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SUMMARY

High resolution advection schemes have been developed and studied to model propagation of flows

involving sharp fronts and shocks. So far the impact of these schemes in the framework of inverse

problem solution has been studied only in the context of linear models. A detailed study of the impact

of various slope limiters and the piecewise parabolic method (PPM) on data assimilation is the subject

of this work, using the nonlinear viscous Burgers equation as the mathematical model paradigm. The

monotonicity preserving limiter of van Leer is shown to be the most efficient in terms of both faster

minimization convergence and ability to recover the initial conditions. The results obtained in this

work may point out to suitability of these advection schemes for data assimilation in more complex

higher dimensional models.
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1. INTRODUCTION

Spatial discretization methods for solving partial differential equations (PDEs) can be broadly

classified as finite difference (FD) [1, 2], finite volume (FV) [3], finite element (FE) [4, 5, 6] and

spectral methods [7]. All of these methods combined with explicit or implicit time integration

schemes can be effectively applied to solve parabolic and elliptic PDEs. Whereas for solutions of

hyperbolic PDEs which are used to model fluid flows, acoustic waves etc., only the FD, FV and

spectral methods have been shown to be most effective in higher dimensions for complicated

geometries (however, generation of grids for finite difference methods in complex geometries

is a non-trivial task).

For numerical solutions of conservation laws, such the Euler equations in gas dynamics [8]

which describe evolution and propagation of flows involving sharp fronts and shocks, several

methods have been suggested in the FD, FV and spectral methods literature. Some of the most

popular methods in the FV context are Lax- Wendroff, Lax- Friedrichs, Roe’ s, flux corrected

transport methods of Boris- Book and Zalesak, slope limited methods of van Leer, piecewise

parabolic method (PPM) of Colella and Woodward essentially non-oscillatory schemes of

Harten-Shu-Osher (see [3, 9, 10] for details of these methods), to name a few.

In geophysical fluid dynamics problems, discontinuities usually do not develop from smooth
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 3

initial conditions; except in cases such as the formation of hydraulic jumps that evolve in the

shallow-water flows from smooth initial data. For instance in mid- latitudes, fronts can be

formed in low- pressure systems, yet these fronts are not entirely discontinuities. Atmospheric

fronts (also substances such as chemical pollutants) are transported from one location to

another, described very well by a tracer advection model. Due to the deformation (stretching

and shearing) of the velocity field that advects the front, discontinuities can be formed on the

resolution scale of the (computational) model, see section 5.3 of [10] for details. As a result

of finiteness of clouds, variables such as moisture (density) and temperature are discontinuous

(once again, on the scale of the model resolution) across the interface of the cloud [11].

Therefore, from a purely computational stand point, there is a need to apply numerical schemes

devised for numerical solutions of conservation laws which support discontinuous solutions, in

the geophysical fluid flows. Rood [12] provided a detailed analysis and comparison of various

advection schemes on simple a linear atmospheric transport model. Lin et. al [13] have analysed

the effect of varying the slope limiters using an atmospheric general circulation model. Lin

and Rood [14] have compared the first order upwind, central difference, PPM (modified

monotonic and positive definite) and monotonic van Leer schemes, and conclude that their

monotonic version [15] of PPM yields most accurate results. Towards the development of a

fully operational atmospheric general circulation model based on FV discretization [16], Lin

and Rood [17] have implemented slope limited van Leer schemes and the PPM scheme on a

shallow water equations model using a semi- Lagrangian semi- implicit time integration scheme.

For a discussion and applications of other popular schemes such as MPDATA of Smolarkiewicz

[18] and QUICK of Leonard [19, 20], see [21].

Fusing models with measurements (observations) and finding response of a system to
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4 S. AKELLA AND I. M. NAVON

(external) disturbances, all require solving inverse problems and as such the minimization

of a goal functional, whose gradient with respect to control variables is efficiently provided via

adjoint methods, see [22, 23, 24]. In aerodynamics applications, such as minimization of drag,

maximization of lift (as target functionals) are often performed by considering the geometry of

the immersed body in the fluid as the control variable, which is called shape optimization [25],

for other applications and details, see [22]. In weather forecasting, we desire to fit collected

observations with model output by data assimilation, see [24]. The control variables in such a

setting, include the initial conditions used for integrating the model forward in time.

The impact of different discretization techniques for advection term(s) in the framework of

inverse problems and problems related to data assimilation have not been extensively tested,

except for work by Vukićević et al.[21] and Thuburn and Haine [26]. In [21] the authors

performed data assimilation experiments to reveal the relationships between their properties

with respect to data assimilation with three different (central difference: LEAPFROG,

MPDATA, QUICK) schemes for the advection of a passive tracer in two dimensions using

a linear 2-D transport equation. Their results indicate that more accurate advection schemes

need to be used to solve both, forward and backwards in time to achieve higher accuracy

regarding recovery of initial conditions for data assimilation; also the same discretization

scheme should be applied consistently both for forward and adjoint model integrations.

Thuburn and Haine [26] recall Godunov’ s theorem (which states that any linear monotonic

advection scheme is cannot provide more than first order accuracy), hence they studied the

affects on adjoint sensitivity computations using a nonlinear, nonoscillatory (QUICK) scheme

on a one dimensional linear advection equation model. They also suggest modifications to

advection schemes so as to obtain adjoint sensitivity results that are meaningful (in the
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 5

particular physical setting considered by them). In this context, a total variation diminishing

(TVD) scheme (it is worth mentioning that the TVD property, first introduced by Harten

[27] is more relaxed than the monotonicity preserving condition of Godunov) based on a slope

limiter, though the advection scheme does not satisfy the linearity property of the governing

advection equation model, for obtaining well-behaved sensitivity results has been suggested.

