get er is in [z, er?) and it now follows that e < er < er?. The same alignment of points
happens in the second case. We conclude that there is a local axis LA, for 7, with e in the local axis.

This construction of a local axis is crucial in case B and also in case C of the proof.

Conclusion — If /7 = U and there is no fixed point of 7 in (z, w], then there is a local axis of 7 contained
in / with one ideal point z.

Case B.1.2 — Suppose that LA, N A, is at most one point.

Let [d, c] be the bridge from LA, to A, — here d = ¢ if LA, N A, is a single point. We do the proof
for LA, N A, = 0, the case of single point intersection being entirely similar. The bridge from cart to
LA; is [car,dT], see fig. 9, b. Now the bridge from c7y to LA, is [cT7y,d77y]. Here use p odd to get
drvy # dr~!, so the bridge from crvy to Ag is [cTy, ¢r™!]. Therefore

eryB  bridges to e~ 1B in Ag, hence bridges to dr~!' in LA, andto ¢ in A,.

Finally cryBa™ bridges to A, in ca™ # ¢ and so bridges to LA, in c.
As cat = cryBa™, this implies ¢ = ¢r, impossible. This rules out this case.

We conclude that LA, N A, is more than one point. If LA, N A, is (z,d], then either za = z or «
has a fixed point in LA, both impossible. Therefore from now on in case B.1 let LA, N A, = [a, b], with
a # z and a closest to z. By an abuse of notation b can be +00, meaning the intersection is a ray in LA;.
Put an order < in LA, so that a < bin LA,. Also let <, be the order in A, with a <, b.

From now on in case B.1 the proof will depend on whether U+ is equal to U or not. The arguments
here are also very similar to what will be needed for case C, therefore we will make the arguments in
more generality so that they can be used in case C, namely when « has a fixed point but has a local axis
with certain properties. We first specify the conditions under which the analysis works.

Conditions — Consider two conditions:

Condition F — 7 has a fixed point z, « acts freely and z is not in the axis A,. Let A, be in the
component U of T — {z}. There is a fixed point s of k so that s is either z or z separates s from A,. Let
(s,c] be the bridge from s to A,. Then (s, c] has no fixed point of x and (z, ¢] has no fixed point of 7.
Also Ut = U and there is a local axis LA, of 7 in U with ideal point z. Finally LA, N A, = [a, b] where
a# z and a is in (z,b).

Condition N — 7 has a fixed point z; & has a fixed point s and « has a fixed point w so that (s, w)
has no fixed point of either k or . In addition either z = s or z € (s,w) and (z,w) has no fixed point
of 7. In addition let U be T,(w) and V be T,,(z). Then Ut = U and Va = V. There is a local axis LA,
of 7 in U with one ideal point z and a local axis LA, of « in V with ideal point w. The intersection of
LA, and LA is [a,b] where a is the closest point to z and b can be 400 in LA, .

Here condition F is for free action of o (which is used here) and condition N is for non free action of
a (which is used in Case C). In either case the order <, in LA, corresponds to a <, b. This implies the
orders <, <, coincide in the intersection. Beware that the order <, here is in LA, and not in (A;)« as
in case A.
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Figure 10: The case LA, N LA, = [a,b]: a. Case aa <4 a, b <, aa™!, b. Case b =ar = aa™', c. Case
at > b.

Caution — An axis is also a local axis. For the sake of simplicity and to use it for case C, we will use
the notation LA, even in the case of a acting freely for the rest of the proof of case B.1. In case B.2, we
will return to use the notation A, for the axis of «.

Case B.1.3 — Uy #U.

We first claim that this implies that Uy NU is empty. Recall that OU = z and 27 = z. Notice we
do not know a priori that zy = z. If 2y = z then 7 permutes the components of T'— {z} so one has
Uy NU = . Suppose then that z7y is not z. Recall that there is a fixed point s of k with z € [s,w] —
maybe s = z. If 27y # z, then

[s,2] N [s,zy] = [s,t] with ¢t € [s,2), hence t€ (z,27).

In particular z is not equal to s. Notice t may be equal to s. Here z separates U from s, hence z separates
U from t. Also z7y separates U~y from s, hence z7y separates U~y from t. It follows that ¢ separates U from
Uy and U NU~ = (. This proves the claim.

Situation I — Suppose aa <, a in LA,.

Situation I.1 — Suppose aa™' >, b in LA,, see fig. 10, a.
This implies that a« is not in LA,, see fig. 10, a. Also this implies b is finite. Notice that

1 1 —1,.,—-1

21 el = 2By = zaMrar iyl

The point z bridges to LA, in a. Hence zr 1o~ !

2ot

1 1

= za~! bridges to LA, in aa™ is in U and

7 is also in U, which is invariant under 7. Since Uy NU = (), then

, SO zZa~

za ™ra ¢U and it bridges to LA, ina = za ™r bridges to LA, inaa

and hence bridges to LA, in b. But za™ ™ bridges to LA, in aa ™ so bridges to LA, in a. So za™rt
bridges to LA, in ar. This implies ar = b and also that 7 is increasing in (LA;, <).
In addition

L’Aﬁ = (EAa)Til SO ﬁAgr\IﬁAT = [a,f;—*l,a] — [a,rfl’b,rfl]

and aB~! is not in LA, and bridges to LA, in ar~!. So this point bridges to LA, in ¢ and af~ta~!
bridges to LA, in aa~!. As a result a3~ 'a~! is in U.
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Also ao~! bridges to LA, in b = a7. Hence it bridges to LAg in a. This implies that aa "B~ bridges
to LAg in af™" so again aa”'87! isin Y. Now (af~'a™')y = aa~'B7'. Which implies Uy NU is
not empty. This contradicts the first claim in Case B.1.3.

Situation 1.1 cannot happen.

Situation I.2 — Suppose aa! <, b in LA,.

Similarly to the arguments in situation I.1, za~!

Tisin U, so za ™7« is not in U so

za ™ra bridges to LA, ina, za ™7 bridgesto LA, in ac .

Also aa™ <, bin LA,, hence aa~" is in LA, and aa~" < b in LA, as well. On the other hand za™™
bridges to LA, in a so zoa~ ™7 bridges to LA, in a7. From this it follows that a7 > aa~' in LA,. There
are two possibilities:

The first possibility is that ac™! # b. In this case za~ ™7 bridges to LA, in aa~' which is in the
interior of [a, b], hence this point also bridges to LA, in aa~'. It follows that

at = act = af ' = ar ! bridgesto LA, in a.

Then a8~ 'a~! bridges to LA, in aa~! so is in Y. As before consider aa~'B~!. Here aa~! is either in

LAz or bridges to LAg in br~! (the top intersection of LAg with £A;). If aa™" in LAz then aa™'87!
is in LAg so in U, as above contradiction. If it bridges to LAz in b7 ! then aa 37! bridges to LAg in
br~1~t = bar!. Since in this case

ba > a in LA;, then bar ! > ar ! in LA, = aax!'p ! € U,

again a contradiction.

The second possibility is that aa~' = b. Here we have to split further into two options:
Recall that a > aa~! in LA,. First consider the case that at = aa™"', see fig. 10, b. We have the
equalities af~! = arar™! = ar~!. Use

(ad™) o™l = ad™a BTy =ap iy = ey U

1

Hence aa™7~'a~! is not in & and bridges to LA, in a, ac™7~! bridges to LA, in ac. But

ad™ € LAy, = ad™r ' € LAs = LANLA; = [a,aq],

see fig. 10, b. Now evaluate y~! = BaB8 o~ on ar™!:

(ar™)y! = (@7NBap o™t = aafla

Notice that ac is in LAg so acS~ ! is in LAg. Either aaf~!is in LA, and then aaBa~'isin LA, CU
(contradiction) — or

aaf~t ¢ LA, sobridgesto LA, in a and aaBfa ! bridges to LA, in aa !
and again this point is in /. In either case Uy NU # (), contradiction.
The last option of the second possibility ac™! = b is that a7 > b=aa ' in LA,. Then
br ! = ar '8 < a inLA = LA, N LAz = 0,

see fig. 10, c. Here use ar = rafa™ ! applied to z: The point za bridges to a in LA, and zar bridges
to ar in LA,. Since ar > b, then za7 bridges to b = aa ! in LA,.

