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Abstract. The inviscid limit of wall bounded viscous flows is one of the unanswered central
questions in theoretical fluid dynamics. Here we present a result indicating the difficulty in numerical
study of the problem. More precisely, we show that numerical solutions of the incompressible Navier-
Stokes equations converge to the exact solution of the Euler equations at vanishing viscosity provided
that small scales of the order of ν/U in the direction tangential to the boundary in an appropriate
boundary layer is not resolved in the scheme. Here ν is the kinematic viscosity of the fluid and
U is the typical velocity taken to be the maximum of the shear velocity at the boundary for the
inviscid flow. Such a result is somewhat surprising since such a small scale is smaller than any of
the known small scales predicted by conventional theory of turbulence and boundary layer theory.
On the other hand, such a result can be viewed as a discrete version of our early result (Wang 2001)
which generalized earlier result of Kato (1984) where the relevance of a scale proportional to the
kinematic viscosity to the problem of vanishing viscosity is first discovered.
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1. Introduction. One of the central and most useful system in fluid dynamics is
the Navier-Stokes system for incompressible homogeneous Newtonian fluids which
governs the motion of fluids like air and water under normal conditions:

∂uν

∂t
+ (uν · ∇)uν − ν∆uν +∇pν = f , in Ω,(1.1)

div uν = 0 in Ω,(1.2)
uν = b on Γ,(1.3)
uν = u0 at t = 0,(1.4)

where uν = (uν1 , u
ν
2 , u

ν
3) is the velocity field in the Eulerian coordinates, pν is the kine-

matic pressure, and f = (f1, f2, f3) is the external body force, the positive constant ν
is the kinematic viscosity. The velocity b at the boundary satisfies the no-penetration
condition

b · n = 0,(1.5)

where n is the unit outward normal to the boundary Γ = ∂Ω. This includes the case
of Taylor-Couette type flows among others. The boundary condition sometimes is
referred to as characteristic boundary condition since the boundary consists of stream
lines all the time.

There is an abundant literature on the Navier-Stokes systems. The interested
reader may consult the books by Constantin and Foias (1988), Doering and Gibbon
(1995), Ladyzhenskaya (1969), Majda and Bertozzi (2001) or Temam (2001) for the
mathematical theories of the Navier-Stokes equations.

∗This work is partially supported by a grant from NSF and a startup fund from Florida State
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† Florida State University, Tallahassee, FL 32306
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For realistic fluids like air and water, the kinematic viscosity is very small and
hence we may formally set it to zero and arrive at the Euler system for incompress-
ible inviscid (dry) fluids:

∂u0

∂t
+ (u0 · ∇)u0 +∇p0 = f , in Ω,(1.6)

div u0 = 0 in Ω,(1.7)
u0 · n = 0 on Γ,(1.8)

u0 = u0 at t = 0.(1.9)

More importantly, if the characteristic fluid velocity U is large or the characteristic
length scale L of the motion is large, the Reynolds number defined as

Re =
LU

ν
(1.10)

is large and the non-dimensionalized Navier-Stokes system takes the same form except
the kinematic viscosity is replaced by the reciprocal of the Reynolds’ number which
is very small. This provides another scenario where inviscid approximation is needed.

Such an approximation has been utilized in many applications. A physically
important question is then whether such an approximation can be justified via the
zero viscosity limit of the Navier-Stokes equations.

The mathematical investigation of such a problem is extremely difficult due to
the nonlinear nonlocal nature of the systems involved and to the singular nature of
the problem which involves a boundary layer. There have been extensive efforts on re-
solving this inviscid limit problem which lead to many partial results (see for instance
Prandtl (1905), von Karman (1930), Schlichting (1979) etc from the physical perspec-
tive, and Bona and Wu (2002), E and Engquist (1997), Kato (1984), Ladyzhenskaya
(1969), Oleinik (1963), Oleinik and Samokhin (1999), Matsui (1984), Sammartino and
Caflisch (1995, 1996), Temam and Wang (1996, 1998), Wang (2001), Xin and Zhang
(2004) for some of the mathematical results).

