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We consider a postprocessor that is able to analyze the flow-field generated by an external 
(unknown) code so as to determine the error of useful functionals. The residuals generated by the 
action of a high order finite-difference stencil on a numerically computed flow-field are used for 
adjoint based a-posteriori error estimation. The method requires information on the physical model 
(PDE system), flowfield parameters and corresponding grid and may be constructed without 
availability of detailed information on the numerical method used for the flow computation.  
 
 

INTRODUCTION 
 
The present paper is aimed at the quantitative estimation of approximation error in the 

verification of computational codes [1, 2 and 3]. The error in practically useful functionals due to 
the approximation error may be calculated using adjoint equations and different forms of the 
residual [4-13]. For example, the residual may be calculated for a differential approximation using a 
finite-difference scheme [11-13]. However, the differential approximation by finite-difference 
scheme may turn to be very cumbersome. Very often we have to deal with a commercial code. In 
this case the numerical method is provided without details and code descriptions are not available 
thus excluding an explicit formulation for the differential approximation. On other hand, the local 
approximation error may be estimated via the action of the main problem differential operator on an 
interpolation of the numerical solution [7-9].  In general, this provides the opportunity to develop a 
postprocessor able to analyze the flowfield calculated by some unknown numerical method.  Such 
postprocessor is capable to determine the a posteriori error of practically useful functionals (drag, 
lift, etc) using information on the grid and flowfield parameters.  

Herein we consider another (if compared with [7]) way for determining the local 
approximation error that enables us to avoid the  interpolation stage. This should simplify 
treatments and avoid additional error of interpolation. 

 
Let us consider a formal scheme of the  algorithm. We are interested in properties of 

numerical solution of the following problem 
wfN =

~ in nR⊂Ω , );()(~)(~
2 Ω∂∈=Ω∂ Lxff B   (1) 

Here is a nonlinear differential operator ( ).  N )()()( 22 Ω→Ω∂×Ω LLH k

The numerical solution is provided by a finite-difference equation  
wfN hh =  , . wNf hh

1−= (2) 

As a result we obtain a grid function . We assume the existence of a smooth enough function 
 that coincides at the nodes with the grid function. Finite differences in  may 

be expanded using Taylor series in the Lagrange form. This provides us with a differential 
approximation of finite-difference scheme [14] 

n
kf
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wfNf h =+ )(δ  .  (3) 
Here )( fhδ is the approximation error containing leading terms of Taylor expansion. Consider 
(1) as an exact equation and (3) as perturbed one. Exact and perturbed solutions are connected by 
the relation  

),(),(~),( xtfxtfxtf Δ+= .  (4) 
The operator is assumed to be Frechet differentiable, the corresponding derivative being 
denoted as . Then the expansion 

N
fN ffNfNffN f Δ+=Δ+ )()~()~( is valid with the 

tolerance of )( 2fO Δ . The differential approximation (3) may be recast in a form   

wffNfN hf =+Δ+ )(~ δ . (5) 

By subtracting the exact equation (1) from (5) we obtain an equation for the perturbation  
qffN hf =−=Δ )(δ , nR⊂Ω , ;0)( =Ω∂Δf  (6) 

 
Consider Frechet-differentiable goal functional . We are interested in the variation 
of this functional due to the truncation error of the finite-difference scheme. Its differential  

1)(: RH k →Ωε

t
fftfff

tf
)()(lim)(

0

εεεε −Δ+
=Δ=Δ

→
 is a linear continuous functional that may be formulated as 

a Riesz-representation using an inner product in )(2 ΩL   

22
),(),( LLf fgf Δ=Δ=Δ εε . (7) 

It may be recast as  

2222
),(),(),(),( *11

LLfLfL qgNqgqNgf Ψ===Δ=Δ −−ε , (8) 

where is a formal solution of adjoint problem  gN f
*1−=Ψ

gN f =Ψ* . (9) 

The detailed form of the adjoint problem may be obtained according to  [16] from the bilinear 
identity   via integration by parts. Thus, the variation of the 
functional caused by the  approximation error may be described by  

22
),(),( *

LfLf fNfN ΨΔ=ΔΨ

ΩΨ=Δ ∫
Ω

dqf )(ε ,  
(10) 

Where  is the solution of the adjoint problem  )( fΨ

0* =−Ψ gN f  in nR⊂Ω , 0)( =Ω∂Ψ . (11) 

There are different ways for calculating the perturbation term q. For example, it may be 
explicitly calculated using finite-differences [11]. 