Since the mathematical models used to study fluid flows and weather prediction are highly

nonlinear, as a step towards understanding the affects of using high order advection schmes,

we study in this work the impact of using FV methods that are slope limited using van

Leer type and PPM for spatial discretization to perform data assimilation with a nonlinear

viscous Burgers equation model (which serves as a proxy for more complex models) in a one

dimensional spatial setting. We show that for a particular smooth initial condition, we obtain a

smooth solution for this model problem (in the context of smoothness property of geophysical

flows as discussed above), and implement the adjoint method to successfully recover initial

conditions in 4-D VAR data assimilation set-up.

The plan of the paper is as follows. In section two we present the forward model as well as

describe numerical solution of the nonlinear Burgers equation using FV discretization. Section 3

describes the test case considered along with results obtained with several slope limited TVD

schemes as described in section 2. Section 4 describes the derivation of the adjoint and tangent

linear models (which are used for data assimilation) and verification of these discrete models.

Section 5 provides a brief description of the minimization algorithm used. The performance of

the various slope limited and PPM schemes for the minimization of a certain cost functional,

in other words, in data assimilation experiments is presented in section 6. Finally in the section

of summary and conclusions we discuss the impact of the different advection schemes in the
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6 S. AKELLA AND I. M. NAVON

framework of our numerical results. Some future research work will involve assessing impact of

these schemes in the context of 4-D VAR and ensemble Kalman filtering, using the Lin-Rood

finite volume shallow water model [17] in spherical coordinates.

2. DESCRIPTION OF THE MATHEMATICAL AND NUMERICAL MODELS

Let us consider the following 1-D (nonlinear) scalar conservation law (φ(x, t) ∈ C2, the space

of continuous functions that are at-least twice differentiable)

∂φ

∂t
+

∂f

∂x
=

∂S

∂x
, (1)

where the f is a convex flux function given by φ2

2 and S represents the source term(s).

Equation (1) is the well known Burgers equation [28] which is a very important fluid dynamical

model useful for conceptual understanding of nonlinear waves, shock formation [8, 29] and

turbulence [30]. Various numerical schemes (see Fletcher [31] for a detailed numerical analysis)

have been suggested and tested on this model equation to efficiently capture shocks.

We will now describe and test a variety of finite volume methods [3] to solve the above

equation, all differing in the way which we reconstruct the solution, φ, in each cell using

different slope limiters. We will closely follow the approach taken by Monotone Upstream-

centered Schemes for Conservation Laws (MUSCL), see [32, 33, 34, 15, 35].

Let us start by writing the integral form of (1) within the i-th. cell, Ci,

∂

∂t

∫
Ci

φ(x, t)dx = f [φ(xi− 1
2
, t)]− f [φ(xi+ 1

2
, t)] + S(xi+ 1

2
, t)− S(xi− 1

2
, t) (2)

Ci : x ∈ [xi− 1
2
, xi+ 1

2
].

We define i-th. cell average at time interval tn (t ∈ [t0, tfinal] has been discretized into a
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 7

number of time steps [t0, t1, · · · , tn]) as,

Φi
n ≈ 1

∆xi

∫ x
i+ 1

2

x
i− 1

2

φ(x, tn) dx, (3)

where ∆xi = xi+ 1
2
− xi− 1

2
is the length of the i-th. cell.

Integrating equation (2) from tn to tn+1 yields,

∫
Ci

φ(x, tn+1)dx−
∫
Ci

φ(x, tn)dx =
∫ tn+1

tn

f [φ(xi− 1
2
, t)]dt−

∫ tn+1

tn

f [φ(xi+ 1
2
, t)]dt

+
∫ tn+1

tn

[S(xi+ 1
2
, t)− S(xi− 1

2
, t)]dt,

dividing by ∆xi and rearranging,

1
∆xi

∫
Ci

φ(x, tn+1)dx =
1

∆xi

∫
Ci

φ(x, tn)dx

− 1
∆xi

∫ tn+1

tn

{f [φ(xi+ 1
2
, t)]− f [φ(xi− 1

2
, t)]}dt +

+
1

∆xi

∫ tn+1

tn

[S(xi+ 1
2
, t)− S(xi− 1

2
, t)]dt.

Assuming a viscous dissipative source S = νφx (ν is the kinematic viscosity) and using

equation (3) we obtain,

Φi
n+1 = Φi

n+1 − ∆t

∆xi
[(Flux)n

i+ 1
2
− (Flux)n

i− 1
2
] + (4)

ν
∆t

∆xi
[φx(xi+ 1

2
, t)− φx(xi− 1

2
, t)],

where (Flux)n
i+ 1

2
≈ 1

∆t

∫ tn+1

tn
f [φ(xi+ 1

2
, t)]dt is some approximation of the average flux

(described later in this section) along the cell interface at xi+ 1
2
, see figure (2) for an illustration

of the grid cells .
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8 S. AKELLA AND I. M. NAVON

2.1. MUSCL limiters

Within each cell if we consider a piecewise constant approximation to the solution (i.e., slope

of the reconstruction is equal to zero), then we obtain a first order method; however if we use

a piecewise linear approximation within each cell, Ci,

φ(x ∈ [xi− 1
2
, xi+ 1

2
]) = Φi + ∆Φi(x− xi)

where Φi is given by equation (3), xi is the coordinate of the i-th. cell center and ∆Φi is

equal to the difference between the values of the state at the right and left cell interfaces (it

denotes the slope of reconstructed solution in each cell), we obtain a family of second order

approximate schemes.