On the other hand za bridges to b7~ in LAz hence zaf3 bridges to br~!3 in LAz, hence to a in
LA,. Finally zafa™ ! bridges to aa™ ! in LA,. Since m is not 0 this is a contradiction.
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Figure 11: Case aa™! <, a in LAy: a. Picture when aa™™ ¢ LA,;, aa = ar~', b. Picture when

aa ™ € LA, at7 ' & LA,.

We conclude that situation I cannot happen.
Situation IT — aa™ ! <, a in LA,.

Situation II.1 — ao~™ is not in LA,. Here use

1 1 1

o T = 2T o T = zoz_mTon'_l'y_1

m m

is in U, so za ™7a is not in Y. It bridges to LA, in a, hence za~ ™7 bridges to LA, in ac™! and hence
bridges to LA; in a. On the other hand za~"™ bridges to LA, in aa™"™, so bridges to LA, in b. It follows
that za~ ™7 bridges to LA, in br which then must be a. So a < a7~ ! in LA,.

Notice LAz N LA, is equal to [ar~!,br~!] and this intersects LA, in ar™! = b.

Suppose first that e« is not ar—' = b. Here

af~  bridges to LAg in ar~ 'Y, so bridges to LA, inar” '

Then a8 ‘o~ ! bridges to LA, in ar 'a~! # a. It follows that af~ta ! is in U.

On the other hand aa~' bridges to LAg in ar™' = b, so aa™' 7! bridges to LAz in b3~! which
is not b and it follows that aa~'3~! is also in /. As seen before this implies Uy NU is not emptyset,
contradiction.

The second option in situation II.1 is that aa = a7 7!, see fig. 11, a.

Apply a ™pB7 'yt = 77la7!r to aa™. The right side becomes af~!1y~!

a” . Here

afteld = afpyteU = a™rlat gU

and bridges to LA, in a. It follows that aa/™7 ! bridges to LA, in aa = ar~! = b. But aa™ is in LA,,
so aa™71is in LAg. Consequently LA, N LAz =ar ! =b, see fig. 11, a.
The point aB~" is in U, hence

aﬁ_lq/—l = aa,ﬁ_la_l = aT_l,B_la_l = ar 207!
is not in /. Not only that, but also a3~ 'y~ is not equal to z — else some point near a~" in U will have
image under 7 in U, which is disallowed. Then

-1

z € (a,a7%a) = za € (aq,ar %) = (ar 'ar?) = zar € (a,ar ).
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1-m

In particular za7 is in LA, and zaTa is in LA, as well. This point is equal to zaf.

On the other hand

1

za € (arV,ar7?) = (a7 Har 'Y = zaB € (ar tar'p).

But then zaf is not in LA,, contradiction.
This finishes the analysis of situation II.1, ac™™ is not in LA;.

Situation II.2 — g ™ isin LA,.

In particular ac is in (a,b]. Here za ™B 1y ! = 27 'a 17 is in Y. As usual this implies za ™7« is
not in U and bridges to LA, in a and za~™7 bridges to LA, in aa™!, see fig. 11, b; so za~ ™7 bridges
to LA, in a. So

1

za™™ bridges to LA, inar ' = ar ! > a in LA,.

Notice za~™ bridges to LA, in aa™™. If aa™™<, b in LA,, then za™™ also bridges to LA, in
ac™™ and aa™™ = ar L. If

ac™™ = b then za™™ bridgesto LA, ina point > aa™ ™,

that is, a7™' > aa™™ in LA;. In any case aa™™ < ar~ ' in LA; and aa < a7 in LA,.

Now compute ay = aafBa~'87!. Here ac is in [a,ar™!] and bridges to LAz in ar~!. Hence aaf3
bridges to LAz in at'B. There are two options: First if ar—!/ is not in LA, then aaf bridges to a
point v in LA, and v € (a,at™ ') — see fig. 12, b. Here v could be in LA,. Then

1

aaffor ! bridges to a point va ' in LA, = it bridges a point ¢ in LAg, c € (br L ar71p).

It follows that ay = aaBa~! ™! bridges to a point in LAg which is not at~', hence avy is in U, contra-
diction.

The second option here is that a7~ is in LA,. Here a1~
is in LA, and hence in U. Then

lisin £LA,. Then consider a7~ 'a~! which

(aT_loz_l)oz,Boz_1 = aT_l,Ba_l
isin LA, and a7 'Ba"! <, ar” B in LA,. Therefore

-1

at™'Ba bridges to a point in LAz contained in (b~ ar™1P).

Apply 87! — the resulting point bridges to a point in £As which is not ar~!, hence (a7~ 'a™ ')y is in U,

again a contradiction.
This finishes the analysis of situation II. Hence this finishes the analysis of case B.1.3, U~ is not
equal to U.

Case B.1.4 — Suppose Uy =U.

Since the boundary 0l in T is the point z this implies that zy = z. Here (LA;)y N LA; # 0, choose
¢y in this intersection. So ¢, ¢y are disjoint and in LA;. If follows that z, ¢, ¢y are aligned (the particular
order is not important) and ¢ is in a local axis of y. But ¢y~ = ¢7? is also in LA, and it follows easily
that the local axis is contained in and therefore equal to the local axis LA, of 7 so 7, 7 and hence k leaves
LA; invariant. This sort of argument will be used from time to time from now on.

Here the ideal would be to apply the proof of case A, where 7 acted freely and A, was invariant by
v and 7. We already have LA, invariant under y and 7, however LA, is not properly embedded in T
- at least in the z direction. In order to apply the proof of case A, we analyse the relative positions of
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Figure 12: Analysing za=! € K: a. Picture when at € [2,a), b. Picture when at=! € [2,a).

(LA;)a, (LA )ar and so on. In particular for that analysis to work we must have (LA, )« contained in
U and so on. So first we do preparation work, showing all images of the local axis are in ¢/ and then we
can apply the proof of case A.

For simplicity of notation in case B.1.4 we do the following: K will denote the local axis LA, which
is contained in U and has an ideal point z. Again as we want to use this in section C as well, we will
consider a local axis LA, for a. The key result is the following:

Lemma 7.1. We have Ka CU, Ko~ CU and Kata™' C U.

Proof. We treat each case in turn:

Problem 1 — Is Ka C U?

Suppose not. Then as a« is in LA, contained in I/ there is ¢ in IC with ta = z or za™ " is in K, see
fig. 13, a. Here z bridges to a in LA, so za~! bridges to aa~" in LA,. So za~! can only be in K if b is
in (z,za™!') and aa ! = b. In particular aa <, a in LA,.

There are two possibilities depending on whether 7 is expanding away from z or not:

First suppose a7 is in [z,a), see fig. 12, a. As za bridges to a in K then zar bridges to at in K so
bridges to a in LA,. Then zara ™ bridges to aa™™ in LA,. The point zara™ ™ is equal to z8 and
bridges to a in K so bridges to ar~! in LAz. But z also bridges to ar~! in LA, contradiction.

The second option is ar > a in K, see fig. 12, b. Here 23~ ! bridges to a7~ '4~! in LAg and so to a
in LA,. Hence

1

28 ta™! bridges to aa™! in LA, = 28 'a! € U.
On the other hand za '~ = za~'rar~!. Here

1 1

za7'tr € K = za7' € (zyza”'r) = zaTlta ¢ U = za7'p7' ¢ U.
But z8 a1y = za~ 187!, leading to U~y # U, contradiction to case B.1.3.

So we obtain za~! € U is impossible. Hence Ko C U. If Ka intersects K in at most one point we can
use the analysis of Case B.1.2 (or of case A) and disallow it. If
K N Ka = (2,t), then K, Ka share a ray.

The orientations in X and Ka may agree or not. In the first case zae = z and in the second case there is a
fixed point r of @ in LA, = K. If za = z, then z is a global fixed point, impossible by non trivial action.
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In the second option let U (respectively Us) be the component of T — {r} containing r7 (respectively
r7=1). The condition Ka N K = (z,t) implies that U = U. This is now disallowed by lemma 6.2.

Now consider the situation that & has another ideal point v. Then vk = v. Suppose first that v is in
LA,. Here we split into cases: if « acts freely then v is a fixed point of 7 in the axis of o and this falls
under case B.2. Consider then the case that o does not act freely. Then (w,v) has no fixed point of «
(as v is in LA,) and also no fixed point of 7 or . Also T,(v) is invariant under « and T, (w) is invariant
under 7. Then v in LA, is disallowed by lemma 8.4.

