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Abstract

Given a fibered link, consider the characteristic polynomial of the monodromy re-
stricted to first homology. This generalizes the notion of the Alexander polynomial of
a knot. We define a construction, called iterated plumbing, to create a sequence of
fibered links from a given one. The resulting sequence of characteristic polynomials for
these links has the same form as those arising in work of Salem and Boyd in their study
of distributions of Salem and P-V numbers. From this we deduce information about
the asymptotic behavior of the large roots of the generalized Alexander polynomials,
and define a new poset structure for Salem fibered links.

1 Introduction

Let (K, Σ) denote a fibered link K ⊂ S3 with fibering surface Σ. Hopf plumbing
defines a natural operation on fibered links that allows one to construct new fibered
links from a given one while keeping track of useful information [15] [5]. Furthermore,
a theorem of Giroux [6] shows that any fibered link can be obtained from the unknot
by a sequence of Hopf plumbings and de-plumbings (see also [7]).

A fibered link (K, Σ) has an associated homeomorphism h : Σ → Σ, called the
monodromy of (K, Σ), such that the complement in S3 of a regular neighborhood
of K is homeomorphic to a mapping torus for h. Let h∗ be the restriction of h to
first homology H1(Σ, R), and let ∆(K,Σ)(t) be the characteristic polynomial of the
monodromy h∗. If K is connected, that is, a fibered knot, then ∆(K,Σ)(t) is the usual
Alexander polynomial of K and the mapping torus structure is unique. We extend this
terminology and call ∆(K,Σ)(t) the Alexander polynomial of the fibered link (K, Σ).

A polynomial f of degree d is reciprocal if f = f∗, where f∗(t) = tdf(1/t). The
Alexander polynomials ∆(K,Σ)(t) are monic integer polynomials and reciprocal up to
multiples of (t − 1). Burde [4] shows that there exists a fibered knot (K, Σ) with
∆(K,Σ) = f , if and only if
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(i) f is a reciprocal monic integer polynomial; and

(ii) f(1) = ±1,

Kanenobu [8] shows that (i) is true if and only if ∆(K,Σ) = f up to multiples of (t− 1),
where (K, Σ) is a fibered link. Our goal in this paper is to study how the roots of
∆(K,Σ)(t) are affected by Hopf plumbing.

In Section 2, we define a construction called iterated (trefoil) plumbing, which
produces a sequence of fibered links (Kn,Σn) from a given fibered link (K, Σ) and a
choice of path τ properly embedded on Σ, called the plumbing locus.

Our main result is the following.

Theorem 1 If (Kn,Σn) is obtained from (K, Σ) by ± iterated trefoil plumbing, then
there is a polynomial P = PΣ,τ depending only on the location and orientation of the
plumbing, such that ∆n = ∆(Kn,Σn) is given by

∆n(t) =
t2nP (t)± (−1)rP∗(t)

t + 1
, (1)

where r is the number of components of K.

We call sequences of polynomials of the form given in Equation 1 Salem-Boyd
sequences, after work of Salem [12] and Boyd [1] [2].

For a monic integer polynomial f(t), let λ(f) be the maximum absolute value among
all roots of f(t); N(f), the number of roots with absolute value greater than one; and
M(f), the product of absolute values of roots of f whose absolute value is greater than
one. The latter invariant M(f) is known as the Mahler measure of f . Clearly N(f) is
discrete, while λ(f) can be made arbitrarily close to but greater than one, for example,
by taking f(t) = tn − 2. Whether or not the values of M(f) can also be brought
arbitrarily close to one from above is an open problem posed by Lehmer in 1933 [9].
Lehmer originally formulated his question as follows:

Question 2 (Lehmer) For each δ > 0 does there exist a monic integer polynomial f
such that 1 < M(f) < 1 + δ?

We are still far from answering Lehmer’s question, but show in Section 3 how
to apply Salem and Boyd’s work and Theorem 1 to obtain information about the
asymptotic behavior of N(∆n), λ(∆n), and M(∆n) from properties of the original
fibered link and location of plumbing.

Theorem 3 The sequences N(∆n), λ(∆n) and M(∆n) converge to N(P ), λ(P ), and
M(P ), respectively, where P = PΣ,τ .

Theorem 3 is useful for finding minimal Mahler measures appearing in particular
families of fibered links, since the polynomials PΣ,τ are easy to compute for explicit
examples. We give an illustration in Section 5.

Iterated plumbing may be seen as the result of iterating full twists on a pair of
strands of K, with some extra conditions on the pair of strands. For the case where
K has one component, the convergence of Mahler measure in Theorem 3 agrees with
a result of Silver and Williams, which in general form may be stated as follows. Let
L be a link and k an unknot disjoint from L such that L and k have non-zero linking
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number. Let Ln be obtained from L by doing 1/n surgery along k. This amounts to
taking the strands of L encircled by k and doing n full-twists to obtain Ln. Silver and
Williams show that the multi-variable Mahler measures of the links Ln converge to the
multi-variable Mahler measure of L∪ k [14]. Combining our results with that of Silver
and Williams, and using the formulas for PΣ,τ given in Section 2 (Equations 2 and 3)
gives a new effective way to calculate the multi-variable Mahler measure of L ∪ k.