Conservation laws such as the Euler equations in gas dynamics [9] and the simple

Burgers equation (1) support solutions that have discontinuities (or, shocks), expansion fans,

contact discontinuities. Apart from ensuring satisfaction of the CFL (Courant-Friedrichs-

Lewy) condition [1], unless special treatment is taken, the numerical solutions will lead to

excessive dissipation, incorrect phase speeds, spurious oscillations; see Laney [9] for an extensive

comparison of many numerical methods applied to solve simple linear and nonlinear advection

and Euler equations.

One way to prevent such spurious oscillations and preserve TVD [27, 36, 3] property is by

limiting the values of the slopes (∆Φi). Lin et al. [13] listed a number of consistent ways of

deriving the limited slopes in various forms and compared their impact on the solution of linear

advection equation. We will follow their approach for arriving at the various formulations of

the slope (from now onwards we will assume an uniform grid, i.e, ∆xi = ∆x∀ i).
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 9

1. Limiter 1 (first order scheme):

∆Φn
i ≡ 0, ∀ i (5)

gives us a first order accurate scheme.

2. Limiter 2 (simplest second order scheme):

[∆Φn
i ]avg =

1
∆x

δΦn
i− 1

2
+ δΦn

i+ 1
2

2
, (6)

where δΦn
i+ 1

2
= Φn

i+1−Φn
i and ”avg” means the averaging operator in the above equation.

This provides us a second order accurate scheme, but the values of the slopes are not

limited, in other words, no limiter has yet been applied.

3. Limiter 3 (simple positive definite scheme):

[∆Φn
i ] =

1
∆x

SIGN([∆Φn
i ]avg) ·MIN [|[∆Φn

i ]avg|, 2DIM(Φn
i ,Φmin)], (7)

the value of the slope has been limited using the least value (over all of xi) of Φn
i and

[∆Φn
i ]avg. DIM(p, q) is defined as the positive difference between p and q,

DIM(p, q) =


p− q, if p > q

0, otherwise.

4. Limiter 4 (monotonicity preserving scheme):

Another form of slope which ensures monotonicity, suggested by van Leer [15] is the

following,

[∆Φn
i ] =


1

∆x [δΦn
i− 1

2
· δΦn

i+ 1
2
]/[∆Φn

i ]avg, if SIGN(δΦn
i− 1

2
) = SIGN(δΦn

i+ 1
2
),

0, otherwise.

(8)
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10 S. AKELLA AND I. M. NAVON

5. Limiter 5 (local min./ max. slope limited scheme):

We can determine locally defined minimum and maximum values of the solution as,

Φmin
i = MIN [Φn

i−1,Φ
n
i ,Φn

i+1]

Φmax
i = MAX[Φn

i−1,Φ
n
i ,Φn

i+1] (9)

and use them to limit the value of the slope as following,

[∆Φn
i ] =

1
∆x

SIGN([∆Φn
i ]avg) ·MIN [|[∆Φn

i ]avg|, 2DIM(Φn
i ,Φmin

i ), 2DIM(Φmax
i ,Φn

i )].

(10)

6. Limiter 6 (global min./ max. slope limited scheme):

In the above formulation of the limiter, we used the locally computed minimum and

maximum values of the solution. Instead if the global minimum and maximum values of

Φn
i are set to be equal to Φmin

global and Φmax
global respectively, and replacing these in above

limiter formulation, we obtain:

[∆Φn
i ] =

1
∆x

SIGN([∆Φn
i ]avg)·MIN [|[∆Φn

i ]avg|, 2DIM(Φn
i ,Φmin

global), 2DIM(Φmax
global,Φ

n
i )].

(11)

We will now use these values of slopes and follow the approach of Essentially Non Oscillatory

(ENO) schemes to arrive at an expression for the flux at the cell interfaces.

2.2. ENO flux

To calculate the flux at the right cell face xi+ 1
2
, we used the ENO [37, 38, 39, 9] flux formulation.

Using the i-th. and i + 1 cell reconstructed values evaluated at xi+ 1
2

(see Laney [9] chapter 23
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 11

for details), we obtain

(Flux)n
i+ 1

2
= fG[{Φn

i +
∆Φn

i ∆x

2
(1− ∆t

∆x
Φn

i )}, {Φn
i+1 −

∆Φn
i+1∆x

2
(1 +

∆t

∆x
Φn

i+1)}], (12)

where

fG[Φn
i ,Φn

i+1] =


MIN [f(Φn

i ), f(Φn
i+1), f(Φ∗)]if Φn

i 6 Φn
i+1,

MAX[f(Φn
i ), f(Φn

i+1), f(Φ∗)]if Φn
i > Φn

i+1.

(13)

where Φ∗ is such that the flow speed given by, ∂f
∂Φ = ∂ Φ2

2
∂Φ = Φ = Φ∗ = 0.

Remark: If the slope in each cell is equal to zero, as in the equation (5), then the above

ENO flux form reduces to Godunov flux form [40].

Instead of using a piecewise linear reconstruction within each cell, we can as well apply the

piecewise parabolic reconstruction approach of Colella and Woodward [41, 42] within each cell.

2.3. PPM reconstruction

We have applied the PPM to reconstruct the state within each cell and to obtain the values

of the state at left and right cell interfaces.