It follows that v has the same properties as z. In any case one obtains that

Ka N K = [t,r], t # r, t closest to z

and if KC is not properly embedded in the other direction then r is an actual point in K. Then LarNK =
[tT,77]. So the intersections are the same as occurred in Case A so far.

Problem 2 — Is Ka™' C U?

This is similar to problem 1. As before if o~ ! not contained in ¢/, then z € Ko~ ! and za € K. This
can only happen if b € (z, za), ac = b and aa™! <, a in LA,.

First suppose that a7~ ! € [2,a]. Then

1 1

at'a € [zayaa] = [bza)] = ar'a € K = ar'ar € K

and this last point bridges to b in £LA,. Then ar'ara™™ = ayB bridges to ba~™ in LA,. But

ba™™ <o b in LA, = ayf bridges to br ! in LAg.

On the other hand ay € [2,a7™!] and bridges to a in LAg, so a8 bridges to ar~'f. Since ar™!'3 is a
point in LAz — K it is not equal to br—!, leading to a contradiction.

The second option is a7~ > a in K. Here use

287 = zar! € K, za € [z,2867Y) = 2 lal! ¢ U

On the other hand za ™! bridges to aa™! in LA, so bridges to ar ! in LAz. So za !B~! bridges to
ar 1871 in LAg and is in U. As above this is a contradiction.

We conclude that problem 2 does not occur.

As in problem 1, this implies that

Kat n K =[], with ¢ # ¢t # z

and if K not properly embedded on the other side then 7’ has to be finite in K.
Then clearly Ko~ '77! C U and intersects K in a segment.
The last problem is the following:

Problem 3 — Does Kara™' Cc U?
Suppose not, that is, Kara~™! ¢ U. We have to be careful here. First a preliminary claim:

Claim — z € Kara™ L.

If this is not true then Kara~! NU = (. Notice that

Kar N LA, # 0 = Kara ' n LA, # 0 and Kara ' NnU # 0,

contrary to assumption here.
So consider Kar N LA, = (0. Also here Kar N K is a non trivial segment. If a7t bridges to a in
LA, then Kara~! is contained in ¢ and we are done. If follows that Ko7 has to bridge to b in LA,
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K
ab

aa b

™

ab bt

at

33

and hence za has to be in the this bridge. But then za is in K, which was disallowed in problem 2. This

proves the claim.

We now analyse what happens when

z € Kara™!

Also zB o'y = za~' B is in K as well.

Situation I — aa! <, a in LA,.

Situation I.1 — a7 < a in K.
Here za~! bridges to aa! in LA,, so it bridges to ar ! in LAg. Also

As B~! moves points up along KC, it follows that za~!$~! > bin K and ar~'f
,za 1), see fig. 13,

[aT !

aT*Iﬁ*1

za 't e K and ar! < a < aa”

a. Then

1

< za” L

-1

so zr ! = zeKaf and z7la! € K.

=br !t <af! <t = v < za BT = vy

= br~L. Here aa~! €

and all are in K. Also a3~ € (b, aa ') C K and 23! bridges to K in a8~ so bridges to LA, in b.
Then 28~ 'a™! = vyy~! € K bridges to a in LA, and af~'a™t = vy lisin (287 a" !, a), see fig. 13,

a. Then

287lat < aftat < aa”BT < 2ol

all points in K. This contradicts the fact that v acts as a translation in K.

Situation I.2 — a7 > @ in K.
Here za~! bridges to a in K, see fig. 13, b. If a > br~! in K then za~! bridges to a point ¢ >3 br—!

in LAg, so

za B! bridges to LAg in a point >pg br='8 and za” g7t ¢ K,

contradiction. Hence a < b7 ! in K and za ! bridges to a in LAg so za 137! bridges to a8~ ! in LAz
and as za~'$~! is in K then
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za 't > brtin K and B8t = br ! or ara = b

Now

af~t = b7l so aa = ar”'f7lr < afTir = b

so0 in particular ac is in K. Also 2 bridges to a in LA, and so does z. Hence zBa = zaf and za bridge
to aa in LA,. Since aa < b then za, zaf bridge to aa in LA, as well.

If aa < br~! in K then za, 2af bridge to ac in LAz, impossible — they have to bridge to distinct
points in LAg. If

br ' € (a,a0) = za, zaf bridgeto br ! in LAg,

also contradiction. Therefore acv = br=! or aar = b. Now

1 1

aQTQ T 1

=ba 'ttt =4 so ay=aa g7

Notice ay € [z,a7!]. But aa~! bridges to a in LAg so aa 1! bridges to af~! = br~! in LAsz and
aa~'~! cannot be a7, contradiction.

This finishes the analysis of situation I.

The remaining options are extremely similar and have shortened proofs.

Situation II — ax <, a in LA,.

Situation IL.1 — a7 ! < @ in K.
This is as situation I.1 above. Here z3~! bridges to a in LA,, so z8 'a~! bridges to aa™" in LA,
and aa~ ! = b. It follows that

b < ar ol < aT_lﬁ_la_l < zﬁ_la_l,

all points in X.
On the other hand a7 'a ! € (b, (a7 1B 'a~!) C K. The point za ! bridges to (a7 ')a ! in K.
It follows that

za gl < (aT*I)oflﬁfl =< (aT*I)ﬁflcf1 < zBtat,

all points in K. As before this contradicts the fact that v acts as a translation in K.

Situation II.2 — a7 < ¢ in K.
This is very much like situation 1.2. Here z3~! bridges to ar~! in K. If ar~! > b in K, then

28 'a™! bridges to a point >, b in LA, = 28 'al! ¢ K,

contradiction. Hence

1 1

at! < b inkK, z86'at >bink and ar'a! = b or a = bar.

In addition

za, z bridge to LAg in at™! =  zBa=zaB, zB bridge to LAg in ar”'p

and similarly to situation 1.2, this implies a7 '8 = b or @ = bra. Then ba3 = b and by = ba~'~'. But
by > br~! in K and ba~! bridges to b in LAg, so ba~!5~! bridges to b~! = ar~! and cannot be equal
to br 1.

This contradiction shows that problem 3 cannot occur. This finishes the proof of lemma 7.1. U
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Figure 14: Case B: a. Picture when Uy = U, b. Picture when U1T—! = Uz and [z,28] N [z,za] = [2,1] .

It follows from lemma 7.1 that Kata™" C U, so KaB C U as is KyBa. So all of the sets K, Ka, Kar,
Kara™', Kaf, Ka™', Ka~'r7! and Ka '7 '« are contained in & and none has z as an ideal point.
If K has another ideal point v, then v has the same properties as z and the same situation occurs with
respect to this other ideal point.

Given these facts, an analysis exactly as in case A.2 can be applied here. That analysis then shows
that case B.1.3 is not possible.

Hence case B.1.4 is disallowed. This also finishes the proof of case B.1.

For case B.2 we return to the study of « acting freely using the axis A,.

Case B.2 — Fiz(1) N Ay # 0.

This is the key case of the proof for essential laminations. In this case the topology will be important,
in particular, the exact condition |[p — 2¢g| = 1 will be used in a crucial manner. Let z € Fiz(7)NA,. Let
U (respectively Us) be the component of T' — {z} containing za (respectively za~!). A priori we do not
know whether z is also a fixed point of . In some subcases, the tricky part will be in fact to show that
2y = 2.

Case B.2.1 — U 7 =U;.
Notice that U« is contained in ;. Here use zat = zryfa’™ = zy[Sa™.

za €Uy = zar €Uy = zata " elUra " CUy = 26 € U

1 1 1

So zyra~ 77" is in Uy and then zya™" is in Uy or z7 is in U . In particular z < za < 27, see fig. 14,
a. We stress that in this case z7y is not equal to 2!

Use now zat = zafBa™ ! = zata 1~ Tam L.

1

zata!™™ € U, = zara e U, = zara~! € U, = zar € Ua.

1

In particular z < za < zat and z < zat ! < za and so zat 'a ! € (za~ !, 2). In other words

1 -1

zar'a™! = zrarTla! = 27a™! € (za7!

V7).

1 1

Then z6~'a~"! is in Uy so zB '~y is in Uyy. Notice 27! = zrar™' = zar™" with za € Uy, zaT™
also in ;.

Recall that zy # z. If Uy C U; this implies that z is in a local axis for y contradicting zy? = 277P = 2.
Therefore U417 is not contained in U/; and consequently Uo7y is contained in /1 and so z<y separates Usy

from z. Hence
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zao separates Usy from z  and zB laly € Uqy.