It is not hard to see that if one fixes the degree of f , then the answer to Lehmer’s
question is negative. Theorem 3 makes it possible to study Mahler measures for se-
quences of fibered links whose fibers have increasing genera, and hence for polynomials
of increasing degree. Although, in general, λ(∆n) and M(∆n) are not monotone se-
quences (see Theorem 13), monotonicity can be shown (at least for large enough n)
when PΣ,τ has special properties.

In Section 3, we review properties of Salem-Boyd sequences, following work of Salem
[12] and Boyd [1], and consider the question of monotonicity. A Perron polynomial is
a monic integer polynomial f with a real root λ = λ(f) > 1 satisfying |α| < λ for all
roots α of f not equal to λ.

Theorem 4 Suppose PΣ,τ is a Perron polynomial. Then λ(∆n) is an eventually mono-
tone (increasing or decreasing) sequence converging to λ(PΣ,τ ).

In the special case when N(PΣ,τ ) = 1, more can be shown by applying results of Salem
[12] and Boyd [1].

Theorem 5 Suppose N(PΣ,τ ) = 1. Then M(∆n) = λ(∆n) is a monotone (increasing
or decreasing) sequence converging to λ(PΣ,τ ).

Section 4 studies the poset structure on fibered links defined by Hopf plumbing,
and the corresponding poset structure on homological dilatations. We also give an
example in Section 4 that shows how Theorem 5 can be used to give explicit solutions
to Lehmer’s problem for restricted families.

Acknowledgements: I am indebted to J.S.P.S. who funded my research, and the
staff of the Osaka University Mathematics Department and my host Makoto Sakuma
for their kind hospitality and support during the writing of this paper. I would also
like to thank D. Silver and S. Williams for many helpful discussions, and S. Williams
and E. Kin for bringing my attention to the example in Section 5.

2 Iterations of Hopf plumbings.

We recall some basic definitions surrounding the Alexander polynomial of an oriented
link. A Seifert surface for an oriented link K is an oriented surface Σ whose boundary
is K. For any collection of free loops σ1, . . . , σd on Σ forming a basis for H1(Σ; R), the
associated Seifert matrix S is given by

S = [`k(σ+
i , σj)],

where σ+
i is the push-off of σi off Σ into S3 \Σ in the positive direction with respect to

the orientation of Σ, and `k(, ) is the linking form on S3. Let Str denote the transpose
of S. The polynomial

∆K(t) = |tS − Str|
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is uniquely defined up to units in the Laurent polynomial ring Λ(t) = Z[t, t−1], and
is reciprocal (it is the same if S is replaced by Str). For the purposes of this paper,
we will always normalize ∆K so that ∆K(0) 6= 0, and the highest degree coefficient of
∆K(t) is positive. Then for any nonsingular Seifert matrix for K,

∆K(t) = s(S)|tS − Str|,

where s(S) is the sign of the coefficient of |tS − Str| of highest degree.
If K is fibered, and Σ is the fibering surface, then the Seifert matrix S is invertible

over the integers, and the monodromy restricted to H1(Σ; R) satisfies h∗ = StrS−1. In
this case s(S) = |S|, and ∆K(t) is characteristic polynomial of h∗. Since |S| is invariant
under change of basis, and the fiber surface is fixed, we will write s(K) = s(S) if K is
fibered. If K is a fibered knot, then s(K) = ∆K(1).

==

K

Figure 1: Positive Hopf plumbing

A properly embedded path on Σ is a smooth embedding

τ : [0, 1] → Σ

such that τ(0), τ(1) ∈ ∂Σ. The surface Σ+
2 (τ) (resp., Σ−2 is obtained from Σ by positive

(resp., negative) Hopf plumbing if it is obtained from Σ by gluing on a positive (resp.,
negative) Hopf band as in Figure 1. The definition is independent of the orientation
of τ .

Set Σ±1 = Σ. For n ≥ 1, let Σ±n+1 be the (positive or negative) Hopf n-plumbing of
Σ along τ , which is obtained by Hopf plumbing along n paths as shown in Figure 2,
starting with the vertical path τ .

