
ON A BURGERS’ TYPE EQUATION

CHUN-HSIUNG HSIA AND XIAOMING WANG

Abstract. In this paper we study the dynamics of a Burgers’ type
equation (1.1). First, we use a new method called attractor bifurcation
introduced by Ma and Wang in [4, 6] to study the bifurcation of Burgers’
type equation out of the trivial solution. For Dirichlet boundary condi-
tion, we get pitchfork attractor bifurcation as the parameter λ crosses
the first eigenvalue. For periodic boundary condition, we get bifurcated
S1 attractor consisting of steady states. Second, we study the long time
behavior of the equation. We show that there exists a global attractor
whose dimension is at least of the order of

√
λ. Thus it provides an-

other example of extended system (see (1.2)) whose global attractor has
a Hausdorff/fractal dimension that scales at least linearly in the system
size while the long time dynamics is non-chaotic.

1. Introduction

In this paper, we study the dynamics of the following Burgers’ type equa-
tion on [0, 1]

(1.1)
{
ut = uxx + λu− λuux,

u(x, 0) = u0(x),

where λ is a positive real parameter. This Burgers’ type equation can be
casted into an extended system on the interval [0,

√
λ] via a change of vari-

able X =
√
λx, τ = λt, U =

√
λu,

(1.2) Uτ = UXX + U − UUX .

Equation (1.1) can be derived by differentiating the following Burgers’
type equation with respect to spatial variable x and changing a variable
t = τ/λ

(1.3)
∂v

∂τ
− 1

2
v2
x =

1
λ
vxx + v− < v >,

where < v >=
∫ 1
0 v(x, τ)dx. The interested reader is referred to ([1]) for the

physical relevance of this equation in flame front propagation and results on
steady states and their stabilities.
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There are two goals in this manuscript. First, we use a new method called
attractor bifurcation developed in [4, 6] to study the bifurcation of this
Burgers’ type equation (1.1) with either the Dirichlet boundary condition

(1.4) u(0, t) = u(1, t) = 0,

or the periodic boundary condition

(1.5) u(x+ 1, t) = u(x, t).

Second, we study the long time dynamics of the Burgers’ type equation.
We show that there exists a global attractor whose dimension grows at
least linearly to the square root of the parameter λ. This tells us that the
dimension of the global attractor scales at least linearly with the length
(volume) of the system in the alternative form (1.2). On the other hand, it
is known that the Burgers’ type equation cannot possess chaos ([8]). Thus,
the Burgers’ type equation provides an example of extended system whose
dimension of attractor scales at least linearly with the volume (length) of
the system while the long time dynamics is non-chaotic. This tells us that
the criterion of dimension of attractor proportional to the system size itself
is not sufficient to guarantee chaos, let alone extensive chaos ([2], [10]).

We recall the general setting and definition of attractor bifurcation in
Section 2.1. In Section 2.2, we recall a criterion to determine the asymptotic
stability which is useful when attempting to apply the attractor bifurcation
theorem, Theorem 2.3. In Section 2.3, we recall generalized center manifold
theory as an important tool to reduce the dynamic bifurcation equations and
we demonstrate the skill to compute the approximations up to third order
terms which makes things clear when we want to specify the bifurcation
type and determine the structure of the bifurcation.

The main results of the first part are put in Section 3. Theorem 3.1
states that pitch-fork attractor bifurcated from trivial solution occurs when
the parameter λ crosses π2 in Dirichlet boundary condition case. For pe-
riodic boundary condition, we get S1 attractor consisting of steady states
bifurcated from trivial solution when λ crosses first eigenvalue 4π2. We
achieve this result in Theorem 3.2 , 3.3. Namely, in Theorem 3.2, we look
for solutions in the odd function space to get the approximation of bifurcated
solutions. In Theorem 3.3, we prove the existence of the attractor bifurca-
tion in general case, and get the bifurcation structure based on the result
of Theorem 3.2 and the translation invariance of Burgers’ type equation.
Finally, we extend this result to Theorem 3.4 which asserts S1 invariance
set bifurcation occurs when λ crosses each eigenvalue as a completion of the
story.

The main results of the second part are contained in Section 4 where we
demonstrate that the system is dissipative and possess a global attractor uti-
lizing a technique similar to those used by Nicolaenko, Scheurer and Temam
([9]). We also show that the Hausdorff and fractal dimension of the attrac-
tor grows at least linearly in

√
λ. In another word, in the form of extended
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system of (1.2) on the interval [0,
√
λ], the dimension of the global attractor

scales at least linearly in the volume of the system. This is achieved via
an upper bound utilizing the Constantin-Foias form of the Kaplan-Yorke
formula in terms of global Lyapunov exponents ([9]), and a lower bound in
terms of the dimension of the unstable manifold associated with the trivial
solution. Nevertheless, the dynamics of the extended system is non-chaotic
due to a result of Matano ([8])

2. Dynamic Bifurcation Theory

2.1. Attractor Bifurcation. We recall in this section a general theory on
attractor bifurcation developed in [4, 6].

Let H and H1 be two Hilbert spaces, and H1 ↪→ H be a dense and
compact inclusion. We consider the following nonlinear evolution equations.

(2.1)


du

dt
= Lλu+G(u, λ),

u(0) = u0,

where u : [0,∞) → H is the unknown function, λ ∈ R, is the system
parameter, and Lλ : H1 → H are parametrized linear completely continuous
fields continuously depending on λ ∈ R1, which satisfy

(2.2)


Lλ = −A+Bλ a sectorial operator,
A : H1 → H a linear homeomorphism,
Bλ : H1 → H the parametrized linear compact operators.