Confronted with such a difficult problem, we naturally resort to numerical meth-
ods, especially with today’s powerful computer and efficient and accurate numerical
schemes. A natural question to ask is if we can trust the numerical results. More
precisely, let

uk = uνkhk

be a sequence of numerical solutions of an appropriate numerical scheme with kine-
matic viscosity νk and mesh size hk satisfying the vanishing viscosity and mesh size
assumption

νk → 0, hk → 0 as k →∞

our questions are:

Does lim
k→∞

uνkhk = u0implies lim
k→∞

uνk = u0?(1.11)

Does lim
k→∞

uνkhk 6= u0implies lim
k→∞

uνk 6= u0?(1.12)

What we will demonstrate below is that the convergence of the numerical solutions
may have nothing to do with the convergence of the continuous solutions (solutions
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of the Navier-Stokes system (1.1))at vanishing viscosity to the solution of the Euler
system (1.6) if small scales of the order of ν

U is not resolved in the scheme in an
appropriate boundary layer in the direction tangential to the boundary. This indicates
the difficulty in studying such an inviscid limit problem. Such a result is eluded in
Wang (2001) and is somewhat surprising since this scale is smaller than any small
scale predicted by conventional theory of turbulence or boundary layer theory.

The rest of the manuscript is organized as follows. In the next section we introduce
the notion of appropriate truncation of the Navier-Stokes system and formulate our
main result. We then compare the small scale in our theorem with other small scales
predicted by conventional theory of turbulence and boundary layer theory. We then
give a sketch of the proof of the main result in the third section, and we offer our
concluding remarks in the last section.

2. The Main Result and Remarks. It is apparent that the convergence of
numerical solutions of the Navier-Stokes system to that of the Euler system should not
be expected for arbitrary truncation, but for suitable approximations of the Navier-
Stokes system. Thus we need to introduce the notion of appropriate truncation.
Also the problem involves several limits: time step, spatial scale and viscosity. The
essential ingredients of an appropriate truncation are the consistency (as required by
all convergent numerical schemes) and a bound on the truncated time averaged energy
dissipation rate that is independent of the kinematic viscosity (as is consistent with
the Kolmogorov theory, see for instance Doering and Gibbon 1995, Foias, Manley,
Rosa and Temam 2001).

In order to focus on the main issue and for the sake of exposition, we consider
flow in a 2D channel. Moreover, we consider discretization in the direction tangential
to the boundary only (no time discretization or spatial discretization in the direction
normal to the wall). This allows us to concentrate on the phenomena related to
tangential (to the wall) spatial discretization only as it is the focus of our main result.
The result stated here remains valid for 3D general domain with discretization in
the directions tangential to the wall in a boundary layer done using local curvilinear
coordinates, and the additional assumption that the Euler system possesses a smooth
enough solution on that fixed time interval under consideration.

For the channel geometry with periodicity in the horizontal direction, it is natu-
ral to use Fourier spectral truncation in the horizontal direction and thus a natural
(suitable) truncation would be the following Galerkin truncation

∂uk

∂t
+ Pk((uk · ∇)uk)− νk∆uk +∇pk = Pkf ,(2.1)

div uk = 0,(2.2)
uk|z=0,h = Pkb,(2.3)

uk|t=0 = Pku0(2.4)

where Pk is the projection onto the first Kk modes in x, i.e.

Pku =
∑
|j|≤Kk

e2πijx/Luj , (u =
∑
j

e2πijx/Luj).(2.5)

The consistency of such a truncation is obvious. An appropriate bound on the energy
dissipation rate will be derived later in the next section.

Our main result is
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Theorem 1. Suppose that we have a smooth solution u0 of the Euler system
(1.6) on the time interval [0, T ]1. Let uk be the solution of the truncated Navier-
Stokes system (2.1) with kinematic viscosity νk. Assume that the following conditions
are satisfied

Kk →∞ (consistency)(2.6)
νk → 0 (vanishing viscosity)(2.7)

Kk
νk
LU
→ 0 (under − resolved condition)(2.8)

Then

uk → u0.(2.9)

More precisely, there exists a generic constant κ independent of k such that

‖uk − u0‖L∞(0,T ;L2)(2.10)

≤ κ((Kkνk)
1
5 + ‖u0 − Pku0‖L2(0,T ;H1) + ‖u0 − Pku0‖L∞(0,T ;L2)).(2.11)

The under-resolved condition (2.8) can be written in terms of the smallest scale,
denoted ls, resolved by the numerical method in the direction tangential to the bound-
ary. Indeed, since Kk ls = L, the under-resolved condition is equivalent to

νk/U

ls
→ 0.(2.12)

This means that scales of the order ν/U are not resolved in the scheme and this is
what we mean by under-resolved situation.

