
A family of pseudo–Anosov braids with small dilatation

Eriko Hironaka and Eiko Kin

Abstract. This paper describes a family of pseudo–Anosov braids with small dilatation.
The smallest dilatations occurring for braids with 3, 4 and 5 strands appear in this family.
A pseudo-Anosov braid with 2g + 1 strands determines a hyperelliptic mapping class with
the same dilatation on a genus–g surface. Penner showed that logarithms of least dilatations
of pseudo–Anosov maps on a genus–g surface grow asymptotically with the genus like 1/g,
and gave explicit examples of mapping classes with dilatations bounded above by log 11/g.
Bauer later improved this bound to log 6/g. The braids in this paper give rise to mapping
classes with dilatations bounded above by log(2 +

√
3)/g. They show that least dilatations

for hyperelliptic mapping classes have the same asymptotic behavior as for general mapping
classes on genus–g surfaces.

1 Introduction

A braid β on s strands is pseudo–Anosov if its associated mapping class φ on a 2–sphere
S2 with s + 1 marked points is pseudo–Anosov. In this case, its dilatation λ(β) is defined
to be the dilatation λ(φ) of φ. For fixed s, the set of dilatations of pseudo–Anosov braids
on s strands consists of real algebraic integers greater than 1 with bounded degree, and
hence has a well-defined minimum. The general problem of finding the least dilatation of
pseudo–Anosov braids on s strands is open, and exact results are known only for s ≤ 5. Let
σ1, . . . , σs−1 be the standard braid generators for braids with s strands. For s = 3, Matsuoka
showed that the least dilatation is realized by σ1σ

−1
2 [22]. Ko, Los and Song showed that

for s = 4, the least dilatation is realized by σ1σ2σ
−1
3 [18]. Recently Ham and Song have

announced a revised proof for the case s = 4, and a proof that for s = 5, σ1σ2σ3σ4σ1σ2 has
the least dilatation [13].

In this paper, we study a family of generalizations of these examples to arbitrary numbers
of strands. Let B(D, s) denote the braid group on D with s strands, where D denotes a
2–dimensional closed disk. First consider the braids βm,n in B(D,m+ n+ 1) given by

βm,n = σ1 · · ·σmσ
−1
m+1 · · ·σ−1

m+n.

Matsuoka’s example appears as β1,1, and Ko, Los and Song’s example as β2,1. For any
m,n ≥ 1, βm,n is pseudo–Anosov (Theorem 3.9). The dilatations of βm,m coincide with
those found by Brinkmann [7](see also Section 4.2), who also shows that the dilatations
arising in this family can be made arbitrarily close to 1.
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Figure 1: Braids (a) βm,n and (b) σm,n.

It turns out that one may find smaller dilatations by passing a strand of βm,n once around
the remaining strands. As a particular example, we consider the braids σm,n defined by taking
the rightmost-strand of βm,n and passing it counter-clockwise once around the remaining
strands. Figure 1 gives an illustration of βm,n and σm,n. The braid σ1,3 is conjugate to Ham
and Song’s braid σ1σ2σ3σ4σ1σ2. For |m−n| ≤ 1, we show that σm,n is periodic or reducible.
Otherwise σm,n is pseudo–Anosov with dilatation strictly less than the dilatation of βm,n

(Proposition 3.11, Corollary 3.32). The dilatations of σg−1,g+1 (g ≥ 2) satisfy the inequality

λ(σg−1,g+1)
g < 2 +

√
3 (1)

(Proposition 3.36).
Let Ms

g denote the set of mapping classes (or isotopy classes) of homeomorphisms on
the closed orientable genus–g surface Fg set-wise preserving s points. We denote M0

g by
Mg. For any subset Γ ⊂ Ms

g, define λ(Γ) to be the least dilatation among pseudo–Anosov
elements of Γ, and let δ(Γ) be the logarithm of λ(Γ). For the braid group B(D, s), and any
subset Γ ⊂ B(D, s), define λ(Γ) and δ(Γ) in a similar way. By a result of Penner [25] (see
also [23]), δ(Mg) ³ 1

g
.