K

Figure 2: Base paths for iterated Hopf plumbings

The positive (resp., negative) Hopf n-plumbings can also be considered as a Mura-
sugi sum of Σ with the fiber surface of the torus link T (2, n) (resp., T (2,−n)). Let
K±

n (Σ, τ) be the boundary of the surface Σ±n . For n = 1, we have K±
1 = K. The local

oriented link diagram for K±
n is shown in Figure 3, and Σ±n is the corresponding Seifert

surface.
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positive plumbing
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negative plumbing

Figure 3: Result of iterated Hopf 4-plumbing

Denote by 〈, 〉 the intersection pairing

H1(Σ; Z)×H1(Σ, ∂Σ; Z) → Z,

and let v ∈ H1(Σ; Z) be the vector such that vtr represents the vector [τ ] in H1(Σ; ∂Σ; Q) '
H1(Σ; Q)dual. Then, in terms of the basis σ1, . . . , σd, v is given by

v = [〈σ1, τ〉, . . . , 〈σd, τ〉].

Set

P±Σ,τ (t) = |tI − (Str ∓ vvtr)S−1|, (2)

where I is the identity matrix.
Before proving the Theorem 1, we put P±Σ,τ in an alternate form. Let N(τ) be a

regular neighborhood of τ on Σ, and let Σ0 = Σ\N(τ). Let K0 = K0(Σ, τ) = ∂Σ0. Let
σ1, . . . , σd−1 be a collection of free loops on Σ0 forming a basis for H1(Σ0; Z). Let σd

be a free loop on Σ so that σ1, . . . , σd is a basis for H1(Σ; Z), and such that 〈σd, τ〉 = 1.
Let S1 and S0 be the corresponding Seifert matrices for K and K0, respectively.

Lemma 6 The Seifert matrix S0 is non-singular.

Proof. By our definitions, the transpose of the Seifert matrix defines a linear trans-
formation from the first homology of the Seifert surface to its dual. We thus have a
commutative diagram

H1(Σ0; Z)
Str

0→ H1(Σ0; Z)dual

? ?

H1(Σ1; Z)
Str

1→ H1(Σ1; Z)dual.

where vertical arrows are the inclusions determined by the choice of bases. Since S1 is
non-singular, it follows that S0 must also be non-singular.

Lemma 7 The polynomial in Equation 2 can be rewritten as

P±Σ,τ (t) = ∆K(t)± s(K)s(S0)∆K0(t). (3)

5



Proof. The choice of basis σ1, . . . , σd above yields the Seifert matrix

S1 =
[

S0 x

ytr s

]
for K, where x, y ∈ Zd−1, and s ∈ Z. The vector v written with respect to the dual
elements of σ1, . . . , σd is given by v = [0, . . . , 0, 1]tr. We thus have

|tS1 − (Str
1 ∓ vvtr)| =

∣∣∣∣ tS0 − Str
0 tx− y

tytr − xtr s(t− 1)± 1

∣∣∣∣ .
Therefore

P±Σ,τ (t) = s(K)(|tS1 − Str
1 | ± |tS0 − Str

0 |)

and the claim follows.

For a polynomial g, define
g(t) = t−mg(t),

where m is the largest power of t dividing g. Then it is easy to check that g∗(t) =
g∗(t). Also, if g and f are polynomials of degrees d′ and d, respectively, then for
h(t) = g(t)± f(t), we have

h∗(t) = g∗(t)± td
′−df∗(t).

Lemma 8 Let r be the number of components of K, and P (t) = P±Σ,τ (t). Then

P∗(t) = (−1)r+1 (∆K(t)∓ s(K)s(S0)t∆K0(t)) .

Proof. If d is the rank of H1(Σ; R), we have

P∗(t) = td∆K(1/t)± s(K)td(|(1/t)S0 − Str
0 |).

The Alexander polynomial of a link is reciprocal (anti-reciprocal) if the number of
components is odd (even). Thus, the first summand equals (−1)r+1∆K(t). Since, by
Lemma 6, S0 is a non-singular matrix, t does not divide |tS0 − Str

0 |. It is also not
difficult to check that the number of components of K0 and K1 have opposite parity,
and the degree of |tS0 − Str

0 | is one less than the degree of ∆K(t). We thus have

td|(1/t)S0 − Str
0 | = (−1)rt|tS0 − Str

0 | = (−1)rs(S0)t∆K0(t).

Theorem 1 is implied by the following stronger version.

Theorem 9 Let (Kn,Σn) be obtained by ± iterated Hopf plumbing on a fibered link
(K, Σ) with r-components. Let ∆n = ∆(Kn,Σn), and let P = P±Σ,τ . Then

∆n(t) =
tnP (t)± (−1)r+nP∗(t)

t + 1
.
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Proof. By Lemma 8, we have

tP (t) + (−1)r+1P∗(t) = t∆K(t)± s(K)s(S0)t∆K0(t)
+(∆K(t)∓ s(K)s(S0)t∆K0(t))

= (t + 1)∆K(t).