It is easy to see that Lλ generates an analytic semi-group {e−tLλ}t≥0.
Then we can define fractional power operators Lα

λ for any 0 ≤ α ≤ 1 with
domain Hα = D(Lα

λ) such that Hα1 ⊂ Hα2 if α1 > α2, and H0 = H.
Furthermore, we assume that the nonlinear terms G(·, λ) : Hα → H for

some 1 > α ≥ 0 are a family of parametrized Cr bounded operators (r ≥ 1)
continuously depending on the parameter λ ∈ R1 such that

(2.3) G(u, λ) = o(‖u‖Hα), ∀ λ ∈ R1.

In general, we are interested in the sectorial operator Lλ = −A + Bλ

such that there exist an eigenvalue sequence {ρk} ⊂ C and an eigenvector
sequence {ek, hk} ⊂ H1 of A:

(2.4)


Azk = ρkzk, zk = ek + ihk,

Reρk →∞, as k →∞,

|Imρk/(Reρk + a)| ≤ C, for some constants a,C > 0,

such that {ek, hk} is a basis of H.
Condition (2.4) implies that A is a sectorial operator, hence we can define

fractional power operator Aα with domain Hα = D(Aα). For the operator
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Bλ : H1 −→ H, we assume that there is a constant 0 < θ < 1 such that

(2.5) Bλ : Hθ −→ H bounded, ∀ λ ∈ R.

Let {Sλ(t)}t≥0 be an operator semi-group generated by the equation (2.1),
then the solution of (2.1) can be expressed as

u(t) = Sλ(t)u0, t ≥ 0.

Definition 2.1. A set Σ ⊂ H is called an invariant set of (2.1) if S(t)Σ = Σ
for any t ≥ 0. An invariant set Σ ⊂ H of (2.1) is said to be an attractor
if Σ is compact, and there exists a neighborhood U ⊂ H of Σ such that for
any ϕ ∈ U we have

(2.6) lim
t→∞

distH(u(t, ϕ),Σ) = 0.

The largest open set U satisfying (2.6) is called the basin of attraction of Σ.

Definition 2.2. (1) We say that the equation (2.1) bifurcates from (u, λ) =
(0, λ0) to an invariant set Ωλ, if there exists a sequence of invariant
sets {Ωλn} of (2.1) such that 0 /∈ Ωλn, and

lim
n→∞

λn = λ0,

lim
n→∞

max
x∈Ωλn

|x| = 0.

(2) If the invariant sets Ωλ are attractors of (2.1), then the bifurcation
is called attractor bifurcation.

(3) If Ωλ are attractors and are homotopically equivalent to an m–dimensional
sphere Sm, then the bifurcation is called Sm–attractor bifurcation.

A complex number β = α1 + iα2 ∈ C is called an eigenvalue of Lλ : H1 →
H if there are x, y ∈ H1 such that

Lλz = βz, z = x+ iy.

Now let the eigenvalues (counting the multiplicity) of Lλ be given by

β1(λ), β2(λ), · · · , βk(λ), · · · ∈ C.
Suppose that

(2.7) Reβi(λ) =


< 0 if λ < λ0

= 0 if λ = λ0

> 0 if λ > λ0

(1 ≤ i ≤ m)

(2.8) Reβj(λ0) < 0. ∀ m+ 1 ≤ j.

Let the eigenspace of Lλ at λ0 be

E0 =
⋃

1≤j≤m

∞⋃
k=1

{u, v ∈ H1 | (Lλ0 − βj(λ0))kw = 0, w = u+ iv}.

It is known that dimE0 = m.
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Theorem 2.3 (T. Ma and S. Wang [4]). Assume that the conditions (2.2)-
(2.8) hold true, and u = 0 is a locally asymptotically stable equilibrium point
of (2.1) at λ = λ0. Then the following assertions hold true.

(1) (2.1) bifurcates from (u, λ) = (0, λ0) to attractors Σλ for λ > λ0,
with m− 1 ≤ dimΣλ ≤ m, which is connected as m > 1;

(2) The attractor Σλ is a limit of a sequence of m-dimensional annulus
Mk with Mk+1 ⊂Mk; especially if Σλ is a finite simplicial complex,
then Σλ has the homotopy type of Sm−1;

(3) For any uλ ∈ Σλ, uλ can be expressed as

uλ = vλ + o(‖vλ‖H1), vλ ∈ E0;

(4) There is an open set U ⊂ H with 0 ∈ U such that the attractor
Σλ bifurcated from (0, λ0) attracts U\Γ in H, where Γ is the stable
manifold of u = 0 with co-dimension m.

Next, we mention a sufficient condition which implies that the bifurcated
attractor Σλ of (2.1) from an eigenvalue with multiplicity two is homeomor-
phic to a circle S1. Let v be a two-dimensional Cr(r ≥ 1) vector field given
by

(2.9) vλ(x) = λx−G(x, λ),

for x ∈ R2. Here
G(x, λ) = Gk(x, λ) + o(|x|k),

where Gk is a k−multilinear field, which satisfies

(2.10) C1|x|k+1 ≤< Gk(x, λ), x >H≤ C2|x|k+1,

for some constants C2 > C1 > 0, and k = 2m+ 1,m ≥ 1.

Theorem 2.4 (T. Ma and S. Wang [6]). Under the condition (2.10), the
vector field (2.9) bifurcates from (x, λ) = (0, 0) on λ > 0 to an attractor Σλ,
which is homeomorphic to S1. Moreover, one and only one of the following
is true.

(1) Σλ is a periodic orbit,

(2) Σλ consists of only singular points, or

(3) Σλ consists at most 2(k+1)=4(m+1) singular points, and has 4N+n
(N + n ≥ 1) singular points, 2N of which are saddle points, 2N of
which are stable node points (possibly degenerate), and n of which
have index zero.

2.2. Global Stability. In this section, we recall a useful theorem proved
in [5] to check the asymptotic stability of the equation

(2.11)
du

dt
= Lu+G(u)



6 C. HSIA AND X. WANG

where L : H1 → H is symmetric, therefore all eigenvalues of L are real.