An element of Mg is called hyperelliptic if it commutes with an involution ι on Fg such
that the quotient of Fg by ι is S2. Let Mg,hyp ⊂ Mg denote the subset of hyperelliptic
elements of Mg. Any pseudo–Anosov braid on 2g + 1 strands determines a hyperelliptic
element of Mg with the same dilatation (Proposition 2.10). Thus, (1) implies:

Theorem 1.1 For g ≥ 2,

δ(Mg) ≤ δ(Mg,hyp) ≤ δ(B(D, 2g + 1)) <
log(2 +

√
3)

g
.

This improves the upper bounds on δ(Mg) found by Penner ( log 11
g

) [25] and Bauer ( log 6
g

) [1].
Theorem 1.1 shows the following.

Theorem 1.2 For g ≥ 2,

δ(B(D, 2g + 1)) ³ 1

g
, and δ(Mg,hyp) ³ 1

g
.
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This paper is organized as follows. Section 2 reviews basic terminology and results on
mapping class groups. In Section 3, we determine the Thurston-Nielsen types of βm,n and
σm,n by finding efficient graph maps for their monodromy actions following [2]. We observe
that the associated train tracks have “star-like” components, and their essential forms don’t
depend on m and n (Figures 20 and 21). To find bounds and inequalities among the dilata-
tions, we apply the notion of Salem–Boyd sequences [5], [28], and relate the similar forms of
the efficient graph maps for βm,n and σm,n to similar forms for characteristic polynomials of
the dilatations. In particular, we show that the least dilatation that occurs among βm,n and
σm,n for m+ n = 2g (g ≥ 2) is realized by σg−1,g+1, and find bounds for λ(σg−1,g+1) yielding
the inequality (1). Section 4 discusses the problem of determining the least dilatations of
special subclasses of pseudo–Anosov maps. In Section 4.1, we briefly describe the relation
between the forcing relation on braid types and dilatations, and show how σm,n arise as
the braid types of periodic orbits of the Smale–horseshoe map. In Section 4.2, we consider
pseudo–Anosov maps arising as the monodromy of fibered links, and relate our examples to
those of Brinkmann.
Acknowledgements: The authors thank Hiroyuki Minakawa for valuable discussions, and
an algebraic trick that improved our original upper bound for λ(σg−1,g+1). The first author
thanks the J. S. P. S., Osaka University and host Makoto Sakuma for their hospitality and
support during the writing of this paper. The second author is grateful for the financial
support provided by the research fellowship of the 21st century COE program in Kyoto
University.

2 Preliminaries

In this section, we review basic definitions and properties of braids (Section 2.1), mapping
class groups (Section 2.2), spectra (Section 2.3), and a criterion of the pseudo–Anosov prop-
erty (Section 2.4). Some results are well-known, and more complete expositions can be found
in [2], [3], [9], and [10]. We include them here for the convenience of the reader.

2.1 Braids

Let F be a compact orientable surface with s marked points S = {p1, . . . , ps} ⊂ int(F ), the
interior of F . A braid representative β on F is the images of continuous maps

fp1 , . . . , fps : I = [0, 1] → F × I,

satisfying for i = 1, . . . , s,

(B1) fpi
(0) = pi × 0,

(B2) fpi
(1) ∈ S × 1,

(B3) fpi
(t) ∈ F × t for t ∈ I, and
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(B4) fpi
(t) 6= fpj

(t) for t and i 6= j.

Define the product of two braid representatives to be their concatenation. Let B(F ;S) be
the set of braid representatives up to ambient isotopy fixing the boundary of F point-wise.
The above definition of product determines a well-defined group structure on B(F ;S), and
the group is called the braid group on F .

For any partition S = S1 ∪ · · · ∪ Sr, let B(F ;S1, . . . ,Sr) be the subgroup of B(F ;S)
consisting of braids (fp1 , . . . , fps) satisfying for all p ∈ Sj (j ∈ {1, · · · , r}), fp(1) ∈ Sj.