For m ≥ 1, the Seifert matrix for S±m is given by

S±m =
[

S±m−1 0
w ±1

]
,

where w = [0, . . . , 0,−1]. Thus, the Alexander polynomial for K±
m is given by

∆K±
m

(t) = s(K±
m)
∣∣∣∣ tS±m−1 − (S±m−1)

tr −wtr

tw ±(t− 1)

∣∣∣∣ .
It follows that for n ≥ 2, ∆K±

n
(t) satisfies

(t + 1)∆K±
n

(t) = s(K±
n )(t + 1)

[
±(t− 1)|tS±n−1 − (S±n−1)

tr|+ t|tS±n−2 − (S±n−2)
tr|
]
,

and s(K±
n ) = ±s(K±

n−1). For n = 2, using s(K) = s(K1) = ±s(K±
2 ), we have

(t + 1)∆K±
2

(t) = s(K±
2 )
[
±(t2 − 1)|tS1 − Str

1 |+ (t2 + t)|tS0 − Str
0 |
]

= ±s(K±
2 )((t2 − 1)|tS1 − Str

1 | ± (t2 + t)|tS0 − Str
0 |)

= s(K)t2(|tS1 − Str
1 | ± |tS0 − Str

0 |)
−s(K)(|tS1 − Str

1 | ∓ t|tS0 − Str
0 |)

= t2P (t) + (−1)rP∗(t)
= t2P (t) + (−1)r+2P∗(t).

If n > 2, we use induction, to obtain

(t + 1)∆K±
n

(t) = ±s(K±
n )[(t2 − 1)|tS±n−1 − (S±n−1)

tr| ± t(t + 1)|tS±n−2 − (S±n−2)
tr|]

= s(K±
n−1)[s(K

±
n−1)(t + 1)(t− 1)∆K±

n−1
(t)

±s(K±
n−2)t(t + 1)∆K±

n−2
(t)]

= (t− 1)(t + 1)∆K±
n−1

(t) + t(t + 1)∆K±
n−2

(t)

= (t− 1)(tn−1P (t) + (−1)n−1+rP∗(t)) + t(tn−2P (t) + (−1)n−2+rP∗(t))
= tnP (t)− tn−1P (t) + (−1)n+r−1tP∗(t) + (−1)n+rP∗(t)

+tn−1P (t) + (−1)n+r−2tP∗(t)
= tnP (t) + (−1)n+rP∗(t)

3 Properties of Salem-Boyd sequences.

In this section we review some general properties of roots of polynomials in Salem-Boyd
sequences (see also, [12], [1]), and apply them to the Alexander polynomials of iterated
plumbings.
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3.1 Asymptotic behavior of roots of Salem-Boyd sequences.

Given a monic integer polynomial P (t) define

Q±
n (t) = tnP (t)± P∗(t). (4)

We will call the sequence of polynomials given in Equation 4 the Salem-Boyd sequence
associated to P . For all positive integers n, Q±

n (t) is equal to a reciprocal polynomial
up to a multiple of t − 1. We are interested in the asymptotic behavior of roots of
Q±

n (t).
S. Williams suggested the use of Rouché’s theorem to prove the following.

Lemma 10 Let P be a monic integer polynomial, and let R(t) be any integer polyno-
mial, and

Qn(t) = tnP (t)±R(t).

Then the roots of Qn(t) outside C converge to those of P (t) counting multiplicity as n
increases.

Proof. Consider the rational function

Sn(t) =
Qn(t)

tn
= P (t)± R(t)

tn
.

Let α be a root of P (t) (counted with multiplicity), and let Dα be any small disk
around α that is also strictly outside C and that contains no roots of P (t) other than
α. Then P (t) has a lower bound on the boundary ∂Dα, and thus there exists an nα

depending on α and Dα such that ∣∣∣∣R(t)
tn

∣∣∣∣ < |P (t)|

on ∂Dα for all n > nα. By Rouché’s theorem, it follows that for n > nα, P (t) and
Sn(t) (and hence also Qn(t)) have m roots in Dα counted with multiplicity. Since the
disks could be made arbitrarily small, and there are only a finite number of roots, the
claim follows.

Lemma 11 Let P be a monic integer polynomial and let Qn(t) be the associated Salem-
Boyd sequence. Then N(Qn) ≤ N(P ) for all n.

A proof of this Lemma is contained in [1] (p. 317), but we include it here for the
convenience of the reader.

Proof. We first assume that P (t) has no roots on the unit circle. This does not change
the statement’s generality. To study the roots of Qn(t) it suffices to consider the case
when P (t) has no reciprocal or anti-reciprocal factors, since such factors will be factors
of Qn for all n. If P (t) has a root on the unit circle, then the minimal polynomial
of that root would be necessarily reciprocal or anti-reciprocal, and we can factor the
minimal polynomial out of P and the Qn.

Consider the two variable polynomial

Qn(z, u) = znP (z)± uP∗(z) (5)
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where z is any complex number and u ∈ [0, 1].
Suppose P (t) has roots θ1, . . . , θs outside the unit circle C counted with multiplicity.