The appearance of this small scale is a little bit surprising since it is smaller than
any of the known scales predicted by conventional theory of turbulence and boundary
layer theory. Here we recall a few well-known small scales (Foias, Manley, Rosa and
Temam 2001, Doering and Gibbon 1995, Prandtl 1905, Frisch 1995 among others)

• Prandtl boundary layer thickness
√
νT(2.13)

• Kolmogorov dissipation length (3D)

(
ν3

ε
)

1
4 ∼ ν 3

4(2.14)

where ε is the energy dissipation rate per unit volume and is presumably
independent of the kinematic viscosity.
• Kraichnan dissipation length (2D)

(
ν3

η
)

1
6 ∼ ν 1

2(2.15)

where η is the enstrophy dissipation rate per unit volume which is presumably
independent of the kinematic viscosity.

1This is guaranteed in the 2D case with smooth enough data satisfying certain compatibility
condition, see Temam 1975
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• Taylor micro length

(
νU2

ε
)

1
2(2.16)

Notice that these small length scales are all much bigger than ν/U . Even the thickness
of a viscous sublayer ( νU logRe) predicted by some boundary layer theory is bigger
than ν

U at large Reynolds number. Thus, if one follows the conventional wisdom,
one would just resolve the small scales predicted by conventional theory and thus the
numerical results would indicate convergence of numerical solutions to that of the
Euler system (see for instance Johnston, Liu and E (2000)).

Of course, ν/U appear as the natural small scale in certain circumstances such
as the boundary layer thickness in the presence of suction at the boundary. The
appearance of the thickness ν/U is directly related to the suction which makes the
boundary layer thinner and stable (see Temam and Wang 2000, 2002). Even in that
case, the scale of ν/U appears only in the direction normal to the boundary in the
boundary layer.

The relevance of small scales of the order of ν/U to the inviscid limit problem
was first discovered by Kato (1984) and was improved to the case of small scale of the
order of ν/U in the directions tangential to the boundary in an appropriate boundary
layer by Temam and Wang (1998) and Wang (2001). The main result here is basically
a discrete version of the main result stated in Wang (2001) and thus a discrete Kato
type result.

3. Sketch of the Proof. Throughout this section, κ will denote a generic con-
stant independent of the kinematic viscosity ν or truncation wave number Kk.

Our proof is along the line of Kato (1984) and Temam and Wang (1998) with
some modification. The basic idea is to construct a so called background flow (Hopf
type technique, 1955) with a free parameter α which interpolates between the viscous
sublayer (Kato type result) and laminar boundary layer (Prandtl theory).

For simplicity we will consider channel flow (flat boundary) and two dimensional
case only. The case with curved boundary can be treated in the same way as in
our previous work Temam and Wang (1998) using curvilinear coordinates. The three
dimensional case is very similar to our work on energy dissipation rate Wang (2000).

Our approach is close to the idea of Vishik and Lyusternik (1957) (see also Lions
1973) in the sense that we seek a corrector which approximates the difference between
the viscous and inviscid solution. Hence it is slightly different from Kato’s (1984)
approach.

Since we are interested in the asymptotic behavior of the solution uk to the
Galerkin truncated Navier-Stokes system (2.1), we naturally compare uk to the spec-
tral truncation of the solution to the Euler equation, namely Pku0. Notice that Pku0

satisfies the system

∂

∂t
Pku0 + Pk((Pku0 · ∇)Pku0) +∇Pkp0 = Pkf + gk(3.1)

divPku0 = 0(3.2)
Pku0 · n|z=0,h = 0(3.3)

Pku0|t=0 = Pku0(3.4)

where

gk = −Pk(((I − Pk)u0 · ∇)u0)− Pk((Pku0 · ∇)(I − Pk)u0).(3.5)
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It is easy to see that gk is small for large k due to the consistency assumption
and the smoothness assumption on the inviscid solution u0. Indeed

‖gk‖L2 ≤ κ(‖∇u0‖L∞‖(I − Pk)u0‖L2 + ‖Pku0‖L∞‖∇(I − Pk)u0‖L2

≤ κ‖∇u0‖L∞‖(I − Pk)u0‖H1 .(3.6)

We now follow the strategy of the continuous case and compare uk to Pku0 with
the aid of a corrector (background flow). For this purpose we need to first establish
upper bound on the energy dissipation rate independent of the kinematic viscosity for
the truncated Navier-Stokes system (2.1) just as in the continuous case.