1

But 28 'a 'y = za7 17! = za~'rar™!. Now za separates z from za~'7ar~! which is in Uoy. Apply

T: zar separates z from za~'7a. Then

1

zar € Uia = za 'ta € Uija = za 't € U and za ' € Ui =U;.

But this contradicts za ! is in U2. This is an impossible case.

We conclude that U7 # U.

Case B.2.2 — U T # U>.

Then zaT is not in Uy, which implies zaTa is in U4, or zaf € Uq and zaTa~ isin U;. By
assumption zar € Uy, hence zata™' € Uy and zara™'r7! € Uyr~!. This would imply Us7~" = U; or
U1T = U5, so the assumption is incompatible.

We conclude that U7 = Us.

1-m 1 1

T

Case B.2.3 — U ;7! =U>.
This is a very interesting case. Here we only use the fact that p is odd.
First consider 2z = zra~'7~! = za~'7—! which is in Uo7t =U;. Then ze, 28 are in the component

U1, hence [z, zal, [z, 2] share a subprong. Suppose first that

2,28 N[z 20] = [2,8], t# 20,26, thatis za & [26], 2B & [z 0]

see fig. 14, b. Then zaf bridges to ¢ in A, and zafBa™~! bridges to A, in ta™ ! which is a point in
(za™, za™"1). But

zafad™ ' =zar = za7't7! € [z,20) = 28=za"'t7! € [z,z2a),
contradiction.
So either zf3 € [z, za] or za € [z,20)].
Situation I — z« is in [z, z/3].
Use 287 = zra ! = za~ . As za is in [2,28], then zar € [2,287] = [7,za ] and zara!™™ €
[za™™, za'~™]. But
zaral™™ = zr laral™™ = zap, so zaB € [za ™, za™] C Ag.

We stress that zaf8 € A,. Here 287! < 2z < za, hence z < zf < zafB. It follows that

m—1 —m]‘

28 € Ay and 28 € [z,zaf] = zafa”l € [20™7 za
We want zy = z or zaf3 = zBa. We first analyse the other two possibilities.
Situation I.1 — zafa~! > 2B in A,.
Then z8 < zafa ' < zafB, so z < zy < za, or z7y € (z,za), so zy € Uy. Clearly zBa € A,. Here
zaf > zfa in A,. Then
z<zBa<zaf alin Ay, = 26 ' <zBaf ' <za and z8 lal<zy ! <z
But 287" = zar™! € Uy, hence zB 'a~! is in Uy. Now 2y € Uy, zy~' € Us, therefore 2 is in a local axis

for 7, hence zv? # z, contradiction.

Situation 1.2 — Suppose zaf <, zfa.
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Then

1

z < zafa”t < 28 = 287! < 2y < 2

As 27! = zar™! is in Us, then zy is in Us.

Now zaf <o zBa. If Az contains elements in A, above zaf, that is, AgNA, D [2,t) with t >, zaf.

Then
z < za < t8Y < zBaB Y, with 87! € Ay = z < tflat < 2yt
with 3~ 'a~! in A, so zy~! is in U, and not in Us,.

On the other hand if Ag escapes A, in zaf3, then zBaf~! bridges to Ag in za, hence bridges to A,
in za as za € (z,28). Hence zBaf™! € Usa and zBaf~ta~! = zy~! bridges to A, in z and zy~! is not
in Us. In any case zy~! is not in I and 2y is in Uy so z separates z7y from zy~! and z is in a local axis
for v, impossible.

We conclude that zaf = zBa or that zy = 2.

Situation 1.3 — zy = 2.
Then « leaves invariant the set of components of 7' — {z}. Recall that U 7 ' = Uy and U7 = U> in

situation I. Use 2z 'a™ly = za~'B~L. The left side is zrarla™ly = zar o~ ly.

1

za €Uy = zar ' elUyr #Uy, so zar ‘ot €Uy and zar ofl'y € Usyy.

On the other hand the right side is za~'Tar™!:

za”lelUy = za 't €Uy = U, za ' raeUd; and za 'rar' eUirT' =U,.
So Uy NU2 # . Since y now preserves the set of components of T'— {2z} it follows that Usy = Us and
Uiy = Uty = Uyt = UsTr = U,. Now we use p odd and 7P~? = id:
L{I = ul’)’qu = L{ﬁ” = ulTp(mOdZ) = ulT.
This contradicts U7 # Uy and finishes the analysis of situation 1.

Situation II — 25 € [z, za].

This is very similar to the previous case if we think of it in the appropriate way. The trick here is to

switch the roles of o and 3, which can be done. Notice first that 28 € Uy and 287! = zrar7™! = zar ! is

in Us. So the component of T — {z} containing zf3 (respectively z37!) is the U, (respectively Us). First
rewrite the relations as
rar™t = B0 BT = y7lap™ = Bap™ !

As zf3 is in [z, za] then zB7~ ! is in [277%, za77] = [2,287!]. So

2B 1B = 2B BN = zfa € [2877,2B0 C Ag.

As 2B € [z, za], then zfBa is in [za, za?] and

za € [z,zBa] C [2,287™] C Ag.

Therefore za is in Ag and similarly za3, zfa are in Ag.

From this point on the proof is entirely similar to the analysis in situation I: consider whether
zaf} <g zBa, zaf >g zPa, or zafl = zfa, with completely analogous proofs.

Therefore this case is disallowed. This finishes the analysis of case B.2.3, Usm =U.



§7. CASE B — 7 HAS A FIXED POINT, & ACTS FREELY 38

c C
2
(" ch? ) rh ch?
rh2¢——ech
rhg———
ch
‘Ch 4ch

Figure 15: a. rn € [r,an], b. ™ € (r,an?].

Case B.2.4 — U7 = U>, U1T71 75 Us.
This is the most interesting case which relates to the topology in a crucial way.
Use z8 'a=ty = za~'p~L. The right side is zrarta~ty = zar ta~1y.

1

za €Uy = zar lel;r ! +Uy = zar” a~l el,.

Hence z8 'a~'y is in Usy. On the other hand za '~ = za lrar—!:

2o ' € UsT *Uy = 2alraeld; = zalrartelir ! #* Us.

We conclude that

Uy N U #0, or UiryNUir P #0 (%)

What we actually want is that these two sets are equal. A priori we have to be careful because v may
not preserve the set of components of T'— {z}, or equivalently we may have z7y # z. So we first deal with
this case. We will need the following useful lemma:

Lemma 7.2. Let 1) be a homeomorphism of a tree V so that n' has a fized point a, where [ is not 0.
Then there is a fized point of n in [a,an).

Proof. Consider an?. If an? is in [a,an] and not equal to an, then n sends [a,an] into itself and has a
fixed point there, done. If an is in (a,an?) then a is in a local axis of 7 and an' is not a, impossible. If a
is in (an,an?), then ! sends [an, an?] into itself (into [a,an]) producing a fixed point there, done.

We can now assume an? bridges to [a,an] in a point r which is in (a,an), see fig. 15, a. If rn = r we
are done. Assume rn # r. Then rn is in [an, an?].

Suppose first that 7 is in [r, an], see fig. 15, a. Then rn? is in [rn, an?] so either [rn,r] is contained
in its image under 7 or vice versa. In any case there is a fixed point of 7 in [r, rn].

Suppose now that rn is in (r,an?] see fig. 15, b. Hence a < r < g and an < rn < rn?. Then
r € (an,rn) and rn € (r,rn?), so r is in a local axis for 5. This implies that an’ # a for any nonzero ¢ in
Z, contradiction. This finishes the proof. U

We are back to case B.2.4.

Situation I — 2y # 2.
Suppose first that zy € Uy. Notice UsT # Uy and also # Uy. Then there is ¢ in [z, z7y] fixed by v so ¢
is in Uy. This implies

Usty C Us = Uit>y C Uy, or Uity C U.
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But by (x) Uiy NUT 1 # B, which now implies /17! NU; # (. This is impossible and rules out this
case.
The second possibility is that zy € U,. Here Usy C Uy so Uiy C Uy. As Uity NUT ! # () then
Uit~ Ny # 0, also impossible.
The final option is zy ¢ U1 NUs, 2y € U (which may be UsT or not). Here there is y fixed by v with
y € Us. Here first use
Usy C Uz, or Uity C Uz = Uit~ n Uz # () and Uyt = Us.

Use U1y C U3, so

Uity CU3T and u17*10u37#® or U1T71:U37'.