Herein we consider another option. Let us assume we do not know  exactly and are 
unable to display  

hN
)( fhδ  explicitly. Let us use a known approximation of higher order  and 

act with this stencil on the solution of system (2). Taking into account corresponding differential 
approximation, the following equation may be written as 

hN ,1

 
ηδ =+Δ+= )(~

,1,1 ffNfNfN hfh .  

 
By subtracting the unperturbed equation we obtain 

)(,1 fwfN hf δη −−=Δ .  
According  to (6) this equation determines the perturbation .  q
If the truncation error )(,1 fhδ  is known, or if it is known that this value is small compared 

to the error of the main scheme, we may estimate the value of disturbance as  
 

fwq h,1δη −−=  (12) 
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or 
wq −≈ η . (13) 

 
The expression (13) serves as  the basis for the postprocessor considered in present paper.  
The perturbing  term may be obtained as a residual engendered by the action of a differential 

operator on a cubic spline interpolation of a  finite-dimensional solution [7]. As a matter of fact the 
approach discussed above may be considered as the implicit action of a differential operator on the 
natural interpolation of a solution performed  using a Taylor series expansion. This approach 
simplifies the algorithm and enables avoidance of  additional interpolation error.  

 
 

1. TEST PROBLEM 
Let us consider the  approach discussed above for an example of supersonic inviscid flow. 

The following system of Euler equations and corresponding adjoint equations was used in 
numerical tests. 
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∂
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(16) 

Herein , VUUU == 21 , ePh γρ =),(  is the enthalpy,  is the total enthalpy. hVUh ++= 2/)( 22
0

The density at certain point  is used as an estimated parameter. We recast it  
as the goal functional. 
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Ω

δδρρ  
(17)

and  consider the variation of this  functional as a function of local perturbations . ifδ
The corresponding adjoint system assumes the form : 
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where hVU ΨΨ=ΨΨ=ΨΨ ,,, 21ρ  are the adjoint parameters. For a different  goal functional the  
adjoint system would differ in as far as  source terms are concerned. 

According to (10) the functional variation as a function of the  truncation error has a form: 
( )dXdYhVU hVU Ψ+Ψ+Ψ+Ψ= ∫∫

Ω

δδδδρδε ρ   
(21) 

 
And according to  (13) it may be estimated via  
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(22) 

 
The parameters knf ,η  are obtained by the action of a high order finite-difference stencil on 

the computed field.  



 4

As a heuristic example let us consider the equation 0
~~
=

∂
∂

+
∂
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y
s

x
f . Let the field be calculated 

using a first order finite-difference approximation.  
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Taylor series in Lagrange form yields a differential approximation [5] 0=++
∂
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∂
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y
s

x
f δδ , 

whose detailed   form is: 
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(the parameters are unknown). ),1,0(),1,0( ∈∈ n
k

n
k βα

Let us assume we do not know the  exact form of the truncation error in (24). It may be 
determined from the numerically calculated flowfield. For this purpose let us calculate the 
magnitude of residual  obtained as a  result of action of a second order accurate stencil on the 
 first order finite difference calculation. 
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The Taylor expansion of (25) yields  
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The grid functions   and  are obtained by solving (23) and should satisfy (24). After 
substitution of (24) to (26) the residual may be expressed as 

n
kf n

ks

−
∂

+∂
+

∂
+∂

= 3

32

3

32 ),(
6

),(
6 y

hyxsh
x

yhxfh y
n
kknykx

n
knxn

k

χγ
η  

3

32

3

32

2

2

2

2 ),(
6

),(
6

),(),(
2
1

y

hyxsh

x
yhxfh

y
yxs

h
x

yxf
h y

n
kknykx

n
knxkn

y
kn

x ∂

+∂
−

∂
+∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+
∂

∂
−

αβ  

 
 