Let φ be a fixed (smooth) incompressible flow that matches b on the boundary
of the domain. The existence of such flows is classical ( see for instance the text book
by Temam 2001, Wang 2001).

Consider

vk = uk − Pkφ.

We then deduce that vk satisfies the following system

∂vk

∂t
+ Pk((vk · ∇)vk) + Pk((vk · ∇)Pkφ) + Pk((Pkφ · ∇)vk)− νk∆vk +∇pk

= Pkf −
∂

∂t
Pkφ− Pk((Pkφ · ∇)Pkφ) + νk∆Pkφ,

div vk = 0,
vk|z=0,h = 0,

vk|t=0 = Pk(u0 − φ(0)).

Multiplying both sides by vk, integrating over Ω, we have

1
2
d

dt
|vk|2L2 + νk|∇vk|2L2 ≤ |∇Pkφ|L∞ |vk|2L2

+κ(|f |L2 + |∂φ
∂t
|L2 + |φ|H2 |∇φ|L2 + νk|∆φ|L2)|vk|L2

which implies

‖vk‖L∞(0,T ;L2) ≤ κ

which further implies

νk

∫ T

0

|∇vk|2L2 dt ≤ κ

where κ is a constant independent of k (or νk). Since uk and vk differ by Pkφ, we
also have

νk

∫ T

0

|∇uk|2L2dt ≤ κ.(3.7)

Next we move onto the issue of convergence of uk to u0 under the under-resolved
condition. We first introduce a corrector (background flow) just as in the continuous
case. The key idea, in addition to the ones that we had for the continuous case, is a
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reverse Poincaré inequality which implies smallness of energy dissipation rate due to
the tangential derivative of the flow.

Define the stream function

ψk(x, z, t) = Pk(b1(x, 0, t)− u0
1(x, 0, t))

∫ z

0

ρ(
αUs

νk
) ds,(3.8)

where the cut-off function ρ satisfies the following properties

ρ ∈ C∞[0,∞),
ρ(0) = 1,
ρ′(0) = 0,

supp ρ ⊂ [0, 1),∫ 1

0

ρ = 0,

|ρ|L∞ ≤ 1,
|ρ′|L∞ ≤ 2,

and the typical velocity U is defined as

U = sup
k

max
[0,T ]×Γ

{|Pk(b1 − u0
1)|}.(3.9)

The corresponding velocity field is

θk(x, z, t) = curlψk(x, z, t) = (
∂ψk

∂z
,−∂ψ

k

∂x
).(3.10)

The typical velocity defined here is a natural generalization of the continuous one
(max[0,T ]×Γ |b1− u0

1|) to this truncated case. This new typical velocity dominates the
continuous version since we have, for smooth enough b1 − u0

1,

lim
k→∞

Pk(b1 − u0
1) = b1 − u0

1.

Next, we consider the adjusted differences

wk = uk − Pku0 − θk.(3.11)

Our goal is to prove wk → 0 which implies our final result since θk → 0 in L∞(0, T ;L2)
and Pku0 → u0 in L∞(0, T ;L2) as k approaches infinity.

It is easy to verify that wk satisfies

∂wk

∂t
+ Pk((uk · ∇)wk)− νk∆wk +∇qk = −∂θ

k

∂t
+ νk∆u0 + νk∆θk

−Pk((θk · ∇)θk)− Pk((wk · ∇)θk)− Pk((u0 · ∇)θk)
−Pk((wk · ∇)Pku0)− Pk((θk · ∇)Pku0) + gk(3.12)

div wk = 0,(3.13)
wk
∣∣
z=0,h

= 0,(3.14)

wk
∣∣
t=0

= 0.(3.15)
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Thanks to the explicit construction of our θk, we have

|∂θ
k

∂t
|2L2 ≤ U2

t

Lνk
αU

+ U2
tx

Lν3
k

α3U3
,

|∇θk|2L2 ≤ 2U2
x

Lνk
αU

+ U2LαU

νk
+ U2

xx

Lν3
k

α3U3
,

|Pk(θk · ∇)θk|2L2 ≤ 5U2U2
x

Lνk
αU

+ U2U2
xx

Lν3
k

α3U3
+ U4

x

Lν3
k

α3U3
,

|Pk(Pku0 · ∇)θk|2L2 ≤ 2(|Pku0
1|2L∞ |

∂θk

∂x
|2L2 + | Pku

0
2

z(h− z)
|2L∞ |z(h− z)