In the rest of this section, we assume that F is either a disk D or a sphere S2. Then the
braid group B(F ;S) has generators σ1, . . . , σs−1, where σi is the braid shown in Figure 2.
When F = D, B(D;S) is called the Artin braid group and has finite presentation

〈σ1, . . . , σs−1 : σiσi+1σi = σi+1σiσi+1, σiσj = σjσi if |i− j| ≥ 2〉.

si+21 i−1 i i+1

Figure 2: Braid generator σi.

Consider the natural map c : D → S2 given by identifying ∂D, the boundary of D to a
point p∞ on S2. By abuse of notation, we will write S for c(S). Then there is an induced
map:

B(D;S) → B(S2;S, {p∞}) (2)

β 7→ β̂.

For example, β̂m,n and σ̂m,n are shown in Figure 3 with the strand associated to p∞ drawn

on the right. For β ∈ B(D;S), let β ∈ B(S2;S) be the image of β̂ under the forgetful map

B(S2;S, {p∞}) → B(S2;S) (3)

β̂ 7→ β.

The following lemma can be found in [3].

Lemma 2.1 The map B(D;S) → B(S2;S) given by composing the maps in (2) and (3) has
kernel normally generated by ξ = σ1σ2 · · ·σ2

s−1σs−2 · · ·σ1.

For example, βm,n and σm,n shown in Figure 1 differ by a conjugate of ξ, and hence we have
the following.
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Figure 3: Images of (a) βm,n and (b) σm,n in B(S2;S, {p∞}).

Proposition 2.2 The braids βm,n and σm,n satisfy βm,n = σm,n.

The final lemma of this section deals with notation.

Lemma 2.3 Let S1 and S2 be finite subsets of int(F ) with the same cardinality, and h : F →
F any homeomorphism taking S1 to S2. Then conjugation by h defines an isomorphism
B(F ;S1) → B(F ;S2).

In light of Lemma 2.3 if s is the cardinality of S, we will write B(F, s) for B(F ;S).

2.2 Mapping class groups

For any closed orientable surface F and a finite subset S ⊂ F of marked points, let M(F ;S)
be the group of isotopy classes of orientation preserving homeomorphisms of F set-wise
preserving S. The Thurston-Nielsen classification states that any homeomorphism of a
surface is isotopic to one of three types, which we describe below.

A map Φ: F → F set-wise preserving S is defined to be periodic if some power of Φ
equals the identity map; and reducible if there is a Φ-invariant closed 1–submanifold whose
complementary components in F \ S have negative Euler characteristic. A mapping class
φ ∈M(F ;S) is periodic (respectively, reducible) if it contains a representative that is periodic
(respectively, reducible).

Before defining the third type of mapping class, we will make some preliminary definitions.
A singular foliation F on F with respect to S is a partition of F into a union of real intervals
(−∞,∞) and [0,∞) called leaves such that for each point x ∈ F , the foliation F near x has
one of the following types in a local chart around x:

(F1) x ∈ F is a regular point (we will also say a 2–pronged point) of F (Figure 4(a)).

(F2) x ∈ F is an n–pronged singularity of F (Figure 4(b),(c)), where n ≥ 1 if x ∈ S, and
n ≥ 3 if x ∈ F \ S.
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Figure 4: Local picture of a singular foliation.

Two singular foliations F+ and F− with respect to S are transverse if they have the same
set of singularities S ′ and if the leaves of F+ and F− intersect transversally on F \ S ′.

A path α on F is a transverse arc relative to a singular foliation F with respect to S if
α intersects the leaves of F transversely. Two transverse arcs α0 and α1 relative to F are
homotopic if there is a homotopy α : I × I → F such that α(I × 0) = α0, α(I × 1) = α1,
and for all t ∈ I, α(t× I) is contained in a leaf of F . We say that µ is a transverse measure
on a singular foliation F with respect to S if µ defines a non-negative Borel measure µ(α)
on each transverse arc α with the following two properties:

(M1) If α′ is a subarc of α, then µ(α′) = µ(α)|α′ .
(M2) If transverse arcs α0 and α1 relative to F are homotopic, then µ(α0) = µ(α1).