Then Q±
n (z, u) defines an algebraic curve z = Z(u) with branches z1(u), . . . , zs(u)

satisfying zi(0) = θi. For z ∈ C we have |P (z)| = |P∗(z)|. Now suppose that 0 < u < 1
and 1 = |zi(u)|. Then

1 = |zi(u)|n =
u|P∗(zi(u))|
|P (zi(u))|

= u

yielding a contradiction. Thus, by continuity

|zi(u)| > 1,

for u ∈ [0, 1). It follows that Q±
n (t) has at most s roots outside C.

Summarizing the contents of Lemma 10 and Lemma 11 we have the following.

Theorem 12 Let P be a monic integer polynomial, and let

Qn(t) = tnP (t)± P∗(t).

Then

N(Qn) ≤ N(P );
lim

n→∞
λ(Qn) = λ(P ); and

lim
n→∞

M(Qn) = M(P ).

Theorem 1 and Theorem 12 imply Theorem 3.
A natural question is whether M(Qn) is a monotone sequence, perhaps on arith-

metic progressions, when P has more than one root outside C. The proof of Lemma 10,
does not restrict the directions by which the roots of Qn outside C approach those of
P . If a root θ of P is not real, then the root(s) of Qn approaching θ typically rotate
around θ as they converge. More precisely, we have the following. For z a complex
number, let A = Arg(z) be such that z = |z|e2πiA.

Theorem 13 Let α1, . . . , αs be the roots of P outside C. Take N0, so that Qn has s

roots outside C for n ≥ N0. Label these roots α
(n)
i , for i = 1, . . . , s, so that

lim
n→∞

α
(n)
i = αi.

Then, there is a constant c such that for any δ > 0, and n > Nδ > N0,

Arg(α(n)
i − αi) = c + nArg(αi) + δn,

where the error term δn satisfies |δn| < δ.

Proof. Let P1(x) be the largest degree monic integer factor of P (x) with no roots
outside C. For i = 1, . . . , s, we have

α
(n)
i − αi =

(
1

α
(n)
i

)n

Rn,
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where

Rn =
P∗(α

(n)
i )

P1(α
(n)
i )(α(n)

i − α1) · · ·
[
(α(n)

i − αi)
]
· · · (α(n)

i − αs)
,

with the entry in brackets [. . .] excluded.
By assumption α

(n)
i converges to αi, and hence also Rn converges to some non-zero

constant R. Given δ > 0, let N1 ≥ N0 be such that

|Arg(R)−Arg(Rn)| < δ

2
(6)

and

|Arg(αi)−Arg(α(n)
i )| < δ

2n
, (7)

for all n ≥ N1. Then, we have

Arg(α(n)
i − αi) = Arg(Rn)− nArg(α(n)

i )
= Arg(R)− nArg(αi) + δn

where δn is the sum of the left sides of (6) and (7). This proves the claim, with
c = Arg(R).

Example: Let
P (x) = x3 + x2 − 1.

Then P (x) is irreducible and has exactly two roots α and α outside C. We claim that
Arg(α) is irrational. Consider the ratio

ω = α/α.

Then, since the Galois group of P (x) over the rationals is S3, ω must have an algebraic
conjugate not on the unit circle, for example,

β/α,

where β is the real root of P (x). Thus, ω is not a root of unity. Since Arg(ω) = 2Arg(α),
it follows that Arg(α) is irrational. Thus, by Theorem 13, the relative angle of α

(n)
i to

αi is uniformly distributed as a sequence in n.
Let Re(z) denote the real part of z. The dot product between two vectors −→0z and

−→0w is Re(zw). It follows from the above that there is no arithmetic progression kn+ `,
so that the sign of

Re
[
(α(kn+`)

i − αi)αi

]
is constant as a sequence in n. Therefore, M(Qn) = λ(Qn)2 cannot be monotone for
any arithmetic progression in n.
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3.2 Perron polynomials

We will show that for the Salem-Boyd sequence Qn(t) associated to a Perron polyno-
mial, λ(Qn) is eventually monotone, and prove Theorem 4.

Proof of Theorem 4. Let P be a Perron polynomial, and let Qn(t) be an associated
Salem-Boyd sequence. Let µ1, . . . , µs be the roots (counted with multiplicity) of P
outside C, with |µ1| > |µi| for all i = 2, . . . , s. By multiplying P by a large enough
power of t (this doesn’t change P∗), we can assume that Qn has roots λ

(n)
1 , . . . , λ

(n)
s

outside C, and |λ(n)
i −µi| < |λ(n)

i −µj | for µi 6= µj , and that Qn is Perron for all n ≥ 1.
Let λ

(n)
1 be the largest root of Qn. Then for all n, the root of P closest to λ

(n)
1 is µ1,

and the root of Qn closest to µ1 is λ
(n)
1 . This also implies that λ

(n)
1 is a simple root of

Qn. Fixing n, we will show that λ
(n+1)
1 lies strictly between λ

(n)
1 and µ1.