Let the eigenvalues βk of L satisfy

(2.12)
{
βi = 0, 1 ≤ i ≤ m(m ≥ 1),
βj < 0, m+ 1 ≤ j <∞.

Set

E0 = {u ∈ H1 | Lu = 0},

(E0)⊥ = {u ∈ H1 |< u, v >H= 0,∀v ∈ E0}.

Theorem 2.5 (T. Ma and S. Wang [5]). Let L : H1 → H be symmetric with
spectrum given by (2.12), and G : H1 → H satisfy the following orthogonal
condition

(2.13) < G(u), u >H= 0, ∀u ∈ H1.

Then one and only one of the following two assertions holds true:
(1) There exists a sequence of invariant sets {Γn} ⊂ E0 of (2.11) such

that
0 /∈ Γn, lim

n→∞
sup
x∈Γn

|x|H = 0.

(2) The trivial equilibrium point u = 0 of (2.11) is locally asymptotically
stable under the H-norm.

Furthermore, if (2.11) has no invariant sets in E0 except the trivial one {0},
then u = 0 is globally asymptotically stable.

2.3. Center Manifold Approximation. In this section, we derive an ap-
proximation formula of central manifold reduction, which was used in [6].
For convenience, we introduce the center manifold theorem in infinite di-
mensional spaces. Let H1 and H be decomposed into

(2.14)

{
H1 = Eλ

1 ⊕ Eλ
2 ,

H = Ẽλ
1 ⊕ Ẽλ

2 ,

for λ near λ0 ∈ R1, where Eλ
1 , Eλ

2 are invariant subspaces of Lλ, such that

dimEλ
1 <∞,

Ẽλ
1 = Eλ

1 ,

Ẽλ
2 = the closure of Eλ

2 in H.

In addition, Lλ can be decomposed into Lλ = Lλ
1 ⊕ Lλ

2 such that for any
λ near λ0,

(2.15)

Lλ
1 = Lλ |Eλ

1
: Eλ

1 → Ẽλ
1 ,

Lλ
2 = Lλ |Eλ

2
: Eλ

2 → Ẽλ
2 ,
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where the eigenvalues of Lλ
2 possess negative real parts, and the eigenvalues

of Lλ
1 possess nonnegative real parts at λ = λ0. Thus, for λ near λ0, equation

(2.1) can be written as

(2.16)


dx

dt
= Lλ

1x+G1(x, y, λ),

dy

dt
= Lλ

2x+G2(x, y, λ),

where u = x + y ∈ H1, x ∈ Eλ
1 , y ∈ Eλ

2 , Gi(x, y, λ) = PiG(u, λ), and
Pi : H → Ẽλ

i are canonical projections. Furthermore, let

Eλ
2 (α) = the closure of Eλ

2 in Hα

where α < 1 given by (2.3). The following center manifold theorem is
classical.

Theorem 2.6 (See D. Henry [3]). Assume (2.2), (2.3), (2.14) and (2.15).
Then there exists a neighborhood of λ0 given by |λ−λ0| < δ for some δ > 0,
a neighborhood Uλ ⊂ Eλ

1 of x = 0, and a C1 function Φ(·, λ) : Uλ → Eλ
2 (α)

depending continuously on λ, such that
(1) Φ(0, λ) = 0, DxΦ(0, λ) = 0;

(2) the set

Mλ = {(x, y) ∈ H1 | x ∈ Uλ, y = Φ(x, λ) ∈ Eλ
2 (α)},

called the center manifolds, are locally invariant for (2.1), i.e. for
each u0 ∈Mλ

uλ(t, u0) ∈Mλ, ∀ 0 ≤ t < t(u0)

for some t(u0) > 0, where uλ(t, u0) is the solution of (2.1);

(3) if (xλ(t), yλ(t)) is a solution of (2.16), then there is a βλ > 0 and kλ

depending on (xλ(0), yλ(0)) such that

‖yλ(t)− Φ(xλ(t), λ)‖H ≤ kλe
−βλt.

We now recall an approximation of the equations restricted on the cen-
ter manifold which will be used later; see [6]. In our application, Lλ is
symmetric and G(·, λ) is bilinear. Hence the eigenvalues of Lλ are real and
the eigenvectors of Lλ form an orthogonal basis of H. Suppose that the
eigenvalues (counting the multiplicity) and the eigenvectors are

β1(λ) = β2(λ) = · · · = βm(λ) > βm+1(λ) ≥, · · · ,

e1(x, λ), e2(x, λ), · · · , em(x, λ), em+1(x, λ), · · · ,

and Eλ
1 = span{e1, e2, · · · , em}, Eλ

2 = (Eλ
1 )⊥, x =

m∑
j=1

xjej .
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With help of Theorem 2.6, the bifurcation equation of (2.1) can be reduced
as

(2.17)
dxk

dt
= β1xk +

1
< ek, ek >H

< G(x+ Φ(x), λ), ek >H

for k = 1, 2, · · · ,m. It is known that the center manifold function

Φ(x, λ) =
∞∑

n=m+1

Φn(x, λ)en

satisfies the following defining equation

(2.18) Φn(x, λ) =
∫ 0

−∞
e−βnτρε < G(z(τ, x) + Φ, λ), en >H dτ,

where ρε is a C∞ cut-off function and z(t, x) =
∑m

i=1 zi(t, x)ei satisfies

(2.19)


dzi
dt

= β1zi +
ρε(z)

< ei, ei >H
< G(z + Φ, λ), ei >H ,

zi(0) = xi.

Hence, we have

(2.20) zi(t, x) = xie
β1t + o(|x|).

Inserting (2.20) in (2.18), by tangency of Φ we get

(2.21)
Φn(x, λ) =

m∑
i,l=1

xixl(
∫ 0

−∞
e(2β1−βn)τdτ)×

< G(ei, el, λ), en >H +o(|x|2).