∂θk

∂z
|2L2)

≤ κ(
Lνk
αU

+
Lν3

k

α3U3
),

|Pk(wk · ∇)Pku0|L2 ≤ |∇Pku0|L∞ |wk|L2 ,

|Pk(θk · ∇)Pku0|2L2 ≤ |∇Pku0|2L∞(U2Lνk
αU

+ U2
x

Lν3
k

α3U3
)

≤ κ|u0|2H3(U2Lνk
αU

+ U2
x

Lν3
k

α3U3
)

where we have used the impermeable wall boundary condition (3.3), and

Ut = sup
k

max
[0,T ]×Γ

{|Pk(
∂b1
∂t
− ∂u0

1

∂t
)|},

Ux = sup
k

max
[0,T ]×Γ

{|Pk(
∂b1
∂x
− ∂u0

1

∂x
)|},

Utx = sup
k

max
[0,T ]×Γ

{|Pk(
∂2b1
∂x∂t

− ∂2u0
1

∂x∂t
)|},

Uxx = sup
k

max
[0,T ]×Γ

{|Pk(
∂2b1
∂x2

− ∂2u0
1

∂x2
)|}.

We then deduce, via standard energy method,

1
2
d

dt
|wk|2L2 + νk|∇wk|2L2 ≤ νk

√
2U2

x

Lνk
αU

+ U2
LαU

νk
+ U2

xx

Lν3
k

α3U3
|∇wk|L2

+ν2
k |∆u0|2L2 + κ|wk|2L2 + κ|u0 − Pku0|2H1

+κ(
νk
α

+
ν3
k

α3
) +

∫
Ω

(wk · ∇)wk · θk.(3.16)

Notice the last (nonlinear) term can be rewritten as∫
Ω

(wk · ∇)wk · θk =
∫

Ω

wk1
∂wk1
∂x

θk1 +
∫

Ω

wk3
∂wk1
∂z

θk1 +
∫

Ω

wk1
∂wk3
∂x

θk3 +
∫

Ω

wk3
∂wk3
∂z

θk3 ,(3.17)

and hence we have the following estimates on the nonlinear term, thanks to the explicit
construction of the corrector (see Wang 2001),

2
∫

Ω

wk1
∂wk1
∂x

θk1 =
∫

Ω

∂

∂x
(wk1 )2θk1

= −
∫

Ω

(wk1 )2 ∂θ
k
1

∂x

≤ Ux|wk1 |2L2 ,
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2
∫

Ω

wk3
∂wk1
∂z

θk1 ≤ 2U |wk3 |L2(Γδ)|
∂wk1
∂z
|L2(Γδ)

≤ 2Uδ|∂w
k
3

∂z
|L2(Γδ)|

∂wk1
∂z
|L2(Γδ)

=
2ν
α
|∂w

k
1

∂x
|L2(Γδ)|

∂wk1
∂z
|L2(Γδ)

≤ ν

4
|∂w

k
1

∂z
|2L2(Γδ)

+
4ν
α2
|∂w

k
1

∂x
|2L2(Γδ)

,

2
∫

Ω

wk1
∂wk3
∂x

θk3 ≤ κ
ν

α
|wk1 |L2(Γδ)|

∂wk3
∂x
|L2(Γδ)

≤ ν

4
|∂w

k
3

∂x
|2L2(Γδ)

+ κ
ν

α2
|wk1 |2L2(Γδ)

.

Similarly

2
∫

Ω

wk3
∂wk3
∂z

θk3 ≤
ν

4
|∂w

k
3

∂z
|2L2(Γδ)

+ κ
ν

α2
|wk3 |2L2(Γδ)

.