A pair (F , µ) satisfying (M1) and (M2) is called a measured foliation. Given a measured
foliation (F , µ) and a number λ > 0, (F , λµ) denotes the measured foliation whose leaves are
the same as those of F such that the measure of each transverse arc α relative to F is given
by λµ(α). For a homeomorphism f : F → F set-wise preserving S, (F ′, µ′) = f(F , µ) is the
measured foliation whose leaves are the images of leaves of F under f , and the measure µ′

on each arc α transverse to F ′ is given by µ(f−1(α)).
A map Φ: F → F set-wise preserving S is pseudo–Anosov if there is a number λ > 1 and

a pair of transverse measured foliations (F±, µ±) such that Φ(F±, µ±) = (F±, λ±1µ±). The
number λ = λ(Φ) is called the dilatation of Φ, and F− and F+1 are called the stable and
unstable foliations or the invariant foliations associated to Φ. A mapping class φ ∈M(F ;S)
is pseudo–Anosov if φ is the isotopy class of a pseudo–Anosov map Φ. In this case, the
dilatation of φ is defined to be λ(φ) = λ(Φ).

Theorem 2.4 (Thurston-Nielsen Classification Theorem) Any element φ ∈M(F ;S)
is either periodic, reducible or pseudo–Anosov. Furthermore, if φ is pseudo–Anosov, then
the pseudo–Anosov representative of φ is unique up to conjugacy.

As with braids, for any partition S = S1 ∪ · · · ∪ Sr, there is a subgroup

M(F ;S1, . . . ,Sr) ⊂M(F ;S)

that preserves each Si set-wise. There is a natural map

M(F ;S1, . . . ,Sr) →M(F ;S1, . . . ,Sr−1)
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called the forgetful map. For pseudo–Anosov mapping classes φ, log(λ(φ)) can be interpreted
as the minimal topological entropy among all representatives of φ [10]. We thus have the
following inequality on dilatations.

Lemma 2.5 Let φ ∈ M(F ;S1, . . . ,Sr), and ψ ∈ M(F ;S1, . . . ,Sr−1) the image of φ under
the forgetful map. If φ and ψ are both pseudo–Anosov, then λ(φ) ≥ λ(ψ).

Lemma 2.6 Let φ ∈M(F ;S1, . . . ,Sr) be pseudo–Anosov. Suppose that the pseudo–Anosov
representative Φ of φ does not have a 1–pronged singularity at any point of Sr. Let ψ ∈
M(F ;S1, . . . ,Sr−1) be the image of φ under the forgetful map. Then ψ is pseudo–Anosov
and λ(ψ) = λ(φ) = λ(Φ).

Proof. Let F± be singular foliations with respect to S1 ∪ · · · ∪ Sr, and (F±, µ±) a pair of
transverse measured foliations associated to Φ. Since F± does not have 1–pronged singular-
ities at points of Sr, F± give well-defined singular foliations with respect to S1 ∪ · · · ∪ Sr−1.
Thus, Φ is a pseudo–Anosov representative of ψ, and hence λ(ψ) = λ(φ) = λ(Φ). ¤

As in the case of braids, changing the location of the points in S by a homeomorphism
does not change the group M(F ;S).

Lemma 2.7 Let S1 and S2 be two finite subsets of F with the same cardinality, and h : F →
F any homeomorphism taking S1 to S2. Then conjugation by h defines an isomorphism
M(F ;S1) →M(F ;S2).

If F has genus–g, and S has cardinality s, we will also write Ms
g = M(F ;S).

The theory of mapping class groups on closed surfaces extends to mapping class groups on
surfaces with boundary. Let F b be a compact orientable surface with b boundary components,
and S ⊂ int(F b) a finite set. DefineM(F b;S) to be the group of isotopy classes of orientation
preserving homeomorphisms of F b set-wise preserving S and the boundary components. A
singular foliation F on F b with respect to the set of marked points S is a partition of F
into a union of leaves such that each point x ∈ int(F ) has a local chart satisfying one of the
conditions (F1), (F2), and each boundary component has n-prongs for some n ≥ 1. Figure 5
illustrates representative leaves of a singular foliation with a 1–pronged (Figure 5(a)) and
3–pronged (Figure 5(b)) singularity. Periodic, reducible and pseudo–Anosov mapping classes
are defined as for the case of closed surfaces using this definition of singular foliations.

