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Abstract

We introduce the apollonian metric in Carnot groups using capacity. Extending
Beardon’s result for euclidean space, we give an equivalent definition using the
cross ratio in Iwasawa groups. We also show that the apollonian metric is bounded
above by twice the quasihyperbolic metric in domains in Iwasawa groups.
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1 Introduction

We define an apollonian metric in Carnot groups in terms of the modulus
of ring domains. This uses recent results from potential theory in Carnot
groups,[4],[5],[6],[7] and [20]. Also we define a cross ratio metric on Carnot
groups. This cross ratio metric is invariant with respect to the conformal
Möbius group on the Iwasawa groups. Using the stereographic projection from
the boundaries of the corresponding rank one symmetric spaces we show that
these metrics agree on the compactifications of the Iwasawa groups (Theorem
4). The equivalence of these two definitions of the apollonian metric on R̄n was
given in [8]. See also [21] and [22]. We also show that the apollonian metric is
dominated by twice the quasihyperbolic metric in domains in Iwasawa groups
(Theorem 5). This also appears in [8] in the euclidean case. The similarity of
the proofs here to those in [8] indicates that these extensions are natural.

2 Carnot Groups

A Carnot group is a connected, simply connected, nilpotent Lie group G of
topological dimG = N ≥ 2 equipped with a graded Lie algebra G = V1⊕···⊕Vr

Preprint submitted to Elsevier Science 18 September 2005



so that [V1, Vi] = Vi+1 for i=1,2,...,r-1 and [V1, Vr] = 0. As usual, elements of G
will be identified with left-invariant vectors fields on G. We fix a left-invariant
Riemannian metric g on G with g(Xi, Xj) = δij. We denote the inner product
with respect to this metric, as well as all other inner products, by 〈, 〉. We
assume that dimV1 = m ≥ 2 and fix a basis of V1 : X1, X2, ..., Xm. The
horizontal tangent bundle of G, HT , is the subbundle determined by V1

with horizontal tangent space HTx the fiber span[X1(x), ..., Xm(x)]. We use
a fixed global coordinate system as exp : G → G is a diffeomorphism. We
extend X1, ..., Xm to a basis X1, ..., Xm, T1, ..., TN−m of G. We denote by Q the
homogeneous dimension of the Carnot group G defined by Q =

∑r
i=1 idimVi.

The family of dilations on G, {δλ : λ > 0}, is the lift to G of the automorphism
δλ of G which acts on each Vi by multiplication by λi. A path in G is called
horizontal if its tangents lie in V1. The (left-invariant) Carnot-Carathéodory
distance , dc(x, y) , between x and y is the infimum of the lengths, measured
in the Riemannian metric g, of all horizontal paths which join x to y. A ho-
mogeneous norm is given by |x| = dc(0, x). All homogeneous norms on G are
equivalent as such | · | is equivalent to the homogeneous norms below. We write
Br(x) = {y ∈ G : |x−1y| < r} for the ball centered at x of radius r. Since
the Jacobian determinant of the dilation δλ is λQ and we have normalized the
measure, |Bλ| = λQ. For information about Carnot groups we refer to [19],[29]
and [20].

For g = exp ξ, with ξ ∈ G, ξ = ξ1 + ξ2 + · · · + ξr, ξi ∈ Vi,, we define a norm
on G by

N(g) = (Σr
i=1|ξi|2r!/i)

1
2r! . (1)

This is called the non-isotropic gauge. See [18] and [23]. We also define the
gauge distance,

d(g, g′) = N(g−1g′). (2)

Being homogeneous this distance is equivalent to the Carnot-Carathéodory
distance.

3 The Cross Ratio

Definition 1 For g1, g2, g3, g4 in a Carnot group G we define the cross ratio
using the norm N from (1).

|g1, g2, g3, g4| =
N(g−1

3 g1)N(g−1
4 g2)

N(g−1
4 g1)N(g−1

3 g2)
=

d(g1, g3)d(g2, g4)

d(g1, g4)d(g2, g3)
. (3)
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Clearly the cross ratio is invariant under isometric transformations with re-
spect to d and under dilations by the homogeneity of N . See [26] and [24].