Thus we have

2
∫

Ω

(wk · ∇)wk · θk ≤ νk
4
|∇wk|2L2 +

4νk
α2
|∂w

k
1

∂x
|L2(Γδ) + κ

νk
α2
|wk|2L2 + Ux|wk|2L2(3.18)

where

δ =
νk
αU

(3.19)

is the thickness of the boundary layer.
We now make the following assumption on the free parameter α (and thus δ)

α = αk → 0, as k →∞; and
νk
α2
k

≤ 1.(3.20)

The first part of the condition is equivalent to saying that the chosen boundary layer
must be thicker than νk/U since δk = νk

αkU
, and the second part of the assumption is

equivalent to saying that the thickness of the chosen boundary layer is at most that
of the laminar boundary layer

√
νT since

δ2
k

νk
=

νk
α2
kU

2
.

The condition also implies that

νk
αk

= Uδk → 0, as k →∞.

It is then easy to see, that under the assumption on the parameter (3.20), together
with the vanishing viscosity condition (2.7), and the key estimate on trilinear term
(3.18), the energy inequality on wk becomes,

d

dt
|wk|2L2 + νk|∇wk|2L2 ≤ κ(|wk|2L2 + |u0 − Pku0|2H1 +

νk
α

) + αLU3 +
8νk
α2
|∂w

k
1

∂x
|2L2(Γδ)
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which implies, after utilizing Gronwall inequality,

‖wk‖L∞(0,T ;L2) ≤ κ(
√
νk
α

+ ‖u0 − Pku0‖L2(0,T ;H1) + (αLU3 +
8νk
α2

1
T

∫ T

0

∫
Γδk

|∂w
k
1

∂x
|2)

1
2 ).

Therefore

‖uk − u0‖L∞(0,T ;L2) ≤ ‖wk‖L∞(0,T ;L2) + ‖u0 − Pku0‖L∞(0,T ;L2) + ‖θk‖L∞(0,T ;L2)

≤ κ(
√
νk
α

+ ‖u0 − Pku0‖L2(0,T ;H1) + ‖u0 − Pku0‖L∞(0,T ;L2))

+κ(αLU3 +
8νk
α2

1
T

∫ T

0

∫
Γδ

|∂w
k
1

∂x
|2)

1
2(3.21)

Here α is a free parameter that we may adjust provided the constraints specified in
(3.20) are met.

Next, we estimate the integral on the right hand side of (3.21) as follows. Notice
that

νk

∫ T

0

∫
Γδ

| ∂
∂x
uk1 |2 ≤ 2νk

∫ T

0

∫
Γδ

| ∂
∂x

(uk1 − Pkφ1)|2 + 2νk
∫ T

0

∫
Γδ

| ∂
∂x
Pkφ1|2

≤ 2νkδ2

∫ T

0

∫
Γδ

| ∂
2

∂x∂z
(uk1 − Pkφ1)|2 + κνkδ

≤ κνkδ2K2
k

∫ T

0

∫
Γδ

| ∂
∂z

(uk1 − Pkφ1)|2 + κνkδ

≤ κνkδ2K2
k

∫ T

0

∫
Γδ

|∂u
k
1

∂z
|2 + κνkδ

2K2
k

∫ T

0

∫
Γδ

| ∂
∂z
Pkφ1|2 + κνkδ

≤ κ(δ2K2
k + νkδ)

≤ κ(
ν2
kK

2
k

α2
+
ν2
k

α
)

where we have applied the direct and inverse Poincaré inequality, and utilized the
bound on energy dissipation rate (3.7). This further implies,

νk

∫ T

0

∫
Γδ

|∂w
k
1

∂x
|2 ≤ 2νk

∫ T

0

∫
Γδ

|∂u
k
1

∂x
|2 + 2νk

∫ T

0

∫
Γδ

|∂(Pku0 − θk)
∂x

|2

≤ κ(δ2K2
k + νkδ)

≤ κ(
ν2
kK

2
k

α2
+
ν2
k

α
).