By (2.17) and (2.21), we conclude that

(2.22)
dxk

dt
= β1xk +

m∑
i,j=1

bki,jxixj +
m∑

i,j,l=1

ak
i,j,lxixjxl + o(|x|3),

where

bki,j =
1

< ek, ek >H
< G(ei, ej , λ), ek >H ,

ak
i,j,l =

∞∑
n=m+1

1
(2β1 − βn) < en, en >H< ek, ek >H

< G(ei, el, λ), en >H

× < G(ej , en, λ) +G(en, ej , λ), ek >H ,

for k = 1, 2, · · · ,m.
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3. Attractor Bifurcations of the Burgers’ Type Equations

3.1. The Case with Dirichlet Boundary Condition. Consider the Burg-
ers’ type equation with the Dirichlet boundary condition. We define

H = L2(0, 1),

H1/2 = H1
0 (0, 1),

H1 = H2(0, 1) ∩H1/2.

Then the original Burgers’ type equation (1.1) with Dirichlet boundary con-
dition (1.4) can be written into the following abstract form in H :

(3.1)


du

dt
= Lλu+G(u, λ),

u(x, 0) = u0(x),

where Lλ : H1 → H is the operator defined by

Lλu =
∂2u

∂x2
+ λu,

and G(·, λ) : H1/2 → H is a bilinear operator defined by

G(u, λ) = −λu∂u
∂x
.

The main result in this case is

Theorem 3.1. Burgers’ type equation (3.1) defined in H possesses pitch-
fork attractor bifurcations from trivial solutions to attractors Σλ when the
parameter λ crosses the critical value λ0 = π2. Namely,

(1) u = 0 is a globally asymptotically stable solution of (3.1), for λ ≤ π2.
(2) When λ > π2, u = 0 is not asymptotically stable and the system

bifurcates to two steady state solutions uλ
1 , u

λ
2 which are local attrac-

tors. Both bifurcation solutions can be written as

uλ
1 = α(λ) sinπx+ o(|α(λ)|),

uλ
2 = −α(λ) sinπx+ o(|α(λ)|),

α(λ) =
√

2(4π2 − λ)(λ− π2)/λπ.

(3) There exist an open set U ⊂ H with 0 ∈ U and a number π2 < η ≤
4π2 such that if π2 < λ < η, the stable manifold Γ ⊂ H of u = 0 with
codimension one separates U into two open sets U1

λ and U2
λ, which

are basins of attraction of u1 and u2 respectively, i.e. U = U
1
λ ∪U

2
λ.

Proof. We shall prove this theorem by using Theorem 2.3, 2.5 together with
the Lyapunov-Schmidt reduction procedure. We proceed in several steps as
follows.
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Step 1. It’s easy to see that the symmetric operator Lλ : H1 → H is
a sectorial operator. It is known that the eigenvalues and eigenfunctions of
Lλ are given by

βk(λ) = λ− (kπ)2,

ek(x) =
√

2 sin(kπx),

for k = 1, 2, · · · , and satisfy the conditions (2.7) and (2.8) with m = 1 at
λ = λ0 = π2. Next, if u is a solution of (3.1), then

(G(u, λ), u)L2 = −λ
∫ 1

0
u2uxdx = −1

3
λu3(t, x) |x=1

x=0 = 0.

Hence G(u, λ) meets condition (2.13). Moreover, when λ0 = π2 the equa-
tion (3.1) has no nontrivial invariant set in E0 = span{sinπx}. Hence by
Theorem 2.5, u=0 is a globally asymptotically equilibrium point of (3.1) at
λ = λ0 = π2. This proves Assertion (1).

Step 2. For u ∈ H1/2, by Kondrachov compactness theorem, we have

‖G(u, λ)‖2
L2 = λ2

∫ 1

0
u2u2

xdx ≤ C1λ
2‖u‖2

C0
‖u‖2

H1/2
≤ C2λ

2‖u‖4
H1/2

,

for some constants C1 and C2. Hence, G(u, λ) = o(‖u‖H1/2
) is a C∞ compact

operator. Thus, by Theorem 2.3, (3.1) bifurcates from (u, λ) = (0, π2) to
attractors Σλ for λ > π2. By the third assertion of Theorem 2.3, for any
uλ ∈ Σλ, uλ can be expressed as

uλ = vλ + o(‖vλ‖H1), vλ ∈ E0.

Assertion (3) follows from Assertion (4) of Theorem 2.3.

Step 3. In this step, we use the Lyapunov-Schmidt procedure to calculate
the approximation of the attractor Σλ. The steady state equation of (3.1)
is given by

(3.2)


∂2u

∂x2
+ λu− λu

∂u

∂x
= 0,

u(0) = u(1) = 0.

Let u ∈ H be expressed as u =
∑∞

n=1 xnen(x). By the Lyapunov-Schmidt
reduction procedure, the bifurcation equation of (3.2) can be expressed as

(3.3) βn(λ)xn − λ

∫ 1

0
u
du

dx
(
√

2 sinnπx)dx = 0, n = 1, 2, 3, · · · .

We know that

(3.4) u
du

dx
= π

∞∑
k,j=1

jxkxj(sin(k + j)πx+ sin(k − j)πx).
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It follows from (3.3)-(3.4) that

(3.5) γnxn − π

n−1∑
k=1

kxkxn−k + πn

∞∑
k=1

xkxn+k = 0,

where γn =
√

2βn(λ)
λ , for n = 1, 2, 3, · · · . Inductively, we infer from (3.5) that

(3.6)

x2 =
π

γ2
x1

2 + o(|x1|2),

xm = O(|x1|m), form ≥ 2.

Plugging (3.6) into (3.5) for n=1, we get the bifurcation equation

(3.7) γ1x1 +
π2

γ2
x1

3 + o(|x1|3) = 0.