φ(x ∈ [xi− 1
2
, xi+ 1

2
]) = ΦL,i + x[∆Φi + Φ6,i(1− x)].

ΦL,i and ΦR,i are approximations of the state at the left and right cell interface, as in

MUSCL piecewise linear extrapolation, ∆Φi = ΦR,i −ΦL,i and Φ6,i = 6(Φi − 1
2 (ΦL,i + ΦR,i))

for details of the above reconstruction procedure, see [41].

The fluxes at the interfaces have been directly evaluated using the calculated values, ΦL,i
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12 S. AKELLA AND I. M. NAVON

and ΦR,i for every i-th. cell. We have used a second order Runge-Kutta (R-K) explicit scheme

to integrate in time, described below.

2.4. Integration in time using a second order optimal TVD R-K method

Using equations (12) and (13) or the PPM scheme for calculating the flux and forward

differencing for the diffusion term, we can write the following simple forward Euler update

formula for Φn+1
i ,

Φi
n+1 = Φi

n+1 − ∆t

∆x
[(Flux)n

i+ 1
2
− (Flux)n

i− 1
2
] + (14)

ν
∆t

∆x2 [Φn
i+1 − 2Φn

i + Φn
i−1].

The above numerical scheme is at-least second order accurate (MUSCL schemes: (6)- (9)

second order, whereas PPM being third order accurate) in space for sufficiently smooth φ

(φ ∈ C2), but it is only first order accurate in time, also it does not preserve the TVD

property for time integration. In order to overcome these drawbacks, we used a second order

(accurate in time) optimal TVD R-K scheme [43, 44], given by Gottlieb and Shu [45]. Following

their notation, let

L(Φn
i ) = − 1

∆x
[(Flux)n

i+ 1
2
− (Flux)n

i− 1
2
] + ν

1
∆x2 [Φn

i+1 − 2Φn
i + Φn

i−1],

then the following sequence of two steps gives us,

Φ(1)
i = Φn

i + ∆t L(Φn
i ),

Φi
n+1 =

1
2
Φn

i +
1
2
Φ(1)

i +
1
2
∆t L(Φ(1)

i ).
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 13

This completes the description of discretization in space and time. We have tested these

various finite volume methods using the aforementioned advection schemes. Comparison of

the numerical results with the exact solution is provided for the following test case.

3. TEST CASE AND RESULTS

We will consider in this section the following Burgers equations,

∂φ

∂t
+

∂

∂x
(
φ2

2
) = ν(

∂2φ

∂x2
), (15)

for x ∈ (−π, π) and t > 0.

Periodic boundary conditions have been prescribed, φ = 0 at x = ±π, or, equivalently one

can say that boundary conditions have been assigned such that φ(x = ±π, t) = 0.

Benton and Platzman[46] provide an exact solution for the above equation (15), with initial

condition given by,

φ(x, 0) = φ(x, t = 0) = −R sin(x), (16)

where R is the Reynolds number. It is related to the viscosity via the relationship, R = UL
ν ,

here the values of (velocity scale) U and (length scale) L have been prescribed to be equal to

unity. Then the exact solution assumes the form:

φexact(x, t) =
4

∑∞
n=1 nane−n2t sin(nx)

a0 + 2
∑∞

n=1 ane−n2t cos(nx)
, (17)

where an = (−1)n
In( 1

2R), In is the Bessel function of second kind. For small values of

R, viscous dissipation dominates over advection and the solution decays uniformly as time, t
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14 S. AKELLA AND I. M. NAVON

increases, as depicted in figure (1) (which has been generated by setting R = 1).

In figures (3)- (6) we have plotted the exact solution along with solutions obtained using

the various numerical schemes (MUSCL schemes, with limiters 1- 6, and the PPM) at t = 1.

Since the Bessel functions of second kind are exponentially decreasing functions, to compute

φexact we have used n = 10 for the summation in equation (17). The numerical solutions have

been computed using a resolution of Nx = 40 grid cells (∆x = 2π
Nx

) and a time step (∆t) given

by the CFL criteria, CFL = U∆t
∆x , where the CFL number was assigned a value of 0.01.

The first order scheme (limiter 1) and limiter 3 (simple positive definite scheme, which was

based on limiting the slope based on the least value of Φn
i and [∆Φn

i ]avg) are dissipative,

whereas all the other schemes compare very well with the exact solution. It is to be noted that

all the numerical solutions have the correct phase speed. In the case of the global min./max.

limiter (4), we prescribed Φmin = −1 and Φmax = 1.

In table (I) we show that the numerical solutions converge to the exact solution in both L2

and L∞ norms, at t = 1. As expected the first order scheme (limiter 1) has the largest error

compared to all other schemes. The monotonicity preserving slope limiter of van Leer, limiter

4 yields most accuracy for this test case (a nonlinear viscous Burgers equation model). Lin et.

al [13] compared limiters 3, 4, 5, 6 on a linear advection problem using a rectangular pulse

and conclude that limiter 4 provides the largest implicit diffusion among all the limiters.

To further investigate the performance of these limiters on a model problem with no viscosity,

we tested them using the following inviscid nonlinear Burgers equation,

∂φ

∂t
+

∂

∂x
(
φ2

2
) = 0.
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 15

With the following initial condition (on the whole real line) [47],

φ(x, 0) =



0, x < −1

1
2 , −1 < x < 0

0, x > 0.

(18)

The solution develops into a shock and an expansion fan (for details of the solution, see

[47]), analytically given by (for t ≤ 4, i.e., before the expansion fan meets the shock),

φ(x, t) =



0, x < −1

x+1
t , −1 < x < t

2 − 1

1
2 , t

2 − 1 < x < t
4

0, x > t
4 .