We may then rewrite the estimates on uk − u0 as

‖uk − u0‖L∞(0,T ;L2) ≤ κ(‖u0 − Pku0‖L2(0,T ;H1) + ‖u0 − Pku0‖L∞(0,T ;L2))

+κ(
νk
α

+ α+
ν2
kK

2
k

α4
+
ν2
k

α3
)

1
2

≤ κ(‖u0 − Pku0‖L2(0,T ;H1) + ‖u0 − Pku0‖L∞(0,T ;L2))

+κ(α+
ν2
kK

2
k

α4
)

1
2(3.22)



INVISCID LIMIT OF NS FLOWS 11

since νk/α is dominated by α as νk/α
α = νk

α2 ≤ 1, while ν2
k

α3 is dominated by νk
α as

ν2
k/α

3

νk/α
= νk

α2 ≤ 1.
The last piece of work is to choose an appropriate α which minimizes the expres-

sion α+ ν2
kK

2
k

α4 . This is roughly accomplished if we set

α = αk =
(νkKk

LU

) 2
5 .(3.23)

Obviously αk approaches zero as k approaches infinity thanks to the under-resolved
condition (2.8). Moreover,

νk
α2
k

= ν
1
5
k K

− 4
5

k (LU)
4
5 → 0, as k →∞

thanks to the consistency condition (2.6) and the vanishing viscosity condition (2.7).
Thus the α determined by (3.23) satisfies the constraint (3.20) and hence is allowed.

In the last step, we plug (3.23) into (3.22) and we deduce

‖uk − u0‖L∞(0,T ;L2) ≤ κ(‖u0 − Pku0‖L2(0,T ;H1) + ‖u0 − Pku0‖L∞(0,T ;L2) + (νkKk)
1
5 )(3.24)

which is exactly what we desired. This ends the proof.

4. Conclusion and Remarks. We have shown that if small scales of the order
ν
U were not resolved in the direction tangential to the boundary in numerical scheme
for NSE (1.1), the numerical solutions will always converge to the solution of the
Euler system (1.6) at vanishing viscosity and mesh size for any suitable (reasonable)
numerical scheme. Numerical results performed by Johnston, Liu and E (2000) as well
as ours confirm this fact. Of course the numerics can be interpreted in two different
ways.

1. No small scales of the order ν
U or smaller are detected in the numerical ex-

periment, and thus numerics provide further evidence that the inviscid limit
of viscous flows is the inviscid Euler flow.

2. Small scales of the order ν
U are not resolved in the numerics and thus the

numerical solutions must converge to the solution of the inviscid Euler sys-
tem (1.6) regardless whether the solutions of the Navier-Stokes system (1.1)
converge to the solution of the Euler system at vanishing viscosity. In an-
other word, the numerical results may have nothing to do with the continuous
problem.

This indicates that in order to guarantee that the convergence of the numerical solu-
tions implies the convergence of the continuous solutions, i.e., providing an affirmative
answer to (1.11), small scales of the order of ν

U must be resolved in the numerical
scheme. This gives us a flavor on the difficulty of the problem of numerical investiga-
tion of the vanishing viscosity problem.

A natural question to ask then is what is the smallest scale that has to be resolved
in the numerics in order to ensure that convergence of numerical solutions imply
convergence of continuous solutions , i.e., we have an affirmative answer to (1.11). It
is natural to speculate that the smallest scale needs to be resolved is of the order of
ν
U . This small scale can be inferred from several results including the result we proved
here, and in terms of determining modes, nodes and dimension of global attractors
(see for instance Foias, Manley, Rosa and Temam 2001, Doering and Gibbon 1995).
Unfortunately we can not establish such a small scale in a rigorous fashion. What
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we can prove is that if we resolve an exponentially small scale (Lexp(−c0 νk
LU )), then

uk → u0 does imply uνk → u0. Of course such a small scale is physically irrelevant.
The appearance of such a small scale is due to the very presence of boundary layer
and is typical in rigorous analysis of wall bounded flows (see for instance Temam 1997,
Foias, Manley, Rosa and Temam 2001). It still remains a great challenge to establish
that the effective smallest scale is an algebraic function of the Reynolds number.

We also remark that a similar result involving small scales in the direction normal
to the boundary in the boundary layer can be derived as well.

Theorem 2. If the smallest scales resolved in the direction normal to the bound-
ary in a thick enough boundary layer is at most of the order of ν/U , then we always
observe numerical convergence of the solutions to the suitably truncated Navier-Stokes
system to that of the Euler system at vanishing viscosity and mesh size.
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