Since γ2 < 0 for λ near π2, and γ1 changes signs when λ crosses π2, by
Krasnoselski’s bifurcation theorem, the steady state equation of (3.1) bifur-
cates from the trivial solution to steady state solutions determined by (3.7).
Comparing this with the third assertion of Theorem 2.3, we obtain that
the bifurcated attractor Σλ of equation (3.1) coincides with the bifurcated
steady state solutions of (3.7). Thus, the bifurcation solution of (3.1) is
given by

uλ
1 = α(λ) sinπx+ o(|α(λ)|),

uλ
2 = −α(λ) sinπx+ o(|α(λ)|),

α(λ) =
√

2(4π2 − λ)(λ− π2)/λπ.

This completes the proof. �

.

3.2. The Case With Periodic Boundary Condition. The Burgers’
type equation in one dimensional space with the periodic boundary con-
dition is given by

(3.8)


du

dt
=
∂2u

∂x2
+ λu− λu

∂u

∂x
,

u(x, 0) = u0(x),

u(x+ 1, t) = u(x, t),

with constraint

(3.9)
∫ 1

0
u(x, t)dx = 0.

We shall study the attractor bifurcation of (3.8) and (3.9) in the following
two cases:
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(1) case with odd solutions. In this case, we look for solutions of
(3.8) and (3.9), which are odd functions with respect to x. Hence
we set

H̃(odd) = {v ∈ L2(0, 1) |
∫ 1

0
v(x)dx = 0},

H̃1/2(odd) = {v ∈ H̃(odd) ∩H1
per(0, 1) | v(−x) = −v(x)},

H̃1(odd) = H̃1/2(odd) ∩H2
per(0, 1).

(2) general case. In this case, we look for solutions without oddness
assumption. Let

H̃ = {v ∈ L2(0, 1) |
∫ 1

0
v(x)dx = 0},

H̃1/2 = H̃ ∩H1
per(0, 1),

H̃1 = H̃ ∩H2
per(0, 1).

In both cases, we define the operators Lλ and G(·, λ) by

Lλu =
∂2u

∂x2
+ λu, G(u, λ) = −λuux.

Thus, the problem (3.8) and (3.9) can be written as

(3.10)


du

dt
= Lλu+G(u, λ),

u(0) = u0(x),

in space H̃(odd) or H̃. The results for odd solutions case is:

Theorem 3.2. For Burgers’ type equation (3.8) and (3.9) defined in H̃(odd),
the following assertions hold true.

(1) u = 0 is a globally asymptotically stable solution of (3.8) and (3.9),
for λ ≤ 4π2.

(2) When λ > 4π2, u = 0 is not asymptotically stable and the system
bifurcates to two steady state solutions uλ

1 , u
λ
2 which are local attrac-

tors. Both bifurcation solutions can be written as

uλ
1 = α(λ) sin 2πx+ o(|α(λ)|),

uλ
2 = −α(λ) sin 2πx+ o(|α(λ)|),

α(λ) =
√

(16π2 − λ)(λ− 4π2)/
√

2λπ.

(3) There exist an open set U ⊂ H with 0 ∈ U and a number 4π2 <
η ≤ 16π2 such that if 4π2 < λ < η, the stable manifold Γ ⊂ H
of u = 0 with codimension one separates U into two open sets U1

λ

and U2
λ, which are basins of attraction of u1 and u2 respectively, i.e.

U = U
1
λ ∪ U

2
λ.



ON A BURGERS’ TYPE EQUATION 13

Proof. The eigenvalues and eigenfunctions of the sectorial operator Lλ :
H̃1(odd) → H̃(odd) are given by

βk(λ) = λk = λ− (2kπ)2,

ek(x) =
√

2 sin(2kπx),

for k = 1, 2, · · · . The rest part of the proof is similar with the proof of
Theorem 3.1. �

For general periodic case, we have the following result.

Theorem 3.3. In space H̃, the Burgers’ type equation (3.8) and (3.9) bi-
furcates from (u, λ) = (0, 4π2) on λ > 4π2 to an attractor Σλ. Σλ is homeo-
morphic to S1, which attracts any bounded set in U\Γ, Γ the stable manifold
of u = 0 with codimension two in H and U some open neighborhood o f u = 0
in H̃. Moreover, Σλ consists of steady states of (3.8) and (3.9).

Proof. Step 1. The eigenvalues and eigenfunctions of sectorial operator Lλ

: H̃1 → H̃ are given by

(3.11) β2n−1(λ) = β2n(λ) = λ− (2nπ)2,

(3.12) e2n−1(x) =
√

2 sin 2nπx, e2n(x) =
√

2 cos 2nπx, n ≥ 1.

Condition (3.11) satisfies the conditions (2.7) and (2.8) with m = 2 at
λ = λ0 = 4π2. It’s easy to see that the conditions of Theorem 2.5 are
satisfied by Lλ0 and G(u, λ0). Since the equation (3.8) and (3.9) has no
nontrivial invariant set in E0 = span {e1(x), e2(x)}, u=0 is globally asymp-
totically stable at λ = 4π2. Thus Theorem 2.3 asserts the existence of the
attractor bifurcation.

Step 2. In this step, we apply the center manifold reduction to calculate
the structure of the attractor. Let Eλ

1 = E0 = span{e1, e2}, Eλ
2 = (E0)⊥

and Φλ(x1, x2) be the center manifold as mentioned in Theorem 2.6. Let

u =
∞∑

n=1

xn(t)en(x) , the reduction equations can be expressed as

(3.13)


dx1

dt
= β1(λ)x1+ < G(x+ Φ(x)), e1 > eH

,

dx2

dt
= β1(λ)x2+ < G(x+ Φ(x)), e2 > eH

,

where x = x1e1 +x2e2. By formula (2.22), equation (3.13) can be expressed
as

(3.14)



dx1

dt
= β1(λ)x1 +

2∑
i,j,l=1

a1
i,j,lxixjxl + o(|x|3),

dx2

dt
= β1(λ)x2 +

2∑
i,j,l=1

a2
i,j,lxixjxl + o(|x|3),
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where

ak
i,j,l =

∞∑
n=3

1
(2β1 − βn) < en, en > eH

< ek, ek > eH

< G(ej , el, λ), en > eH
×

< G(ei, en, λ) +G2(en, ei, λ), ek > eH
, for i, j, l, k = 1, 2.