(19)

In figures (7)- (10) we have plotted the exact along with the numerical solutions obtained

using the various numerical schemes (MUSCL schemes, with limiters 1- 6, and the PPM) at

t = 2. The numerical solutions have been computed using a resolution of Nx = 80 grid cells

(∆x = 4
Nx

) and a time step (∆t) given by the CFL criteria, CFL = U∆t
∆x , where the CFL

number was assigned a value of 0.1 and U = 0.5.

Once again, the first order accurate scheme (limiter 1) is diffusive. The solutions obtained

by using limiter 2 (simplest second order scheme) and limiter 3 (simple positive definite

scheme), both over shoot, indicating that there is a lack of (implicit) viscosity, though the

solution obtained by using limiter 4 (monotonicity preserving scheme) does not suffer from

such problems, it is diffusive, when compared to the computed solutions using limiters 5, 6

(local and global min./ max. slope limited schemes respectively) and the PPM scheme.
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16 S. AKELLA AND I. M. NAVON

We thus conclude that the slope limiters 5, 6 and the PPM scheme generate satisfactory

solutions for the inviscid Burgers equation (recall that the limiter 6 needs specification of the

global min. and max. of the solution, for more complicated models and fluid flows, these global

min./ max. values may not be available a priori).

4. DERIVATION AND VERIFICATION OF THE ADJOINT AND TANGENT LINEAR

MODELS

This section details the derivation of the development of the adjoint method, used to obtain

the gradient of the cost functional with respect to the control parameters efficiently, closely

following [53].

The following form of the cost functional is considered,

J (x) =
1
2

n∑
k=0

(x(tk)− xobs(tk))T W (tk) (x(tk)− xobs(tk)), (20)

where t ∈ [t0, tn] is the (data) assimilation time window comprised of n time steps, W (tk) is a

diagonal weighting matrix, x(tk) is the evolving state vector and xobs(tk) is another (evolving)

vector, which is made up of the observations that are distributed in space and time.

The above convex cost functional is minimized using a robust unconstrained minimization

method described in section 4. The directional derivative of the above cost functional, in the

direction of δx is given by

lim‖δx‖→0δJ = (∇xJ )T δx. (21)

From equation (20),

δJ (x) =
n∑

k=0

(W (tk) (x(tk)− xobs(tk)))T δx(tk), (22)
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HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 17

where δx(tk) is the perturbation of the state vector obtained from the perturbation of the

model parameters, x. Using the above two equations,

(∇xJ )T δx =
n∑

k=0

(W (tk) (x(tk)− xobs(tk)))T δx(tk). (23)

The evolution of the state vector using the nonlinear model can be symbolically written as

x(tk+1) = F (x(tk)).

Linearizing the model about the current model solution, we obtain the equation for the

evolution of perturbations,

δx(tk+1) =
∂F (x(tk))

∂x
δx. (24)

Let L(t) represent the Jacobian, ∂F (x(tk))
∂x , then we can rewrite the above equation as,

δx(tk) = L(tk −∆t)δx(tk −∆t)

= L(tk −∆t)L(tk − 2∆t)δx(tk − 2∆t)

= L(tk −∆t)L(tk − 2∆t)L(tk − 3∆t)δx(tk − 3∆t)

= . . .

= Mkδx, (25)

Thus δx(tk) = Mkδx, where Mk represents the application of all the linear operators to obtain

δx(tk).

Using equations (23) and (25) the gradient of the cost functional with respect to the control

parameters, x is given by

∇xJ =
n∑

k=0

Mk
T W (tk) (x(tk)− xobs(tk)). (26)

Using W (tk) (x(tk)− xobs(tk)) as the (initial) values of the adjoint variables x∗(tk) at time
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18 S. AKELLA AND I. M. NAVON

tk, the adjoint equations

x∗(t0) = MT
k (x∗(tk)), (27)

are integrated backwards in time to obtain the values of the adjoint variables at initial time,

t0. Therefore,

∇xJ =
0∑

k=n

x∗(tk). (28)

Now we will briefly describe the method of programming the adjoint model, in other words,

equations (25) and (27) and implementation of (28).

4.1. Coding the Adjoint model

We follow the approach of first discretize and then differentiate, see [54] and [22] for details.

Discrete numerical operations in the nonlinear forward model having unique corresponding

operations in the (backward evolving) adjoint model. The linear equation (24) is now onwards

referred to as the Tangent Linear Model (TLM). The TLM code is programmed by linearizing

line by line, the nonlinear forward model code. Following equation (25), the TLM can be

formally viewed as a result of multiplying linear operators: Mk = L1, L2, . . . , Lk, where each

of the Lk is either a DO-loop or a subroutine. Then the adjoint model, MT
k is a product

of the (adjoint) linear operators, LT
1 , LT

2 , . . . , LT
k . Hence the adjoint model is the transpose

of the TLM. This relationship is used to write the adjoint model code, using the TLM

code (see [55] and [24] for details), and to verify the same for the transposition property

(all our subroutines satisfactorily passed this test). We have used TAMC [56] (an automatic

differentiation software) to help us derive the TLM and adjoint model codes; however, we would

like to emphasize that sufficient caution must be taken while differentiating functions such as

the ABS (absolute value function), SIGN (signum function), DIM (dimension function), MIN
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and MAX (minimum and maximum functions respectively), these functions frequently arise

due to the nature of the formulation of the various slope limiters, such as limiters 3, 5 and 6

(section 2.1). In appendix A, we provide a segment of our FORTRAN code which illustrates

the differentiation of the MIN function.