We repeat a general construction of pseudo-metrics as explained in [8]. See
also [25],[27]. Let F be a non-empty class of positive real-valued functions
on a non-empty set Ω. The class satisfies the Harnack condition if for each
x, y ∈ Ω,

sup{f(x)

f(y)
: f ∈ F} < ∞.

Under this condition the function

µΩ(x, y) = sup{|logf(x)

f(y)
| : f ∈ F},

is finite and defines a pseudo-metric on Ω. If also F separates points, ( for
x 6= y there exists an f ∈ F such that f(x) 6= f(y)), then µ is a metric on Ω.

Notice that we can define a cross ratio metric of the form µ. Given a domain
Ω in G we define F as the class of functions

fa,b(g) =
d(g, a)

d(g, b)

indexed by pairs a, b ∈ ∂Ω× ∂Ω. If ∂Ω× ∂Ω is compact, then

βΩ(g, g′) = sup{|log fa,b(g)

fa,b(g′)
| : a, b ∈ ∂Ω}

is a pseudo-metric on Ω.

We give some examples of Carnot groups. We write H(n, m) for a two step
group with dimV1 = n and dimV2 = m as well as for its one-point compactifi-
cation. In the following examples, s is any positive integer.

Euclidean space Rn with its usual abelian group structure is a Carnot group.
Here Q = n, Xi = ∂/∂xi and dimV2 = 0.

The usual Heisenberg groups occur when dimV2=1. Each Heisenberg group
H(2s, 1), is homeomorphic to R2s+1 for each s ≥ 1. Denoting points by (z, t)
with z = (z1, ..., zs) ∈ Cs and t ∈ R we have the group law given as

(z, t) ◦ (z′, t′) = (z + z′, t + t′ + 2
n∑

j=1

=(zj z̄
′
j)). (4)
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With the notation zj = xj + iyj, the horizontal space V1 is spanned by the
basis

Xj =
∂

∂xj

− 2yj
∂

∂t
(5)

Yj =
∂

∂yj

+ 2xj
∂

∂t
. (6)

where j = 1, ..., s. The one dimensional center V2 is spanned by the vector
field T = ∂/∂t with commutator relations [Xj, Yj] = 4T . All other brack-
ets of {X1, Y1, ..., Xs, Ys} are zero. The homogeneous dimension of H(2s, 1) is
Q = 2s + 2.

An example with dimV2 = 3 are the quaternionic Heisenberg groups. See [31]
for the vector fields and bracket structure in this case. Here Q = 4s + 6.

These examples arise as boundary groups which form the nilpotent part of
the Iwasawa decomposition of the isometries of hyperbolic space. We refer to
[11],[12] and [13].

We use here the unit ball of Kr, r = 2, 3, ... as the model of the hyperbolic
spaces Hr(K). The Iwasawa groups G occur as the four cases, s = r − 1 :

a) K = R, the real numbers, G = H(s, 0), Euclidean spaces,
b) K = C, the complex numbers, G = H(2s, 1), the Heisenberg groups,
c) K = H, the quaternions, G = H(4s, 3), the quaternionic Heisenberg groups,
d) K = O, the octonions, G = H(8, 7), the boundary of the Cayley plane.

See [28].

We assume that G is one of these groups throughout the rest of this section.

The product law in G, with s, t ∈ =K and z, w ∈ Ks is given by

(z, t) ◦ (w, s) = (z + w, t + s + 2=〈z, w〉)

where 〈z, w〉 = Σziw̄i.

With X = Hr(K), the inverse stereographic projection π−1 : Ḡ → ∂X is given
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by

π−1(z, t) = (
1 + |z|2 + t

|1 + |z|2 + t|2
(1− |z|2 + t), 2

1 + |z|2 + t

|1 + |z|2 + t|2
z).

It is important here that this Cayley map

π : ∂X → Ḡ

is conformal in the case of the Iwasawa groups. See [3] and [14].

We define a chordal metric on ∂X:

χ(x, y)2 =
√
|1− 〈x, y〉|2 + 2R(x, y).

Here R(v, w) = 0 in all cases except the Cayley hyperbolic case, H2(O), where
R(v, w) = <(v1v̄2)(w2w̄1)−<(v̄2w2)(w̄1v1) with v = (v1, v2) and w = (w1, w2).
See [24],[28] and [14].