Note that

< G(ej , el, λ), en > eH
= −λ

∫ 1

0
ej
del
dx
endx = 0 forn ≥ 5.

By direct calculation, we obtain that

a1
111 =

−2π2λ2

λ+ 8π2
,

a1
222 = 0,

a1
211 + a1

121 + a1
112 = 0,

a1
122 + a1

212 + a1
221 =

−2π2λ2

λ+ 8π2
,

and

a2
111 = 0,

a2
222 =

−2π2λ2

λ+ 8π2
,

a2
211 + a2

121 + a2
112 =

−2π2λ2

λ+ 8π2
,

a2
122 + a2

212 + a2
221 = 0.

Hence equation (3.14) translates into

(3.15)


dx1

dt
= (λ− 4π2)x1 −

2π2λ2

λ+ 8π2
(x3

1 + x1x
2
2) + o(|x|3),

dx2

dt
= (λ− 4π2)x2 −

2π2λ2

λ+ 8π2
(x2

1x2 + x3
2) + o(|x|3).

It’s obvious that equation (3.15) fits the conditions of Theorem 2.4, it follows
that the attractor of (3.15) bifurcated from (x, λ) = (0, 4π2) on λ > 4π2 is
a circle S1.

Step 3. Finally we verify that Σλ consists of singular points of (3.8)
and (3.9). By Theorem 3.2, the problem (3.8) and (3.9) has a steady state
solution uλ = α(λ) sin 2πx + h(x), where h(x) = o(|α(λ)|). Because of the
invariance of (3.8) and (3.9) for the translation

u(x, t) → u(x+ θ, t),
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the functions

uλ(x+ θ) = α(λ) sin(x+ θ) + h(x+ θ), θ ∈ R1

are steady state solutions of (3.8) and (3.9), and the set

Γ = {α(λ) sin(x+ θ) + h(x+ θ) | −∞ < θ < +∞}
is a circle S1 in H. Therefore Σλ = Γ. This completes the proof.

�

3.3. Bifurcation From General Eigenvalues.

Theorem 3.4. In the space H̃, the problem (3.8) with (3.9) bifurcates from
(u, λ) = (0, 4n2π2) on λ > 4n2π2 to an invariant set Σλ = S1, which consists
of steady state solutions of (3.8) and (3.9).

Proof. For u ∈ H̃, it can be expressed as

(3.16) u =
∞∑

n=1

xn(t)en(x),

en as given in (3.12). Then the reduction equation of (3.10) to the center-
manifold near λ = 4n2π2 is in the following form

(3.17)


dx2n−1

dt
= β2nx2n−1+ < G(u, λ), e2n−1 > eH

,

dx2n

dt
= β2nx2n+ < G(u, λ), e2n > eH

.

The same as the proof of Theorem 3.3, (3.17) can be expressed as

(3.18)



dx2n−1

dt
= β2nx2n−1 +

2n∑
i,j,l=2n−1

c2n−1
i,j,l xixjxl + o(|x|3),

dx2n

dt
= β2nx2n +

2n∑
i,j,l=2n−1

c2n
i,j,lxixjxl + o(|x|3),

where x = (x2n−1, x2n), and

cki,j,l =
∞∑

m=1,m 6=2n−1,2n

1
(2β2n − βm) < em, em >

eH
< ek, ek > eH

×

< G(ei, el, λ), em >
eH
< G(ej , em, λ) +G2(em, ej , λ), ek > eH

,

for i, j, k, l = 2n− 1, 2n.
By direct computation, we get
dx2n−1

dt
= (λ− 4n2π2)x2n−1 −

2n2π2λ2

λ+ 8n2π2
(x3

2n−1 + x2n−1x
2
2n) + o(|x|3),

dx2n

dt
= (λ− 4n2π2)x2n −

2n2π2λ2

λ+ 8n2π2
(x2

2n−1x2n + x3
2n) + o(|x|3).
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The rest part of the proof is the same as the proof of Theorem 3.3, and
the theorem is complete.

�

4. Dimension of Attractor

In this section, we investigate the long time behavior of the Burgers’ type
equation (1.1). In particular, we are interested in the existence of global
attractor and the estimate of its dimension. In the first subsection, we show
that the system is dissipative utilizing a technique developed by Nicolaenko,
Scheurer and Temam for the Kuramoto-Sivashinsky equation ([9]). This
technique utilizes the nonlinear advection term to stabilize the linearly un-
stable low modes (with the help of the 2nd order dissipative operator of
course). The first subsection also contains (optimal) estimates on the size
of absorbing ball in the L2 space and estimates on the long time average
of the leading order dissipation. These estimates imply the existence of a
global attractor (see for instance [9]) and will then be used in the second
subsection to derive an upper bound on the Hausdorff and fractal dimension.
The derivation of the upper bound relies on the Constantin-Foias form of
the Kaplan-Yorke formula with global Lyapunov exponents (see for instance
([9])). In the third subsection, we derive a lower bound on the dimension of
the global attractor via estimating the dimension of the unstable manifold
associated with the trivial solution (u ≡ 0). The number of unstable modes
associated with the trivial solution is at least

√
λ for large λ. Thus the

dimension of the global attractor scales at least linearly in
√
λ. In terms

of the alternative formulation as extended system on [0,
√
λ] (1.2), we see

that the dimension of the global attractor scales at least linearly in the sys-
tem volume (in this case, length). Nevertheless, the long time dynamics is
non-chaotic (let alone extensive chaotic) since all trajectories converge either
to a time periodic orbit or steady states ([8]). Therefore, the Burgers’ type
equation studied here suggests that the mere criterion of dimension of global
attractor scale linearly in the system volume is not sufficient to guarantee
extensive chaos as suggested early (see for instance [2], [10]).