To adjoint model is integrated backwards in time to obtain the gradient of the cost functional,

∇xJ in the following sequence of three steps,

1. Integrate the adjoint model backwards in time, from time step tk to t0 with zero final

conditions for the adjoint variables x∗.

2. The forcing term W (tk) (x(tk) − xobs(tk)) is added to the value of adjoint variables

whenever time tk (k = 1, 2, . . . , n) is reached.

3. Finally at t0 the value of adjoint variables equals the gradient of the cost functional with

respect to the control variables.

Using the Taylor series expansion of the cost functional, upto first order,

J (x + η∇J ) = J (x) + η(∇J )T∇J + O(η2), (29)

where η is a scalar and the gradient, ∇J = ∇xJ , is obtained by using the adjoint model. We

can rewrite the above equation as in [54],

Ψ(η) =
J (x + η∇J )− J (x)

η∇J T∇J
= 1 + O(η) (30)

Therefore, the gradient provided by the adjoint model is assumed to be accurate up-to

machine accuracy if limη→0|Ψ(η)| = 1.0 The truncation errors dominate for η > 10−3, whereas

for η near machine epsilon, roundoff errors accumulate. In figure (11) we have plotted Ψ(η)

versus η to show the satisfactory performance of our adjoint model for the PPM advection

scheme case (the results with other advection schemes are similar).
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5. MINIMIZATION

We used an unconstrained limited memory Quasi- Newton (L-BFGS) minimization algorithm

[48, 49] (availabe for download at www.netlib.org/opt/lbfgs um.shar) for minimization of the

cost functional J = J (xk), where xk is the n component (control) vector at the kth iteration.

gk = g(xk) = ∇Jk is the gradient vector of size n, and Hk = ∇2Jk is the n x n symmetric

Hessian matrix of the second partial derivatives of J with respect to the control vector. The

new iterate is given by,

xk+1 = xk + αk pk, (31)

where pk is the descent direction (for instance, pk = −gk for the steepest descent method and

pk = −H−1
k gk for the quasi- Newton methods), and αk is the step length.

Iterations are terminated when (using the L2 norm)

‖gk‖ < EPS ·MAX(1, ‖xk‖).

Here we specified EPS = 10−5 as our termination criteria.

Given a sequence of two successive iterates, xk+1 and xk, gk = ∇Jk and gk+1 = ∇Jk+1.

Then gk+1 − gk = Hk pk which can be rewritten as qk = Hk pk. If the Hessian is constant,

then qk = H pk, and we can write the following quasi- Newton condition for 0 ≤ i ≤ k,

H−1
k+1qi = pi

In general, the evaluation of the Hessian matrix is impractical and costly. Quasi- Newton

methods use an approximation of the inverse Hessian matrix. We start with an identity matrix

and then iteratively, a better approximation to the inverse Hessian matrix is built up, in such

a way that Hk preserves positive definiteness and symmetry.
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The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula for the Bk+1 (i.e, H−1
k+1) is

given by,

Bk+1 = Bk +
(1 + qT

k Bkqk)
qT

k pk

pkp
T
k

pT
k qk

− pkq
T
k Bk + Bkqkp

T
k

qT
k pk

, (32)

this is a symmetric rank two update, constructed using the vectors pk and Bkqk. Thus each

minimization iteration proceeds by first checking for termination criteria, finding the direction

of descent: pk (using the approximation to the inverse Hessian matrix), find an optimal step

length (αk) in the direction of pk, and finally using equation (31) find the next xk+1. The

limited memory version, L-BFGS is an adaptation of the BFGS algorithm to large problems,

achieved by changing the above Hessian update formula, see for details [48, 49], [50] and [51, 52]

for applications.

6. DATA ASSIMILATION EXPERIMENTS

This section describes results obtained using the adjoint model described in the previous section

in order to conduct data assimilation for retrieval of initial conditions as control variables.

Following work of Vukićević et al. [21], we have consistently used the same advection scheme

both in the nonlinear forward and adjoint models. In a twin experiment framework, our goal

is to minimize the cost functional given in equation (20), namely

J (x) =
1
2

n∑
k=0

(x(tk)− xobs(tk))T W (tk) (x(tk)− xobs(tk)),

with respect to the initial state x(t0) as the control parameter and we have prescribed

W (tk) ≡ I, i.e. the identity matrix. In our twin experiments, we used the initial condition

given in (16), run the forward model up-to time step tk to obtain the observations, xobs(tk).
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The initial condition (16) is then randomly perturbed,

φpert(x, 0) = φ(x, 0) + ε ·RAND · φ(x, 0), (33)

where ε has been assigned a value of 0.01 and RAND is a pseudo random number, such that

RAND ∈ [−0.5, 0.5].

The above perturbed initial condition is used as a first guess to minimize the cost functional

J , and to integrate the nonlinear model to tk, which yields x(tk). Thus the goal is to recover

the unperturbed initial condition for φ (from now onwards denoted by φrec), which is close

to φ(x, 0) at the conclusion of the minimization process (backward integration of the adjoint

model yields the gradient of the cost functional with respect to the initial conditions). An

assimilation time window of [0, 2.0] has been used. The same discretization, in space and time,

which was used in section 3 to test and compare the different schemes for the smooth test case

(with exact solution (17)), is used here as well.