Then Us = Ut or U7~ =U 1772, so Ui T = U, impossible. This rules out this final option.
We conclude that:

Situation II — zvy = z.

This is a crucial case. In fact there is an essential lamination in M, , whenever |p — 2¢q| > 2 and
this essential lamination may satisfy these properties: 7 has a fixed point, « has an axis (or at least a
local axis) which contains the fixed point of 7. See more below. So here is a part of the proof where the
specific condition |p — 2¢| = 1 needs to be used. See remark below on the topological significance of this
condition.

Here is the proof. Since zy = z , then vy permutes components of T' — {z}. Since U7y NU T 1 # 0,
it now follows that

Uity = M17_1 or L{1772 = U;.

We now compute

U = UTPYT = UrP2072090 = Y (y72)07P~20 = Y 7P~ 2,

When |p—2¢| = 1 then either U, = U7 or Uy = U 7~" — so in either case U1 = U, 7! But this contradicts
that we proved before that in case B, U7 is not equal to ¢/;. This is a contradiction showing that case

B.2.4 cannot happen. This is quite straightforward, but it needed all the previous steps.
This finishes the proof of case B: Fiz(7) # 0, Fiz(a) = (.

Remark — We now analyse the topology of this situation. Consider the original stable foliation in the
torus bundle over the circle (the manifold M). This produces a lamination A; in M — N(§). The solid
torus complementary component of \; have degeneracy locus (1,2) that is y72. This means the y72 is
a curve in the boundary leaf of the complementary component and it also preserves the “outer” side of
this complementary component. Now do p/q Dehn filling on M — N(J) and look at the tree T" produced.
The leaf through ¢ collapses to a fixed point z of 7 (and v too). Usually neither 7 nor 7 preserves the
complementary components of z, but the above fact about the degeneracy locus means that yr? does
preserve these components — if /; is one such component of T' — {z} then U,y7% = U, After (¢, p) Dehn
surgery, the leaf space T' of the lamination has a singularity at z with exactly |p — 2¢| prongs. The
transformation 7 rotates by one in the set of prongs, hence 7°72¢ preserves each of the prongs. This
is also detected by 72 preserving the set of prongs and 7Py¢ being null homotopic. All is well when
|p —2¢| > 2, because we have 2 or more prongs and the lamination is essential and the action is very nice.
However when |[p — 2¢g| = 1 there is only one prong and the lamination is not essential. It is amazing
that this sort of difficulty can still be detected on the level of group action on trees. Notice that this is
exactly what the proof shows that /17 = U, which must happen if there is only one prong.
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8 Case C — « has a fixed point and 7 has a fixed point

Let s in Fiz(k), w in Fiz(a) with (s,w] N Fiz(k) = 0 and [s,w) N Fiz(a) = (. The following notation
will be very useful in this section. Given u # v in T let

Tyu(v) = {component of T —{u} containing v }.

Let W = T(w), V = T,(s). First in this section we will try to prove that W is invariant under 7 and V
is invariant under «. This will produce local axes for « and (eventually) for 7 and we will see how the 2
axes interact.

Case C.1 — Suppose Wt # W.

Case C.1.1 — Suppose w € [s, sa].
This is equivalent to Va # V. Notice sa # w. We know saf8 = sBa, and sBa = sa~'77'a. Then

1 1

salgV = saleWw = salrlewrlcy = salrlacVacw.

1

On the other hand saf = sara~'7!. Here

se. €EVaCcW = sar € Wr CcV = sarta! € Va ! c W

and saf is in Wr. These two facts together imply W = W, contrary to assumption.
Conclusion: if Wt # W, then Va = V.

Case C.1.2 — sa ' ¢ [s,w], sa & [s,w].
This implies sa, sa™!
in [w, s].
In this case sa~! bridges to [s,w] in a point r with r € (s,w) — the important fact is that r is not
one of the endpoints which would occur if sa~—! is not in W or V. Then

are in W. For otherwise if sa is not in W, then s is in (w, sa] and so sa™! is

r € [ws] N [wsa™'] = ra”' € [s,wa]

1 2

Notice ra~! is not equal to r. If ra™! is in (r, sa™!), then sa~2 bridges to [r,sa~!] in ra~!, hence sa~
bridges to [s,w] in 7. The same happens for all sa™ with n negative. If on the other hand ra ! is in
(w,r) then sa~2 bridges to ra~! in [s,w] and sa™ bridges to [s,w] in ra™*! for all n negative. Notice
then ra™ are all in (w,r) C (w, s). The important conclusion is that under the hypothesis s, sa~! both
not in [s,w] then any sa™ bridges to [s,w] in a point in the interior of [s, w], Hence all sa™ are in W and
V.

Use s7—at = syBa™. Here sa isin W, so sar is in Wr. Also sf = sa~ is in W7 ! and bridges
to s in [s,w]. Hence sfa™ bridges to sa™ in [sa™, w]. But sa™ is in W and bridges to [s,w] in a point
in the interior of (s,w). This implies sfa™ is in W, contradiction.

This case is impossible.

1 1 1

T

Case C.1.3 — Suppose sa € [s,w].
This implies for instance that Wa C W and Ts(wr=1)3~t C Ts(wr™1).

Case C.1.3.1 — Suppose sa~ ' € Wr.
Then sf~! = sar™!isin (s,wr™") C Wr™!. Also sa™! = sBa~ 157!, Here s8 = sa~ 77! is in W.
In this case suppose first that sg is not in V. Then

1

w € [wr™l,sf] and wB™' € wrl,s] = wpla”! € Wr,
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Figure 16: a. Case C.1.3.1, b. Case C.1.5.2.

as sa~ ! is in Wr. Notice w8 'a~! is not s. Then

wh taly = wa gt = wpt isin Wr b

Notice if wB~! = s, then

’lU,B_IOé_I _ wﬁ_l'}’_l _ S’)’_l — ¢ = wﬁ_l,
contradiction because s is not fixed by «.
Collecting all of this together: w3~ 'a 1y is in Wr+. This point is equal to wB~! which is in W71,
Therefore
Wry = Wrl or Wiy =W, impossible when |p — 2¢| =1,

as in case B.2.4.
The second option in case C.1.3.1 is that s8 € V. Recall that sa~'7—! = 543 is in W. Notice that

LAs = (LA)7T™" has asegment [wr™',s] € Wr~'uU{s}

and then it goes into W, as s is in W. Then either sg =t € (w, s) or sf bridges to [w,s] in t € (w, s),
so bridges to ¢ in LA,. In either case sBa~"! bridges to ta~! in LA, or is ta~!. If ta~! is in [w, s), then
sBa! bridges to ta ! in LA, see fig. 16, a. Here ta ! is in [wr 1, spB). If

s € [ta™',w] then sBa”' bridgesto LAs in 7, with r € [s,wr "]

This depends for instance on whether W7 = W7 ~! or not. In any case sfa~! bridges to LAg in a point
in [wr 1, sB). It follows that sBa~!3~! bridges to a point ¢ in LAz with ¢ in [w7 1, s), that is, sBa 147!
is in W7 ~!. Then

sal € Wr, sfa 't = saly € Wil = Wry = Wl

contradiction when |p — 2¢q| = 1.
This shows that case C.1.3.1 cannot occur.
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Case C.1.3.2 — sa ! is not in Wr.
Here s = sa~ 't~ is not in W. Also sf~! = sar~! is not in W. It follows that

LAz N [w,s] = {s},

so sa bridges to LAg in s and saf = sfa bridges to LAg in sf. Hence [s, s8] C (sa, sBa) and there is
a fixed point r of « in (s, sf3), see fig. 16, b. It also implies that

sa € [s,r] and sa ! € Ty(sp) = Ts(sB)T,
because sf~! = sar~!. Now apply 7a8 = ara!™™ to r: rraff = rra'™™.

As 587 = sa ! and as r € (s, s/), then

rr € (s,sat) = rra € (s,sa) = rraf € (sB,saf) C Ty(sB).

As rrais in (s,sa~!) C T,(s) this implies r7a!=™ is also in T}(s). Therefore r separates rra!=™ from
rraf3, contradiction.
This shows that case C.1.3, sa € [s,w] cannot occur. Finally consider:

Case C.1.4 — Suppose sa ! € [s,w].
This implies that Wa™! ¢ W and Wt~ c (Wr™1).