4.1. Dissipativity and Basic Estimates. In this section we show that
the Burgers’ type equation (1.1) is dissipative in the sense that it possesses
bounded absorbing balls in L2 and H1 which implies the existence of a
global attractor (see for instance ([9])). The Burgers’ type equation (1.1)
resembles the Kuramoto-Sivashinsky equation ([9]) in the sense that the
linearized (around the trivial solution) dynamics is not stable global in time
(see section 4.3 below), and as we shall demonstrate below, the nonlinear
advection term stablizes (together with higher order linear dissipative term)
the system.

Just as in the case of Kuramoto-Sivashinsky equation studied by Nico-
laenko, Scheurer and Temam ([9]), we consider a translation of the unknown
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by a translational function ψ,

(4.1) u = v + ψ

where ψ is stationary and will be determined later.
Here we have focused on the (simpler) Dirichlet boundary condition only.

The Dirichlet boundary condition is equivalent to periodic boundary condi-
tion with odd symmetry. The general periodic boundary condition can be
handled similarly allowing time dependence of ψ (see for instance ([9]) and
the references therein for the Kuramoto-Sivasinsky equation case).

It is easy to see that the translated unknown v satisfies the following
equation

(4.2) vt = vxx + λv − λvvx − λψvx − λvψx + ψxx + λψ − λψψx.

Multiplying the above equation by v and integrating over the domain
Ω = [0, 1], we have
(4.3)
1
2
d

dt
|v|2L2 = −|vx|2L2 + λ|v|2L2 −

λ

2

∫
Ω
ψxv

2 dx−
∫

Ω
(ψxvx + λψv − λψψxv) dx

Therefore, we naturally hope that ψx ≈ 4 (in fact any number greater than
2 will work) in order to ensure dissipativity (uniform in time boundedness of
|v|L2). This is equivalent to the desire of ψ ≈ 4x. Unfortunately 4x violates
the given boundary condition. We then propose the following modification
of 4x as our translational function

(4.4) ψ(x) =


4x, 0 ≤ x ≤ 1− δ,

4(1− δ)(1− x)
δ

, 1− δ ≤ x ≤ 1

where δ > 0 is a positive constant and is specified as

(4.5) δ =
1
λ
.

With this choice of translational function ψ, we can easily derive, with
the help of Poincaré inequality etc, the following estimates

(4.6)
d

dt
|v|2L2 ≤ −1

4
|vx|2L2 +

λ

4
|v|2L2 + κλ

where here and below κ denotes a generic constant independent of λ.
This leads to, with the help of Gronwall type inequality, the existence

of an absorbing ball in L2 for v of the size independent of λ and an upper
bound on the time averaged leading order dissipation, i.e.

|v(t)|L2 ≤ κ, for t ≥ T,

lim sup
T→∞

1
T

∫ T

0
|vx|2L2 ≤ κλ.

This further implies, thanks to the translational relation (4.1) and the ex-
plicit form of translational function ψ (4.4), the following absorbing ball (in
L2) and bound on the time averaged leading order dissipation
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Proposition 4.1. There exists a generic constant κ independent of λ such
that for any bounded ball BR in the phase space H = L2(Ω), there exists a
TR so that

|u(t)|L2 ≤ κ, for t ≥ TR,(4.7)

lim sup
T→∞

1
T

∫ T

0
|ux|2L2 ≤ κλ.(4.8)

Remark 4.2. It is worthwhile to point out that the estimates above in propo-
sition 4.1 are optimal in terms of dependence on λ for large λ. The opti-
mality can be inferred from earlier results on the asymptotic behavior of
steady states for large λ (see Theorem 2 in [1]). Roughly speaking, there
exists steady state solution very much similar to our translational function
ψ which saturates the estimates above.

4.2. Upper Bound on the Global Attractor. Once we have established
bounded absorbing ball in L2 for the Burgers type equation (1.1), it is easy
to show the existence of bounded absorbing ball in H1 via multiplying (1.1)
by u, integrating over Ω = [0, 1] and applying integration by parts as well
as classical Sobolev and interpolation inequalities. This then leads to the
existence of a global attractor which is a compact invariant set in L2 that
attracts all bounded sets in L2 (see for instance ([9])). In fact, it is possible to
show that the attractor is analytic in space and in time by the Foias-Temam
technique of Gevrey regularity and complexification of the time.

In order to estimate the Hausdorff and fractal dimension of the global
attractor, we use a Kaplan-Yorke type formula derived by Constantin and
Foias (see for instance ([9])). Roughly speaking, if an arbitrary m-volume
under the linearized (along any trajectory on the global attractor) dynamics
is contracting on average in the long time, then the dimension of the attrac-
tor must be bounded by m. Whether a particular m-volume is contracting
is related to global Lyapunov exponents and can be estimated via a formula.

For an abstract dynamical system

dv

dt
= F (v), v|t=0 = v0.