Figures (12) - (18) show the variation of the cost functional and gradient norm (L2 norm)

versus the number of iterations and in table (II) we compare the values of φrec with φ(x, 0)

for different advection schemes (limiters 1- 6 and the PPM). The cost functional has been

successfully reduced by about nine orders of magnitude, whereas the gradient norm was reduced

by about five orders of magnitude (in section 4, we described the termination criteria for the

minimization process) for all the cases, except when limiter 3 (simple positive definite scheme)

was used. The fact that all of these schemes achieve the same convergence criteria for successful

termination in about 45-50 minimization iterations (limiter 1: 49 iterations, limiter 4: 47,

limiter 5: 52, limiter 6: 46), except for limiter 2 (simplest second order scheme) and PPM

scheme, which take 58 and 65 iterations respectively indicates that the approximation to the

Hessian matrix that is constructed by the L-BFGS minimization algorithm does not differ

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6

Prepared using fldauth.cls



HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 23

from one advection scheme to the other (the spectrum of the eigenvalues of the Hessian matrix

influences the minimization process [50]). It is to be noted that though the PPM scheme is well

known to be a very accurate scheme (third order accurate), it requires more CPU time when

compared to that required by other schemes (both in forward and adjoint modes, since the

adjoint model performs forward computations as well, this problem becomes compounded). As

indicated by table (II), after 65 minimization iterations (highest when compared to all other

MUSCL limiters), the φrec obtained is not as good as the one obtained, for example by using

the monotonicity preserving van Leer limiter (limiter 4).

In order to run the adjoint model for the case of limiter 3, we require to specify the value of

the adjoint variable corresponding to Φmin in equation (7). In the forward model, we assigned

Φmin = 0, we used the same value of zero as a reasonable guess even the adjoint mode.

Following a similary argument, for the case with limiter 6 (global min./ max. limiter), we

assigned a value of zero to the adjoint variable corresponding to Φmin, and as a guess value for

the adjoint variable corresponding to Φmax we assigned value of unity (once again we would

like to emphasize that assigned such values to the adjoint variables a priori is not trivial). Based

on the results obtained, the minimization process partially failed for the case of limiter 3, yet it

succeeded for limiter 6. The numerical solution obtained using the forward model for limiter 3

(figure (4)) did not capture the peak values of the solution correctly, since this scheme has

more implicit diffusion that the first order scheme, it is not due to the lack of implicit diffusion

that such an undershoot occurred. We conclude that the strategy of limiting the slopes based

on only the minimum value of the distribution (which is not known a priori), or in other words,

guaranteeing only positive-definiteness is not a sufficient criteria for success (both for forward

and adjoint models).
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The first order scheme (limiter 1) yields the closest φrec (to φ(x, 0)), yet based on number

of iterations taken during the minimization process, as well as the forward model results

(section 3), we conclude that for this viscous nonlinear Burgers equation data assimilation

model problem, the monotonicity preserving van Leer limiter performs the best, when

compared to all other limiters and PPM schemes.

We would like to mention that limiter 3 (simple positive definite scheme), the local and

global min./ max. (limiters 5 and 6 respectively) slope limited and PPM schemes all have

switches, in other words, involve computation of min. and (or) max. of certain variables to

evaluate the slope limiter (see equations (7), (9) and (11)). Programming these switches in the

adjoint model proves to be a very tedious and time consuming task. We believe that due to

presence of these switches (which introduce artificial discontinuities) in the PPM scheme, the

optimal step length calculation by the minimization algorithm fails for gradient norm less than

10−4 in magnitude, which explains why the initial condition could not be very well recovered

by this scheme. Following the work of Thuburn and Haine [26], for a non-smooth solution case

(unlike a smooth solution case considered here), serious modifications to these schemes should

be required for their satisfactory performance in adjoint models.

7. SUMMARY AND CONCLUSIONS

We have studied the impact of various high resolution TVD, FV (which use MUSCL slope

limiters and PPM) schemes on data assimilation for a nonlinear model problem, namely

the viscous Burgers equation, which has a smooth solution (section 3). To the best of our

knowledge, the PPM scheme has not been used for data assimilation in adjoint model in any

previous research work, thus-far. Based on the data assimilation experiments, we suggest that
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limiter 4 (monotonicity preserving van Leer limiter) yields better results, when compared to

all other schemes.

Following these results obtained here, we want to further investigate validity of the above

findings for a higher dimensional system. In particular, investigate the performance of these

schemes to assimilate data (in a twin experiment, i.e. model generated data and gathered real

data) using variational data assimilation and ensemble Kalman filtering using the finite volume

shallow water model of Lin and Rood [17]. The adjoint model required for this purpose has been

developed by the authors, see the Documentation of the TLM and adjoint models of the Lin-

Rood spherical shallow water finite volume model (http://www.csit.fsu.edu/ navon/publ.html).
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8. APPENDIX A

In this appendix, we illustrate the differentiation of functions which require special care, such as the

ABS, SIGN, DIM, MIN, MAX functions etc. Following is an example which shows a section from the

forward code to obtain

phi_local_min = MIN(phi_old(i-1),phi_old(i),phi_old(i+1))

is rewritten as:

IF(phi_old(i-1) .LE. phi_old(i))THEN

IF(phi_old(i-1) .LE. phi_old(i+1))THEN

phi_local_min = phi_old(i-1)

ELSE

phi_local_min = phi_old(i+1)

END IF

ELSE IF(phi_old(i) .LE. phi_old(i+1))THEN

phi_local_min = phi_old(i)

ELSE

phi_local_min = phi_old(i+1)