Theorem 2 For x, y, u, v ∈ ∂X,

|π(x), π(y), π(u), π(v)| = χ(u, x)χ(v, y)

χ(v, x)χ(u, y)
(7)

This appears in [24]. See [8] in the real case and [14] in the complex case.
Hence the cross ratio on G is the same as the cross ratio in the χ-metric under
projection. The isometries of X extend continuously to ∂X and the cross ratio
in the χ-metric in invariant under these isometries [24]. As such the cross ratio
on G is invariant under the Möbius group of G which arises from projection.
Notice that the group of Möbius transformations in particular includes left
translations, dilations and inversions.

We define the chordal metric on Ḡ, χ(g, g′) = χ(π−1(g), π−1(g′)). We note a
case of (7):

χ(g,∞)χ(g′, 0)

χ(g′,∞)χ(g, 0)
= |∞, 0, g, g′| = N(g′)/N(g). (8)

Here we define a β-metric for Ω in Ḡ using the function class F ,

{fa,b(g) =
χ(g, a)

χ(g, b)
: a, b ∈ ∂Ω}
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as

βΩ(g, g′) = sup{|logχ(g, a)χ(g′, b)

χ(g, b)χ(g′, a)
| : a, b ∈ ∂Ω}. (9)

Notice here that for Ω contained in Ḡ, ∂Ω× ∂Ω is compact so that β defines
a pseudo-metric in Ω.

We use global coordinates in G, (x1, x2, ..., xn, t1, t2, ..., tm), given by the expo-
nential map. The corresponding homogeneous norms are then a special case
of (1):

N(g) = (|x|4 + |t|2)1/4. (10)

Appropriate functions of these norms are fundamental solutions of the sub-p-
Laplacian given by the corresponding vector fields. See [16],[17],[4],[5],[6] and
[7].

For information about these groups in the context of H-type groups and
Damek-Ricci spaces see [15],[9] and [30].

4 Capacity of Condensers

All integrals will be with respect to the bi-invariant Harr measure on a Carnot
group G which arises as the push-forward of the Lebesgue measure in RN un-
der the exponential map. We write |v|2 = 〈v, v〉. We use the following spaces
where U is an open set in G :

C∞(U): infinitely differentiable functions in U ,

C∞
0 (U): compactly supported functions in C∞(U),

HW 1,p(U) : horizontal Sobolev space of functions u ∈ Lp(U) such that the dis-
tributional derivatives Xiu ∈ Lp(U) for i = 1,...,m. When u is in the local hor-
izontal Sobolev space HW 1,p

loc (U) we write the horizontal differential as d0u =
X1udx1+...+Xmudxm. ( The horizontal gradient ∇0u = X1uX1+...+XmuXm

appears also in the literature.)
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Let U be a domain in a Carnot group G of homogeneous dimension Q. We
write 0 for the group identity. A weak solution to the sub-Q-Laplacian is a
function u ∈ HW 1,Q

loc (U) which satisfies∫
U
|d0u|Q−2〈d0u, d0w〉 = 0 (11)

for all test functions w ∈ C∞
0 (U). Notice that this is the Euler-Lagrange

equation for the variational integral∫
U
|d0u|Q. (12)

Let E and F be closed sets contained in the closure of U . The Q-capacity of
the condenser (E,F ;U) is given by

CapQ(E, F ; U) = inf
u

∫
U
|d0u|Q (13)

where the infimum is over all functions u ∈ C∞(U) with limg→ξu(g) = 0
for all ξ ∈ E and limg→ξu(g) = 1 for all ξ ∈ F . This is the conformal
capacity. Also when U is a ring R (i.e a domain whose complement is ex-
actly two connected components) with boundary components E and F , then
we write CapR = CapQ(E, F ; U). We call u a Green’s function for the Q-
Laplacian with pole at 0 when u is any continuous Q-harmonic function in
G\{0}(i.e. satisfies the sub-Q-Laplacian) which satisfies limg→0u(g) = ∞ and
lim|g|→∞u(g) = −∞ and Cap{g : β < u(g) < α} = (α− β)1−Q.

In general Carnot groups, there exists a constant γ = γ(G) such that Nu(g) =
exp(−γu(g)) is a homogeneous norm ([4],[20],[5],[6],[7]) so that Nu ◦ δt = tNu

and Nu ◦ i = Nu, where i(g) = g−1 is the group inversion. In the case of the
Iwasawa groups the norms above agree : Nu = N, du = d. See [4],[6],[16] and
[17].