The first variation (linearization) along a trajectory v(t) is given by

(4.9)
dV

dt
= F ′(v)V, V |t=0 = V0.

where

(4.10) F ′(v)V = Vxx + λV − λvVx − λV vx

in our case.
Whether a given m-volume is contracting under the linearized dynamics

is then related to the trace of the linear operator F ′(v). The key result that
we rely on is the following one due to Constantin, Foias and Temam
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Lemma 4.3 ([9], Chapter V, section 3.4). Let X be an invariant set of the
dynamical system. Suppose

(4.11) lim sup
T→∞

sup
v0∈X

sup
φj

1
T

∫ T

0
tr (F ′(v) ◦Qm(t)) dt < 0

for any v0 ∈ X ⊂ H and any orthonormal basis {φj(t), j ≥ 1} of H = L2

with φj ∈ H1
0 for all t where Qm(t) is the orthogonal projection in H onto

the linear span of {φj(t),m ≥ j ≥ 1}. Then there exists an absolute constant
κ such that

(4.12) dimH(X) ≤ m, dimf (X) ≤ κm

where dimH ,dimf denotes the Hausdorff and fractal dimension respectively.

Next, we proceed to estimate the left hand side of (4.11).
By definition, we have

tr (F ′(v) ◦Qm(t)) =
∞∑

j=1

(F ′(v(t)) ◦Qm(t)φj(t), φj(t))

=
m∑

j=1

(F ′(v(t))φj(t), φj(t))(4.13)

Noticing

(4.14) (F ′(v(t))φj(t), φj(t)) = −|φjx|2L2 + λ|φj |2L2 −
λ

2

∫
Ω
vxφ

2
j ,

denoting

(4.15) ρm =
m∑

j=1

|φj(x, t)|2
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we have
m∑

j=1

(F ′(v(t))φj(t), φj(t)) = −
m∑

j=1

|φjx|2L2 + λm− λ

2

∫
Ω
vxρm

≤ −
m∑

j=1

|φjx|2L2 + λm+
λ

2
|ρm|L3 |vx|L3/2

≤ −
m∑

j=1

|φjx|2L2 + λm+
λ

2
|ρm|L3 |vx|L2

≤ −
m∑

j=1

|φjx|2L2 + λm+ κλ(
m∑

j=1

|φjx|2L2 +m)1/3|vx|L2

≤ −
m∑

j=1

|φjx|2L2 + λm+ κλ(
m∑

j=1

|φjx|2L2)1/3|vx|L2

≤ −1
2

m∑
j=1

|φjx|2L2 + λm+ κλ3/2|vx|3/2
L2

≤ −κm3 + λm+ κλ3/2|vx|3/2
L2(4.16)

where we have used Holder’s inequality, the Ghidaglia-Marion-Temam ver-
sion of the Sobolev-Lieb-Thierring inequality ([9], Appendix, Theorem 3.1),
and the fact that, since {φj , j ≥ 1} is an o.n.b. for H and each belongs to
H1

0 ,
m∑

j=1

|φjx|2L2 = −
m∑

j=1

(φjxx, φj)

≥
m∑

j=1

j2π2

= κm3(4.17)

where κ is an absolute constant independent of m.
Combining (4.8), (4.11), (4.12) and (4.16) we have

(4.18) lim sup
T→∞

sup
v0∈X

sup
φj

1
T

∫ T

0
tr (F ′(v) ◦Qm(t)) dt ≤ −κm3 + λm+ κλ9/4.

This then leads to the following upper bound on the Hausdorff and fractal
dimension of the global attractor for the Burgers’ type equation (1.1).

Proposition 4.4. The Burgers type equation (1.1) possess a global attrac-
tor Aλ for all positive parameter λ. Moreover, there exists a constant κu

independent of λ such that

(4.19) dimH(Aλ) + dimf (Aλ) ≤ κuλ
3/4.
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4.3. Lower Bound on the Global Attractor. We now derive a lower
bound which grows linearly in

√
λ. The desired lower bound is achieved

via estimating the dimension of the unstable manifold associated with the
trivial solution u ≡ 0 since the unstable manifold must be a part of the
global attractor (at least in the generic case of λ 6= j2π2).

The linearized equation takes the form

(4.20) vt = vxx + λv

equipped with the homogeneous Dirichlet or periodic boundary condition
on the interval [0, 1].

It is easy to see that for a fixed (large) λ, there are roughly
√
λ number of

unstable modes to the linearized equation. Therefore the unstable manifold
is at least (roughly)

√
λ. This further implies

(4.21) dimAλ ≥ κl

√
λ

Combining the upper bound (4.19) and the lower bound (4.21) we have
the following result

Theorem 4.5. For fixed (large) λ, the Burgers’ type equation (1.1) possesses
a global attractor whose dimension can be estimated as

(4.22) κl

√
λ ≤ dimAλ ≤ κuλ

3/4

where κl and κu are generic constants independent of λ.

An immediate corollary of this result is

Corollary 4.6. The extended system (1.2) on the extended domain Ω̃ =
[0,
√
λ], possesses a global attractor Ãλ whose dimension can be estimated

as

(4.23) κl|Ω̃| ≤ dim Ãλ ≤ κu|Ω̃|3/2

i.e., the dimension of the attractor scales at linearly in the volume (in our
one dimensional case, the length) of the extended system with other param-
eters of the system held fixed.

Again, we reiterate that this extended system has no chaotic dynamics
since each trajectory converges to either a periodic orbit or steady states
[8]. Of course, there are dissipative systems whose attractor dimensions
scale linearly in the system volume while the dynamics in non-chaotic. For
instance, the 1D Chaffee-Infante equation ut − uxx + u3 − u = 0 on [0, L] is
such an example. See Theorem 2.1, Chapter VI in [9] for an upper bound.
The lower bound can be derived in the same way as above.

Finally, we remark that there is still a discrepancy between the upper
and lower bound. It is still an open question to derive an optimal estimate
on the dimension of the attractor (although estimates in proposition 4.1 are
optimal). We tend to believe that the lower bound is optimal. The lower
bound also agrees with the heuristic Landau-Lifschitz argument. However, it
seems that the approach here will not lead to the speculated optimal bound,
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since the last term on the first of in equation (4.16) involves vx which is not
bounded in Lp, p > 1 (see remark 4.2).
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