Case C.1.4.1 — Suppose s € Wt 1.
This case is very similar to case C.1.3.2. Here s8 € Ty(w7 ') which is not equal to either Ty(sa) or
Ts(sa~1). Hence sf bridges to LA, in s and sBa = saf8 bridges to LA, in sa. Hence

s < s < sa < saf
and there is a fixed point r of 3 in (s,sa). Then s3~! € (s,r) C (s,sa). Now use f7 181 "™ = 7718«
applied to r: r7~ 1™ = rr~1Ba. As sar™! = s then
rrl o€ (5,571 so  rr BT € (18 C Ti(s).
On the other hand r7 !'Ba is in (s, sBa) C Ty(sa). As T,(sa) # Ty (s), this is a contradiction, ruling

out this case.

Case C.1.4.2 — sa is in Wr™!.
This is similar to case C.1.3.1. Suppose first that Wr—! = Wr. Then sar—! = sf~! is in W. Also
Wp~! is contained in W. It follows that

sa”'ph e W oand sa7 'yl = sptat € W

Hence Wy = W, W12 = W, leading to contradiction when p is odd.
Suppose now that W7~ # Wr. Then sa € Wr~! and sar™! = 587! is not in W. Also s8~" is in
Wr~2. So sB~! bridges to s in LA, and sf~'a~! bridges to sa~! in LA, implying s 1o~ ! is in W.
Also sp'a™ly = sa~! 7!, Here sa™! bridges to s in LAg, sa™ '8! bridges to sf~! in LAz. But

st ewr? = salpltewr? = Wy=Wwr?
again impossible when |p — 2¢| = 1.

This finishes the analysis of case C.1.4, sa ™! € [s, w].
We conclude that case C.1, Wt # W is impossible. This implies W = W. We stress that this does
not yet produce a local axis of 7 in W, because we may have other fixed points of 7 in (s, w).
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Figure 17: a. Case C.2.2.1, b. Case C.2.2.3.

Case C.2 — Suppose that Va # V.

Here we will use sar = sfa™ = safa™ !

many times.
Case C.2.1 — Suppose wr,wr ' are not in [s, w].

The bridge from wt to [s,w] is [wT,t], where ¢ is in (s, w). Since sa ¢ V, then sar bridges to ¢ in
[s,w], so sar is in V. Hence sara ™ is in Va~ ™. This point is equal to s8 = sa '7 1. In the same way
sa~!is not in V and bridges to [s,w] in w. It follows that sa~'7~! bridges to a point r in [s,w], where
ris in in (s,w), hence s € V. Therefore Va'™ = V.

On the other hand

sar = safa™ ! = sara trta™ L

L'is in Va ! and bridges to w in [s,w] so
m—1

The point sar is in V and bridges to ¢ in [s,w]. So sata™
sara~'t~1 bridges to r in [s,w] (r as above) and as a result this point is in V. Hence saBa
Vo™ ! and Va™ = Vo™~ !, contradicting Vo # V.

1S in

Case C.2.2 — wr ! € [s,w].

Here V7! is contained in V.

The condition implies that w is in a local axis LA, of 7 (this case will be ruled out, we only establish
the existence of a local axis of 7 in W later). Put an order < in LA, so c < din LA; in LA;ifs<c<d
- the order decreases as points get closer to s.

Case C.2.2.1 — wt € Va, wr & Va~ !, see fig. 17, a.

Here Var C Va.

The conditions imply in particular that Vo # Va~!'. Here sat € Va, so sfa™ € Va. Also sa™
bridges to LA, in w so s8 = sa~!77! bridges to LA, in wr . Tt follows that s3 is in V and sBa™ is in
Va™. Hence Va'™ = Va.

On the other hand sat = saBa™~!. Use saff = sata”

1

17=1 Here

sa €Va = sare€Va = sara '€V = sara 't e.

Finally safa™ ! is in Va™ . So Va™ ! = Va and V = Va, again contradicting the assumption in this
case.
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Case C.2.2.2 — Suppose wr is not in Vo and wr is not in Vo L.
Then wr is in R another component of T — {w}. Then sart is in R. Now sfa™ = sa~!r~la™. But

wr € Va!' = sa ! bridgesto LA, mw = sa 77! bridgesto LA, inwr !
and sf is in V. Therefore sfa™ € Vo™ = R. Notice Ra~! # R because R = Vo™ and Vo~ # V. Use

m—1 1 1

= sata T L

sat = safa o™l and  sata ! € Ral#R.

Hence sata™! bridges to LA, in a point < w in LA, (it is in [s,w]) and s« bridges to LA, in a point
<wr~!tin LA,. Hence

saf eV = safad™lteva™!t = Vo™ =Vam !,

contradiction. Notice that here it doesn’t matter whether Va = Va~! or not.

Case C.2.2.3 — wr is in Vo !, see fig. 17, b.
This implies Va~'7 is a subset of Va~'.
Use sat = sfa™ = sa~ 77 1a™. Here

sa gV = sar € Ty(wr)=Va ! = sara™! € Va2 #Va™!,

so it bridges to a point r in LA, with r < w in £A,. Hence saf is in V and saBa™ ! is in Vo™ L.

Hence Va™ ! = Va~! or Va™ = V.
On the other hand sat = sBa™ is in Va !, so

—lT—l

sa = sB isin Va I = Vol

Then s3 bridges to a point > w in LA,. But s8 = sa~'77!, so sa~! bridges to a point > w7 in LA,
which implies wr € (w,sa!). Tt follows that wra € (w,s) and w8 ' = wrar ! isin (wr 1, s) is in W
and in V.

The following arguments use the strategy of case R.2:

Now wf'a~ 'y =wp~!isin W and wp~la™! = wr™!

a~ 7. Use

wrta™l € Val = Ty(wr) so wr la™lr isin Ty (wr?) =Va v~ cVa™ ¢ W.
Hence w3 'a~! € W. From this it follows that W+ = W. As usual this implies that (LA, )y = LA, so
7,7 have the common local axis £LA,. In addition w8 'a~'y = wp™! and as wB~" is in LA,, so does
whta L.

If wra < wr™' in LA, then w8~ = wrar™" < wr™? in LA,. Also wr,wB 'a~! are in LA, and
wr <wh la"tin LA,. Hence

wry < whla™ly = wpT <wr™? in LA, = p>3q,

contradiction to |p — 2¢| = 1.

If wra > wr~!in LA, then wrar™! = wB~! € (wr=2

,wr~!). Here use

(wr?)yBa™ = wrar € Ty(wr) =Va™! = wr’yp €Val,

because Va'™ = V. Therefore wr?y3 bridges to v in LA, with v > w in LA,. Hence wr?y < wp~! in
LA, and as wB~™" < wr~! we also obtain p > 3¢, contradiction.

This rules out the case C.2.2.3 and hence finishes the analysis of case C.2.2, wr ! € [s,w]. The next
case is:
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Case C.2.3 — w7 € [s,w].
This implies that V7 C V. The case is similar to case C.2.2.

Case C.2.3.1 —wr ' eVa !, wr 't ¢gVa.
This implies that Va~'77! c Va~ .
Here wr 'ais in V, wr—lar isin V so waBa™ ' = wBa™ ! is in V. Also

-1

wWTO € Va !

= wl=wra 't eVal = wha™ ! e Va2

which must be equal to V.
On the other hand sar = sfa™. Here sa € Va and bridges to w in LA;, so sat bridges to w7 in
LA, and saT € V. Also

sB8 = sa vt € Va! and sBa™ € Va™ L.
It follows that Va™~! = Va™~2, contradiction to V # Va.
Case C.2.3.2 — wr ' ¢ Va !, wr~! ¢ Va, see fig. 18, a.

Use sat = sBa™ = saffa™ . In this case the point s brides to w in LA, and sar € V. Also sa~
bridges to w in LA, and s8 = sa 77! bridges wr ! in LA, so

1

sf isin R=Ty(wr™") # Va,Va™ ! = sfa™ c Ra™ =V.

So in particular R # Ra.
On the other hand sara™! € Va~! and bridges to w in LA, so saf = sara™' 77! bridges to wr™
in LA, and is in R. Then safa™ ' € Ra™ ! = Va~!. This would imply V = Va !, contradiction.
The final case in C.2.3 is:

1

Case C.2.3.3 — wr ! € Va.
Let [sa, 7] be the bridge from sa to LA, with 7 in LA;. Then r > w in LA,. Here we have to
subdivide.