END IF

The linearization of the above segment is give by,

if (phi_old(i-1) .le. phi_old(i)) then

if (phi_old(i-1) .le. phi_old(i+1)) then

g_phi_local_min = g_phi_old(i-1)

phi_local_min = phi_old(i-1)

else

g_phi_local_min = g_phi_old(i+1)

phi_local_min = phi_old(i+1)
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endif

else if (phi_old(i) .le. phi_old(i+1)) then

g_phi_local_min = g_phi_old(i)

phi_local_min = phi_old(i)

else

g_phi_local_min = g_phi_old(i+1)

phi_local_min = phi_old(i+1)

endif

the corresponding adjoint statements are as following,

if (phi_old(i-1) .le. phi_old(i)) then

if (phi_old(i-1) .le. phi_old(i+1)) then

adphi_old(i-1) = adphi_old(i-1)+adphi_local_min

adphi_local_min = 0.d0

else

adphi_old(i+1) = adphi_old(i+1)+adphi_local_min

adphi_local_min = 0.d0

endif

else if (phi_old(i) .le. phi_old(i+1)) then

adphi_old(i) = adphi_old(i)+adphi_local_min

adphi_local_min = 0.d0

else

adphi_old(i+1) = adphi_old(i+1)+adphi_local_min

adphi_local_min = 0.d0

endif

It is to be noted that in order to compute the adjoint variables in the backward direction, we require

that the forward states be available (as evident from the above piece of adjoint code) in memory or

recompute them, see research on checkpointing [57, 58] for discussion on the trade-off between storing
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in memory and recomputation.
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Table I. Errors in L2 and L∞ norms for different numerical schemes in forward mode, with ∆t =

1.5708X10−4 at t = 1

L2 - Error

Nx limiter 1 limiter 2 limiter 3 limiter 4 limiter 5 limiter 6 PPM

40 3.0359 X 10−2 1.6845 X 10−3 1.6845 X 10−3 1.4700 X 10−3 1.6296 X 10−3 1.6844 X 10−3 1.9321 X 10−3

80 2.2498 X 10−2 6.4579 X 10−4 6.4578 X 10−4 6.0083 X 10−4 6.3581 X 10−4 6.4578 X 10−4 7.1212 X 10−4

160 1.6221 X 10−2 2.7148 X 10−4 2.7148 X 10−4 2.6128 X 10−4 2.6851 X 10−4 2.7148 X 10−4 3.1819 X 10−4

L∞ - Error

Nx limiter 1 limiter 2 limiter 3 limiter 4 limiter 5 limiter 6 PPM

40 7.8244 X 10−3 5.1272 X 10−4 5.1272 X 10−4 4.6731 X 10−4 4.9658 X 10−4 5.1271 X 10−4 5.7239 X 10−4

80 4.1003 X 10−3 1.3852 X 10−4 1.3852 X 10−4 1.3341 X 10−4 1.3645 X 10−4 1.3852 X 10−4 1.4500 X 10−4

160 2.0900 X 10−3 4.0477 X 10−5 4.0477 X 10−5 3.9767 X 10−5 4.0172 X 10−5 4.0477 X 10−5 4.2992 X 10−5

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6

Prepared using fldauth.cls



34 S. AKELLA AND I. M. NAVON

Table II. Comparison of the φrec for different advection schemes based on data assimilation

experiments, ‖φpert(x, 0)− φ(x, 0)‖2 = 1.3004 X 10−2 for all the schemes.

Advection Scheme ‖φrec − φ(x, 0)‖2

Limiter 1 3.0662 X 10−6

Limiter 2 4.5988 X 10−6

Limiter 3 5.0651 X 10−3

Limiter 4 3.2596 X 10−6

Limiter 5 4.1360 X 10−6

Limiter 6 3.3876 X 10−6

PPM 1.3140 X 10−5
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Figure 1. Exact solution at t = 0, 0.5, 1.0, 1.5, 2.0, 2.5
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Figure 2. Finite volume discretization

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6

Prepared using fldauth.cls



HIGH RESOLUTION ADVECTION SCHEMES IN THE CONTEXT OF DATA ASSIMILATION 37

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

Φ

exact solution
limiter 1
limiter 2

Figure 3. Exact and numerical solutions (in forward mode) of the 1-D nonlinear viscous Burgers

equation with slope limiters 1 and 2 at t = 1.
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Figure 4. Same as in figure (3), but with limiters 3 and 4.
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Figure 5. Same as in figure (3), but with limiters 5 and 6.
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Figure 6. Same as in figure (3), but with the PPM scheme at t = 1.
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Figure 7. Exact and numerical solution (in forward mode) of the 1-D nonlinear inviscid Burgers

equation with slope limiters 1 and 2 at t = 2.
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Figure 8. Same as in figure (7), but with limiters 3 and 4.
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Figure 9. Same as in figure (7), but with limiters 5 and 6.
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Figure 10. Same as in figure (7), but with limiters 3 and 4.
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Figure 11. Gradient check ratio using the PPM scheme in the adjoint mode.
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Figure 12. Variations of the normalized cost function J
J0

and normalized gradient ‖g‖
‖g0‖

with the number of iterations using slope limiter 1, in forward

and adjoint models.
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Figure 13. Same as in figure (12), but with limiter 2.
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Figure 14. Same as in figure (12), but with limiter 3.
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Figure 15. Same as in figure (12), but with limiter 4.
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Figure 16. Same as in figure (12), but with limiter 5.
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Figure 17. Same as in figure (12), but with limiter 6.
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Figure 18. Same as in figure (12), but with the PPM scheme.
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