Consider the equations

0 = Qn(λ(n)
1 ) = (λ(n)

1 )nP (λ(n)
1 )± P∗(λ

(n)
1 ), (8)

and
Qn+1(µ1) = ±P∗(µ1) = Qn(µ1).

Since each of the Qn are increasing for t > λ
(n)
1 , and Qn does not have any roots strictly

between µ1 and λ
(n)
1 , it follows that the sign of µ1 − λ

(n)
1 equals the sign of ±P∗(µ1)

and does not depend on n.
Suppose λ

(n)
1 < µ1. Then, using (8) in the second line below, we have

Qn+1(λ
(n)
1 ) = (λ(n)

1 )n+1P (λ(n)
1 )± P∗(λ

(n)
1 )

= λ
(n)
1 (∓P∗(λ

(n)
1 )± P∗(λ

(n)
1 )

= ±P∗(λ
(n)
1 )(1− λ

(n)
1 ).

By assumption λ
(n+1)
1 > 1. Also, P (λ(n)

1 ) < 0, since otherwise P would have a real
root between λ

(n)
1 and µ1, contradicting the assumption that λ

(n)
1 is closer to µ1 than

any other root of P . This implies that ±P∗(λ
(n)
1 ) > 0, and hence Qn+1(λ

(n)
1 ) < 0, and

λ
(n)
1 < λ

(n+1)
1 .

If λ
(n)
1 > µ1, then P (λ(n)

1 ) > 0, and hence ±P∗(λ
(n)
1 ) < 0. We thus have

Qn(λ(n+1)
1 ) = ±P∗(λ

(n)
1 )(1− 1

λ
(n+1)
1

) < 0,

and λ
(n)
1 > λ

(n+1)
1 .

The monotonicity property of Salem-Boyd sequences Qn associated to a Perron
polynomial P allows us to give a lower bound greater than one for the sequences
λ(Qn).

Proposition 14 If Qn(t) is defined by

Qn(t) = tnP (t)± P∗(t),

11



where P is a Perron polynomial, and n0 is such that λ(Qn) is monotone for n ≥ n0,
then

λ(Qn) ≥ min{λ(Qn±0
), λ(P )}

for all n ≥ n0.

3.3 P-V and Salem polynomials.

We now consider the case when P = P±Σ,τ belongs to a special class of Perron polyno-
mials, namely those satisfying N(P±Σ,τ ) = 1.

A P-V number is a real algebraic integer α > 1 such that all other algebraic con-
jugates lie strictly within C. A Salem number is a real algebraic integer α > 1 such
that all other algebraic conjugates lie on or within C with at least one on C. If f is
an irreducible monic integer polynomial with N(f) = 1, then the root of f outside C
has absolute value equal to either a Salem number, if f has degree greater than 2 and
is reciprocal, or a P-V number otherwise. If f is reciprocal and N(f) = 1l, then λ(f)
is either a Salem number or a quadratic P-V number.

The polynomials Q±
n (t) were originally studied by Salem [12] in the case when P (t)

is a P-V polynomial to show that every P-V number is the upper and lower limit of
Salem numbers. Boyd [1] showed that any Salem number occurs as M(Q±

n ) for some
P-V polynomial P (t).

Assume that P (t) has no reciprocal factors and P (1) 6= 0. Let

n−0 (P ) = d− 2
P ′(1)
P (1)

+ 1

where d is the degree of P , and let

n+
0 (P ) = 1

for all P . For any polynomial (or Laurent polynomial) P , let `(P ) be the sign of the
lowest degree coefficient of P . The following Proposition is proved in Boyd’s discussion
in ([1] p. 320-321), and implies Theorem 5.

Proposition 15 If P is a P-V polynomial for the P-V number θ, then the polynomial
Q±

n (t) has a real root greater than one if and only if n ≥ n±0 (P ). Furthermore, the
sequences of resulting Salem numbers α±n is monotone increasing (decreasing) if and
only if ±`(P ) > 0 (< 0).

Proof. The proof follows from looking at the real graphs of Q±
n (t) and of P . Since

P (1) = P∗(1) < 0, Q+
n (1) must be strictly negative. Thus, Q+

n must have a root larger
than 1 for all n, and we can set n+

0 = 1. The graph of y = Q−
n (t) passes through the

real axis at t = 1. Thus, Q−
n (t) has a positive real root if and only if the derivative of

Q−
n is negative. Note that Q−

n (t) cannot have a negative real root by the argument in
the proof of Lemma 11. This proves the first part of the Proposition.