(27) 

Correspondingly, the minimum order term of the truncation error (24) assumes the form 
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Thus the residual may be used for estimatioing  the main term of the differential 

approximation.  
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By using a higher (fourth) order stencil we may estimate all truncation errors with an 

asymptotically small tolerance 
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(30) 

 
So both the least order term of differential approximation (24) and the total approximation 

may be estimated by a residual obtained from the action of high order stencil on the numerical 



 5

solution. These residuals may be considered as a field of truncation error perturbing an exact 
solution. Their influence on a goal functional may be accounted for by using adjoint parameters.  

In comparison with the method of [11] the present  approach does not require  knowledge of 
the exact form of the differential approximation of the main numerical scheme. This may turn out to be 
useful if the differential approximation is very complicated (such as Godunov type schemes) or 
unknown (commercial code). Above all, this approach does not require calculation of high order 
derivatives of the differential approximation.  

 
 

2. NUMERICAL TESTS 
Several versions of first order finite-difference schemes were employed including donor 

cells [17] and the Roe scheme [18].  
A symmetric second order stencil was used for residual calculation .  
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The adjoint problem was solved by a first order finite-difference scheme (donor cells [17]).  
For comparison a fourth order approximation was used for estimation of residual   
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(32) 

This stencil provided very similar  results to those of (31).  
 

2.1. Prandtl-Mayer flow. 

The comparison of deviation of the numerical solution from analytical one 
ρ
ρρ exact−  and 

error estimation (22) is performed for a rarefaction fan (freestream Mach number M=4, deflection 
angle °=10α ). Fig.  1 displays the results of error estimation as a function of the inverse spatial 
step (number of nodes).  
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Fig. 1.   1-deviation of numerical solution from analytical value, 2- estimation of error using 

postprocessor.  
 
The error of the target functional obtained from (22) is close to the discrepancy between 

the numerical result and the analytical value. 
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2.2. Shocked flow 
The error in the  density past two crossing shocks ( , M=4) is calculated as an 

additional test. Figs. 2 and 3 display the isolines of density in flowfield and adjoint density (their 
concentration marks the location of estimated point).  
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Fig. 4. The pointwise density error as a function of reciprocal spatial step. 1-deviation of 

numerical solution from analytical value, 2- error estimation by (22).  
 

Fig. 4 presents the results for a flowfield calculated using the Roe scheme as a function of the  
spatial step. 

Similar tests were performed for a  flowfield calculated using the second order Godunov 
method [19], see Fig. 5.  On smooth parts of the solution the second order stencil is not able to 
determine the approximation error. Only the first order components generated by the shocks [15] may 
be detected. However, these components dominate the solution of this problem since the results of 
second and fourth orders are rather close. 
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Fig. 5. Error as a function of reciprocal step (number of nodes) for second order Godunov 

[19]. 1-deviation of numerical solution from analytical values, 2- estimation of error by 
postprocessing. 

 
 

3. CONCLUSION 
The variation of the goal functional caused by the approximation error may be calculated via 

residuals obtained by the action of high order stencils on the  numerical flowfield and adjoint 
parameters. This enables the development of a postprocessor using only the computed flowfield 
(and grid) information and connected with the analyzed code at the level of the respective PDE. 

Numerical tests confirm validity of this methodology for the pointwise density estimation of
 a supersonic flow. 
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Figure captions 

Fig. 1.   1-deviation of numerical solution from analytical value, 2- estimation of error using 
postprocessor. 
Fig. 2. Density isolines 
Fig. 3. Adjoint density isolines 
Fig. 4. The pointwise density error as a function of reciprocal spatial step. 1-deviation of numerical 
solution from analytical value, 2- error estimation by (22). 
Fig. 5. Error as a function of  reciprocal step (number of nodes) for second order Godunov [19]. 1-
deviation of numerical solution from analytical values, 2- estimation of error by postprocessing. 
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