Situation I — r is in (w,wr™!).
Then sat bridges to LA; in r7 € (w,wT) and sar € V. Hence

1 1

sata™' ¢V = sara”lt7! = saf €Va = safad™! € Va™ = V=Vao™"

On the other hand sBa™ = sa 't~ 'a™. Here sa'7~! is in Va so sBa™ is in V1!

Va™ = Vo™t again a contradiction.

, implying

Situation IT — r = wr L.

Here sar bridges to LA, in w hence sat € Va and sat ¢ V. So sat is in R, another component of
T — {w}. Also

sa”l ¢V = B = sa”lrT € Va = sfa™ € Vo™t = R =VomH.

On the other hand saBa™~! € Va™t!, so saf € Va?. Now Va? # Va so Va7 is contained in V.
Hence sata! = saf7 is in V. This would imply sar is in Ve, contradiction to the first conclusion in
this case.

Situation III — wr~! < r in LA, .
This is a little more tricky. Here sat € Va, see fig. 18, b. Also
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Figure 18: a. Case C.2.53, b. Case C.2.3.3, Situation III.

wp™t = wrar™! € Va C W.

1 1

Now use wB ta~ ! = wr—ta~ 7. Here

1 -1

wr™h € [w,sa] = wrla !

€w,s] = wrla™lr €[s,wr] C LA CW.

So wB ta~t, wB~! are both in W, with the usual implications that Wy = W and +y leaves LA, invariant.
As wp~'a~!isin LA, then wp™! is in LA, as well. Also

wla™t = wrilatr<wr € LA, = wra € LA,

The proof is now analogous to previous arguments. If

1 1

w < wr !t < wra = wrl < wr? < wrar! = wﬁfl.

But

wh oy = wp™t and wp lat € (s,wr)

implies as before that p > 3¢, contradiction.

On the other hand if w < wra < wr ™!, then w7~

sat € Va. Now sBa™ = sa~'t7'a™. Also

U < wrar™ ' =wp™t < wr2 allin LA,. Here

sal ¢V = salrt € Va = spa™ € Vo™t = Va=Va™ orV = Vo

Now use wr?yBa™ = wrar. Here

wr < wrar < w in LA, = wrar € V, wriyf € Va ™ = V.

So wr?y < wp™! < wr~! < w, implying again p > 3¢, contradiction.
This finishes the analysis of case C.2.3, wr € [s,w] and so proves that the case Va # V cannot occur.
From now on in case C assume:

Case C.3 — Wr =W and Va = V.
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Since there is no other fixed point of « in (s, w), this immediately implies there is a local axis LA,
of a contained in V with w as an ideal point of £L.A4,. We stress that at this point we do not yet have an
axis for 7, because there may be other fixed points of 7 in (s, w).

1

Lemma 8.1. sa,sa ' € W, so0 sa,sa™ ! are not in [s,w).

Proof. Suppose first that s« is not in WW. Then

sal € (s,w) CW = salrleWr=Ww.
So s € W and bridges to [s,w] in a point r which is in (s, w]. Then sfa/™ bridges to [s,w] in ra/™ and
sBa™ is in W. Therefore sar is in W and s« is in WT~! = W, contradiction.
On the other hand suppose that sa ' ¢ W. Then sa € (s,w]. Also s8 = sa ‘71 & W, so bridges
to [s,w] in s. Then sfa™ bridges to [sa™, z] in sa™. Since sa'™ ¢ W this implies sfa™ ¢ W, therefore
sat € W. But then sa is not in W, contradiction. This finishes the proof. U

1 1

We conclude that sa,sa™ are in W N V. Let sa bridge to r in [s,w], hence r € (s,w) and sa~
bridges to [s,w] in a point ¢ also in (s, w).

Let z be the fixed point of 7 in [s,w] which is closest to w. Then z may be equal to s, but is not w.
Let U = T, (w). One important goal is to prove that Ur = U.

Lemma 8.2. Let U = T,(w). Then Ut =U. If z # s then zy,wy € W, and za, za ' & (z,w).

Proof. If z = s then U = VW and the result follows from Case C.1. For the rest of the proof of the lemma
assume that s # z.

We first analyse the possibility that zy € W. As & fixes s then zy~' € W also. If zy = z, then
zk = z, contradiction.

Suppose that zy or zy~' is in [s,2z). Then as sy = s, it follows that z is in a local axis for v and
2y # z, contradiction to z fixed by 7. Hence 27,2y ! ¢ [s, 2].

Let [z7y,7] be the bridge from z7v to [s, z]. Notice that r is in (s, z), because zy, zy~
Then

1

L are not in [s,w].

1

r € [s,z]N[s,zy] = ry € [s,2]

If ry =r, then r7? = ry 7 = r. But ([s, 2])7 = [s, 2], so this would imply r7 = r. Together these imply
rx = r, contradiction to s the fixed point of x in [s, w] which is closest to w.

We conclude that ry # r. But as sy = s, this implies that r is in a local axis LA, of 7. Compute
r™ n € Z. Assume without loss of generality that ¢ moves away from s as n — +o0o. Then

ry" = rr " € [s,w], Vn and 79" — c € (s,2] as n — 4o0.

Then ¢y = ¢ and also ¢r = ¢, contradiction.

This contradiction shows that zy € W is impossible. Notice that if z7 is not in W, then z7 separates
Wr from s and hence from W. It follows that Wy N W = 0, so wy ¢ W. This proves one assertion of
lemma 8.2.

We now consider where za and za~" are. Notice they are both in V. Remember that for the rest of
the proof s # z.

Situation I — Suppose first that za € (z, w).

Use ar = 7yBa™, applied to z. Here za is in U so zar is in UT. Suppose first that U7 # Ua~'. Then
zat bridges to LA, in a point in [z, w] and hence a = zaTa™™ bridges to LA, in a point in [za™™, w]
and a is in 4. Here

zata™ " = zyB = zya” T = zya ! € Ut £U.
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Figure 19: a. Situation I, Situation III.

Again zya~! bridges to LA, in a point in [z, w] and it follows that z7 is in U, hence zy € W contradicting
Wy nWw = 0.

The remaining possibility is U7 = T,(za 1), so in particular Ut # U, see fig. 19, a. Consider
wr~'a~!7. The point wr™! is not in U, hence it bridges to LA, in a point not in (z,w]. Therefore
wra ! bridges to LA, in a point not in (za !, w], so wra ! is in T,(za ') = Ur. Hence

wr el = wpTla”! isin UTE # U, To(s).

Notice that

(T,(s))T = T,(s), since s7 = s, so Ty(s) #UT>.

Lis in W and also bridges to LA, in a point which is in [z, w]. Then wB~! bridges

1

In particular wB ta~
to LA, in a point which is in [z, w] so in particular wB ™! is in & C W. But then w8 'a ! and wa~
are both in U, contradicting Wy NW = ().

This finishes the analysis of possibility za € (z,w).

Situation IT — Suppose za~! € (z,w).

Consider first the case when za € U7~ !, that is T, (za) = T, (w7~ 1). This is very similar to Situation
I, second part. Since za is not in U, this in particular implies U7 # U. Here wr & U, hence it bridges
to LA, in a point which is not in (z,w]. It follows that wra bridges to LA, in a point which is not in
(za,w]. This implies that wra is in T, (za) = T, (wr™'). Hence

wB ™t = wrar™t isin T,(wr ?) # T.(s), To(wr™1).

The first fact means that w3~ ! is in W. The second fact means that wB~! is not in T} (za), hence w3 !
bridges to LA, in a point contained in [z, w]. Hence w3 'a ! bridges to LA, in a point contained in
[za~!,w] and is in W. As wB~la~ly = wB~!, this would imply W~y = W, again contradiction. Hence
this cannot occur.

Now we know z« is not in T, (wr~'). The point z8 = za~ is in T, (wr™'), hence it bridges to
LA, in a point contained in [z, w]. It follows that z8a™ bridges to LA, in a point contained in [za™, w].
But

1 1

T~

1 1

zdm e U = 2™ €U = zyltar € U or zy 'a € T, (wr)
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and bridges to LA, in a point in [z, w]. Tt follows that zy ! bridges to LA, in a point in [za !, w], hence
zy~l €U C W, impossible.

We conclude that situation IT cannot occur. This proves the last 2 assertions of the lemma 8.2. It
also implies that the following situation must occur:

Situation III — za ¢ (z,w),za ' & (z,w), see fig. 19, b.