For the second part, note that since P has only one root θ outside C, P∗(θ) and
±`(P ) must have the same sign. Suppose, for example, that ±`(P ) > 0. Put α±n =
λ(Q±

n ). Then Q±
n (θ) > 0, and hence θ > α±n for all n. This implies that P (α±n+1) < 0.

Now consider the equations:

Q±
n (α±n+1) = Q±

n (α±n+1)−Q±
n+1(α

±
n+1)

=
(
(α±n+1)

n − (α±n+1)
n+1
)
P (α±n+1).

12



The bottom formula is a product of negative numbers. Hence, Q±
n (α±n ) > 0, and

α±n+1 > α±n . The case ±`(P ) < 0 is proved in an analogous way.

4 Poset structure on fibered links

We now apply results of the previous sections to sequences of fibered links obtained
by iterated trefoil plumbings. Let (K, Σ) be a fibered link, and let P be the polyno-
mial produced by a given locus of plumbing τ . Let ∆n = ∆(Kn,Σn) be the Alexander
polynomials of the iterated trefoil plumbings. If P is a Perron polynomial, then Propo-
sition 14 implies that one can find lower bounds for λ(∆n), and hence for M(∆n) at
least for large n. The situation is even better when P is a P-V polynomial. In this
case, we can explicitly find the minimal λ(∆n) and hence M(∆n) in the sequence by
comparing λ(∆n0) and λ(P ), where n0 is as in Proposition 15. Furthermore, any P-V
polynomial satisfies the inequality (see [13])

λ(P ) ≥ λ(x3 − x− 1) ≈ 1.32472.

It is not known in general if there is a lower bound greater than one for Salem numbers.
A fibered link (K, Σ) will be called a Salem fibered link, if the following equivalent

statements hold:

(1) N(∆(K,Σ)) = 1;

(2) λ(∆(K,Σ)) = M(∆(K,Σ)); and

(3) M(∆(K,Σ)) is a Salem number or a quadratic P-V number.

Let S be the set of Salem fibered links, and write

(K1,Σ1) ≺S (K2,Σ2)

if (K2,Σ2) can be obtained from (K1,Σ1) be a sequence of trefoil plumbings, where the
polynomial P±Σ,τ corresponding to the plumbing locus at each stage is a P-V polynomial.
If (K1,Σ1) ≺S (K2,Σ2), then the topological Euler characteristic of Σ1 is strictly less
than that of Σ2. Thus, ≺S defines an (anti-symmetric) partial order on Salem fibered
links. Proposition 14 implies the following.

Proposition 16 If (K1,Σ1) ≺S (K2,Σ2), then

M(∆(K2,Σ2)) ≥ min{M(∆(K1,Σ1)), θ0}

where θ0 ≈ 1.32472 is the smallest P-V number.

Consider the graph structure of S with respect ≺S . By Proposition 16, for any
connected subgraph of S, the minimal Salem number can be determined by comparing
the minimal elements with respect to ≺S .

Question 17 Is S ∩ K connected with respect to ≺S?
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It is not difficult to produce examples of Salem fibered links (K, Σ) and a locus
for plumbing τ such that PΣ,τ is not a P-V polynomial (see Section 5). We will say
a Salem fibered link (K, Σ) ∈ S ∩ K is isolated if for all loci of plumbing τ on Σ, the
corresponding polynomial P is not a P-V polynomial.

Question 18 Are there isolated Salem links?

Although we do not know of any isolated Salem links, Salem fibered links do appear
sporadically in Salem-Boyd sequences not associated to P-V polynomials as seen in the
table at the end of Section 5.

5 A family of fibered two bridge links.

The simplest examples to consider are those coming from arborescent links. Let Γ be
a tree, with vertices ν with labels m(ν) = ±1. Let L be a union of line segments in the
plane, intersecting transversally, whose dual graph is Γ, and let U(L) be the surface
obtained by thickening L. This is illustrated in Figure 4.

Figure 4: Construction of fibering surface for arborescent link

Consider the surface in Figure 4 as a subspace of S3 and glue together opposite
sides in the diagram that are connected by a vertical or horizontal path with a positive
or negative full-twist according to the labeling on the graph. The resulting surface Σ
is a fibering surface for K = ∂Σ by [15], since it can be obtained by a sequence of
Hopf plumbings on the unknot. The line segments of L close up to form a free basis
for H1(Σ; R). Thus, the vertices of Γ can be thought of as basis elements of H1(Σ; R).
Let SΓ be the matrix where the rows and columns correspond to vertices ν1, . . . , νk of
Γ, and the entries ai,j are given by

ai,j =


−1 if i < j, and νi and νj are connected by an edge

m(νi) if i = j, and
0 otherwise.

Then S is a Seifert matrix for (K, Σ). It follows that although there may be several
fibered links (K, Σ) associated to a given labeled graph Γ, the Seifert matrix, and hence
the Alexander polynomial, is determined by Γ.