For 0 < a < b we define

Rab = {g ∈ G : a < Nu(g) < b}. (14)

If R is a ring in a Carnot group G, then we define the modulus of R as

mod R = γ(G)(CapR)1/(1−Q). (15)

With this, mod Rab = log(b/a).

We remark that the conformal capacity is invariant under conformal maps and
quasiinvariant under quasiconformal maps. See [20],[4] and in the case of the
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Iwasawa groups [13].

5 The Apollonian Metric

Using the norm Nu(g) from the previous section we define a left-invariant
distance du(g

′, g) = Nu(g
−1g′). Given a domain Ω in a Carnot group G and

distinct points g, g′ ∈ Ω we define the apollonian balls centered at g and g′ in
Ω, Bg and Bg′ as the closure of the maximal balls in Ω of the form

{h ∈ Ḡ :
du(h, g)

du(h, g′)
< k}, {h ∈ Ḡ :

du(h, g′)

du(h, g)
< k} (16)

respectively. The complement in G of Bg∪Bg′ is an open ring domain Ag,g′ .

Definition 3 The apollonian distance between g and g′ with respect to Ω is
given by

αΩ(g, g′) = mod(Ag,g′)

if Ag,g′ 6= ∅ and = 0 otherwise, or if g = g′.

This definition was given for Rn by Beardon [8].

Theorem 4 For domains Ω in an Iwasawa group Ḡ

βΩ = αΩ.

Here βΩ is given by (9).

Proof: Our proof is similar to the proof in [8]. The metrics are both invariant
under Möbius transformations. This is true for the apollonian metric α since
the Möbius transformations are conformal and it is true for the β-metric since
the cross ratio is Möbius-invariant. Given g and g′, there exists a Möbius
transformation γ such that γ(g) = 0 and γ(g′) = ∞. As such we may assume
that {g : N(g) < r} and {g : N(g) > R} are the apollonian balls centered at
0 and ∞, respectively, which lie in γ(Ω). Hence with a, b ∈ ∂γ(Ω) and using
(8) and (15),

βΩ(g, g′) = βγ(Ω)(0,∞)

= supa,b|log
χ(0, a)χ(∞, b)

χ(0, b)χ(∞, a)
|
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= supa,b|log
N(a)

N(b)
|

= log
R

r
= αγ(Ω)(0,∞)

= αΩ(g, g′).

6 The Quasihyperbolic Metric

Given g1, g2 ∈ Ω we define the quasihyperbolic distance

kΩ(g1, g2) = inf
∫

γ

|dg|
dΩ(g)

. (17)

Here |dg| is arclength , dΩ(g) is the distance between g and ∂Ω in the metric
d(·, ·) above and the infimum is over all rectifiable curves γ in this metric
which join g1 to g2. We also define the j-metric

jΩ(g1, g2) = log(1 +
d(g1, g2)

min(dΩ(g1), dΩ(g2))
). (18)

Theorem 5 Let Ω be a domain in an Iwasawa group G. We have

αΩ ≤ 2jΩ ≤ 2kΩ.

Proof : Let g, g′ ∈ Ω. Define Bg = {h ∈ Ω : d(g, h) < dΩ(g)}. Let k1 and k2 be
the largest numbers such that

B′g = {h :
d(h, g)

d(h, g′)
< k1} ⊂ Bg

and

B′g′ = {h :
d(h, g′)

d(h, g)
< k2} ⊂ Bg′ .

If Bg and Bg′ are the apollonian balls centered at g and g′, then B′g ⊂ Bg and
B′g′ ⊂ Bg′ . Hence with A = (B′g ∪ B′g′)c we have ( recall d = du here )

αΩ(g, g′) ≤ mod (A) = log
1

k1k2

.

With h ∈ B̄′g ∩ ∂Bg,

k1 =
d(h, g)

d(h, g′)
≥ dΩ(g)

dΩ(g) + d(g, g′)
.
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Hence

log
1

k1

≤ log(1 +
d(g, g′)

dΩ(g)
) ≤ jΩ(g, g′).

A similar argument gives this for log 1
k2

and so αΩ ≤ 2jΩ. Since jΩ ≤ kΩ in a
locally compact, rectifiably connected noncomplete metric space [10], Theorem
5 follows.
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