What is left to prove of lemma 8.2 is that U7 = U. So suppose that UT # U.

Here za ! bridges to [z,w] in a point r which is in (z,w). Also za bridges to t in [2,w] with ¢ also
in (z,w).

The point wvy is not in W, so it is in T,(s) and bridges to [wr™!, 2] in 2. Hence wy#3 bridges to
[wr ™, 2B] in 2. But 28 = za '77! bridges to [z, wr '] in 7. Then w~yA bridges to [z, w] in z (this
uses UT #U'). Then

wyBa™  bridges to [z,w] in a point in (z,w) so wyBa™ €U.

On the other hand w7 ! bridges to [z,w] in z so wr 'a bridges to [z,w] in a point in (z,w) and
wr ' is in Y. Then wr™ a7t is in U7. Of course this implies UT = U, contrary to assumption.

So in any case we conclude that {7 = U/. This finishes the proof of lemma 8.2. U

This lemma is very useful. Since there is no fixed point of 7 in (z,w) and T,(w)7 = T,(w) it follows
that there is a local axis LA, of 7 contained in U = T,(w) with an ideal point z.

Lemma 8.3. w is not in LA;.

Proof. Suppose not, that is, w € LA,. Here we will use lemma 4.6: Suppose that LA, is a local axis for
7 and w is a point in LA, with wa = w. Then at least one of the components of 7' — {w} containing
wr,wr ! is not invariant under «.
Situation I — wr~! € [z, w).

Here V = Ty (2) = Ty (wr ') is invariant under . By lemma 4.6, the set R = T}, (w7) is not invariant
under «. Notice that Ra is not equal to V either.

Use war = wr = wrafa™ L. Here

wr € R = wra € Ra #V = wrar € Rt C R = ¢ = wrara™' € Ra™! # R.

1 1

So ¢ bridges to w in LA, and then wrara '7—! = wrap bridges to wr~! in LA, and is then in V.
Finally wrafa™ ! is in Va™~! = V. This is not R, contradiction.

Situation IT — wr € (z,w).

Here V = T, (wt) = Ty(2) is invariant under a. Let R = T, (wr~'), which is not invariant under
a. Use wr~tar = wafa™ . Then wr~! is in R, so wr~'a is not in R or V and bridges to w in LA,.
Then wr tar bridges to wr in LA, and is in V. Tt follows that

1 1-m 1 1

wr ata " = waf = wB=wra ‘T - isin V.
1

Hence wra™" is in V7. This implies

1 1

wrat < wr < w = wT < WTQ < W = w < WwTaT T = w671 <wT .

1 1 1

is in Ra ! which is not equal to V. Also w8 ta! = wr—ta 7.
Ya~17 bridges to wr in LA, and so is in

In particular wf ' isin R and wBla~
Here wr~'a~! is in Ra~! and bridges to w in LA, and so w7~
V. As V is not equal to Ra !, this is a contradiction.

We conclude that situation II cannot happen either. This finishes the proof of the lemma. O
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Now we know that w is not in LA,

Lemma 8.4. z is not in LA,.

Proof. Suppose not, that is, z € LA,. This implies that either za or za™!

implies that s = z.
Suppose first that za € (z,w]. So za™! € T,(w) =U. Use zat = zBa™ As za € U, then zaT is in U
also. Then

is in (z,w). Then lemma 8.2

za7' ¢ U = za7'v7' ¢ U = 2B bridgesto [z,w] in z

and zfBa™ bridges to [za™,w] D [z, w] in za™. It follows that zfa™ is not in U, contradiction.

Suppose now that za ! is in [z,w]. Then za '7~! = 28 is in U and bridges to [z,w] in a point ¢
which is not z. Then zBa™ bridges to [z, w] in ta™ and zfa™ is in Y. On the other hand z« is not in U
and so zat is not in U either. This is a contradiction.

This finishes the proof of the lemma. U

Summary in Case C.3 — So far we have proved: suppose that wa = w, sk = s, no fixed points of &
or a in (s,w). Let z € [s,w), the closest to w with zr = z. Then

T.(w)t = T,(w), Ty(z)a = Ty.
If LA, LA, are the corresponding local axes of 7 and « then z & LA, w & LA,.

Case C.3.0 — Suppose that LA, N LA, has at most one point.

This is very simple. Let [c,d] be the bridge from LA, to LA,, where ¢ = d if the intersection is one
point. We do the proof for ¢ # d, the other is very similar. Use 27 'ar = zafBa™ !. The right side is
zat. Here za bridges to LA, in do, hence bridges to LA, in ¢. So zar bridges to LA; in c7.

So zaT bridges to LA, in d so zara ! bridges to LA, in da! and to LA, in c. So zara 77! = zaf
bridges to LA, in ¢! hence to LA, in c. Finally zafa™ ! bridges to LA, in da™ ™! hence to LA, in
c. Since ¢ # cr this is a contradiction.

Case C.3.1 — Now assume LA, N LA; has more than one point. We will use the analysis done in case
B.

If U~ is not equal U then we use the proof of case B.1.3 — which was done also for local axis of a.
This disallows this case.

The remaining case is that U~y is equal to U. As explained in case B.1.4 this implies «y leaves LA,
invariant. Here we consider the intersection B = LA, N LA,. First notice that z is not in B. If z were
a limit point of B then B would be (z,r] (recall that w is not in £A.). Then as « leaves invariant LA,
we would have za = z also ruled out by non trivial action of the group on T'. If LA, is not properly
embedded on the other side let v be the other ideal point of LA,. Then

vk = v, (Ty))a = Ty), (T(w))r = T,(w).

Also (w,v) has no fixed points of 7. Suppose that v is in £LA,. Then (w,v) also has no fixed points of «.
But then v has the same properties as z and this case is ruled out by lemma 8.4. It follows that v is not
in LA,. So if LA, has another ideal point v, then B is [r,¢] with ¢ an actual point in LA;.

Now we can apply the analysis of case B.1.4 which was also done for a with a local axis. The analysis
rules out this situation.

This shows that case C.3.1 cannot happen either.

This finishes the proof of the main theorem.
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9 Remarks

There are a lot of interesting questions still open. First we discuss some internal questions about the
proofs in this article. The proof of the R-covered case uses p > 3q for a orientation reversing. It would
be useful to get a more general proof — for instance showing that p must be equal to 4 or that p has to
be even. We obtained some preliminary results, but not conclusive. The same argument and condition
p > 3q are then used in various places of the article so it would be very good to discover a more general
proof.

Also the best possible result for the manifolds M,,/, described in this article would be the following:
If p > q, p odd, m < —4 then the only possible essential laminations are those coming from either stable
or unstable lamination in the original manifold M — these remain essential whenever |p — 2¢| > 2. One
way to interpret such a goal is a rigidity result — all laminations in this manifold have to be of this
type. Notice that Brittenham’s results for Seifert fibered spaces [Brl] are of this form. Also Hatcher and
Thurston’s results for surgery on 2-bridge links [Ha-Th] are along these lines.

Now on for more general goals: How far can the methods of this article be generalized? Can they
be used whenever M is a punctured torus bundle over S' with Anosov monodromy and degeneracy
locus (1,2)? Probably a mixture of topological methods and group action methods needs to be used.
How about surface bundles, where the surface has higher genus? What about other degeneracy locus as
discovered by Gabai-Kazez [Ga-Kal]?

Since essential laminations do not exist in every closed hyperbolic 3-manifold, one looks for useful
generalizations. One possible idea was introduced by Gabai in [Ga5]: a lamination A in M, compact,
orientable, irreducible is loosesse if A\ satisfies:

0) X has no sphere leaves and

1) for any leaf L of X\, the homomorphism 71 (L) — (M) induced by inclusion is injective, and
for any closed complementary region V', the homomorphism 71(V) — w1 (M) induced by inclusion is
injective. B

Gabai [Gab] conjectured that under these conditions and M closed then X is a product lamination
and M is homeomorphic to R®. One test case is the class of manifolds M, studied in this article. When
|p—2¢| = 1 the lamination coming from the stable lamination has monogons. The leaves are either planes
or have Z fundamental group. The complementary region is a solid torus. So to check for loosesse one
only needs to understand if leaves inject in the fundamental group level.

Another direction involves general group actions on trees. When does a group acts non trivially on a
tree? Perhaps there are theoretical characterizations of when such an action exists. This is one aspect of
one dimensional dynamics because a tree is a one dimensional object.
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