Consider the family of examples Γm,n in Figure 5. The associated fibered links
(Km,n,Σm,n) (determined uniquely by Γm,n) are the two-bridge link drawn in Figure 6.

14
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Figure 5: Plumbing graph with positive (negative) vertices filled black (white)

=

=

(N negative half twists)

m+1

−n
N

(N half positive twists)

−N

Figure 6: Two bridge link associated to Γm,n

Fixing m, and letting n vary gives a sequence of fibered links (Km,n,Σm,n) that
are obtained by iterated plumbing on (Km,1,Σm,1). Thus, the Alexander polynomials
∆m,n = ∆Km,n,Σm,n are Salem-Boyd sequences associated to some polynomials Pm. We
will compute the Pm, and their numerical invariants.

Considering the vertices of Γm,1 as basis elements in H1(Σm,1, R), the path τ is dual
to the right-most vertex. We start with Γ1,1. The link K1,1 is the figure-eight knot, or
41 in Rolfsen’s table [11]. We will use Equation 2 to find P1. Thus, P1 is given by

P1(t) = s(S)
∣∣∣∣t ( −1 0

−1 1

)
−
(
−1 −1
0 0

)∣∣∣∣
= t(t− 2)

Since P1 has only one root outside C, we have the following Proposition.

Proposition 19 The links (K1,n,Σ1,n) are Salem fibered links.

The Salem numbers λ(∆1,n) converge to λ(P ) = 2, from above for n odd, and from
below for n even. The smallest Salem number in this sequence occurs for (K1,4,Σ1,4),
and is approximately 1.8832.

From P1 it is possible to compute all the Pm using Equation 3. We first recall that
(Km,0,Σm,0) is the (2,m + 1) torus link, T(2,m+1). The Alexander polynomial is given
by

∆m,0(t) =
tn+1 + (−1)n

t + 1
.

Since P1(t) = t(t− 2), and K1,1 has one component, we also have

∆1,n(t) =
tnP1(t) + (−1)n+1(P1)∗(t)

t + 1

=
tn+1(t− 2) + (−1)n+1(−2t + 1)

t + 1

=
tn+1(t− 2) + (−1)n2t + (−1)n+1

t + 1
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Furthermore, Γm,0 can be thought of as a subgraph of Γm,1, and if Sm,0 and Sm,1

are their associated Seifert surfaces, we have

s(Sm,0) = s(Sm,1).

By Equation 3, we have

Pm(t) = ∆m,1(t) + ∆m,0(t)

=
tm+1(t− 2) + (−1)m2t + (−1)m+1 + tm+1 + (−1)m

t + 1

=
tm+2 − tm+1 + (−1)m2t

t + 1

=
t(tm(t− 1) + (−1)m2)

t + 1

Since we are only concerned with ∆m,n and hence Pm up to products of cyclotomic
polynomials, it is convenient to rewrite Pm as

Pm(t) = t(tm(t− 1) + (−1)m2).

Proposition 20 All roots of Pm(t) other than 0 and −1 lie outside C, hence

M(Pm) = 2 and N(Pm) = m.

Proof. Suppose |t| ≤ 1, then |tm(t− 1)| ≤ 2 with equality if and only if t = −1.

Proposition 21
lim

m→∞
λ(Pm) = 1.

Proof. Take any ε > 0. Let Dε = {z ∈ C : |z| > 1 + ε}. Let Dε be the closure of C in
the Riemann sphere. Then for large m

2
|tm|

<
|t− 1|
|t|

for all t on the boundary of Dε and both sides are analytic on Dε. Therefore, by
Rouché’s theorem Pm has no roots on Dε for large m.

Corollary 22 The homological dilatations of (Km,n,Σm,n) can be made arbitrarily
small by taking m and n large enough.

Salem fibered links appear sporadically as homological dilatations of (Km,n,Σm,n)
for m,n > 1. A list for 1 < m,n < 60 found by computer search is given in the table
below. The minimal polynomials, which are reciprocal, are denoted by a list of the
first half of the coefficients.
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(m,n) Salem number Minimal polynomial
(3,5) 1.63557 1 -2 2 -3
(3,8) 1.50614 1 -1 0 -1
(5,9) 1.42501 1 -1 0 -1 1

Question 23 Are the Salem fibered links in the table above isolated in the sense of
Section 4?

Salem numbers also appear as roots of irreducible factors of the Alexander polyno-
mial. For example, the Alexander polynomial for K11,21 has largest root equal to the
7th smallest known Salem number [10]. Its minimal polynomial is given by

∆K11,21(x) = x10 − x7 − x5 − x3 + 1.

The monodromy hm,n of the fibered links (Km,n,Σm,n) were also studied by Brinkmann
[3], who showed that hm,n is pseudo-Anosov for all m,n, and that the dilatations
converge to 1 as m,n approach infinity.
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