(a) (b)

Figure 5: Leaves of a singular foliation near a boundary component.
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Let

c : F b → F b (4)

be the continuous map, where F b is the closed surface obtained from F b by contracting b
boundary components to points q1, . . . , qb. As before, we will write S for c(S). Let Q =
{q1, . . . , qb}. The above definitions imply the following.

Lemma 2.8 The contraction map c in (4) induces an isomorphism

c∗ : M(F ;S) →M(F b;S,Q),

which preserves the Thurston-Nielsen types of mapping classes. Furthermore, if F is a
singular foliation defined on F which is n–pronged along a boundary component A of F ,
then the image of F under c∗ has an n–pronged singularity at c∗(A).

The isomorphism c∗ given in Lemma 2.8 is handy in discussing mapping classes coming from
braids. Let F be either D or S2. There is a natural homomorphism

B(F ;S) → M(F ;S) (5)

β 7→ φβ

defined as follows. Let D1, . . . , Ds−1 ⊂ int(D) be disks with Di ∩Dj = ∅ for i 6= j such that
Di contains two points pi and pi+1 of S and no other points of S. The action of a generator
σi of B(F ;S) is the mapping class in M(F ;S) that fixes the exterior of Di and rotates a
closed line segment connecting pi and pi+1 in Di by 180 degrees in the counter-clockwise
direction as in Figure 6.

i+21 si−1 i i+1

Figure 6: Action of σi as a homeomorphism of F .

Given a braid β ∈ B(D;S), let β̂ be its image in B(S2;S, {p∞}) as in (2). Then c∗ satisfies
c∗(φβ) = φbβ.

The following useful lemma can be found in [3].

Lemma 2.9 If S has cardinality s, then the kernel of the map

B(D;S) → M(S2;S, {p∞})
β 7→ φbβ

is the center Z(B(D;S)) generated by a full twist braid ∆ = (σ1 · · ·σs−1)
s.
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We say that β ∈ B(D;S) is periodic (respectively, reducible, pseudo–Anosov), if φbβ ∈
M(S2;S, {p∞}) is periodic (respectively, reducible, pseudo–Anosov). In the pseudo–Anosov

case, we set λ(β) = λ(β̂) = λ(φbβ).

Let β be the image of β̂ in B(S2;S) under the forgetful map in (3). Then Lemma 2.5

implies that if β̂ and β are pseudo–Anosov, we have λ(β) = λ(β̂) ≥ λ(β), and by Lemma 2.6,
the equality holds if p∞ is not a 1–pronged singularity for the invariant foliations associated
to the pseudo–Anosov representative of φbβ.

2.3 The braid spectrum

For any subset Γ ⊂ Ms
g, let Σ(Γ) be the set of logarithms of dilatations coming from

pseudo–Anosov elements of Γ. For any subset Γ ⊂ B(D, s), define Σ(Γ) in a similar way.

Let B̂(D, s) ⊂ Ms+1
0 be the image of B(D, s) under the map in Lemma 2.9, and B̂pA(D, s)

the set of pseudo–Anosov elements of B̂(D, s).

Proposition 2.10 For g ≥ 1,

Σ(B(D, 2g + 1)) = Σ(B̂(D, 2g + 1)) ⊂ Σ(Mg,hyp) ⊂ Σ(Mg).

Proof. By using Lemma 2.9, it is easy to see that Σ(B(D, 2g + 1)) = Σ(B̂(D, 2g + 1)).

Let S ⊂ int(D) be a subset of 2g + 1 points, and Ŝ = S ∪ {p∞}. Let F be the double

cover of S2 branched along Ŝ. Then F has genus–g. We will define a set map

B̂pA(D, 2g + 1) →Mg

whose image consists of hyperelliptic elements which preserves dilatation. Let φ ∈ B̂pA(D, 2g+
1). Then φ has a pseudo–Anosov representative homeomorphism Φ that is unique up to con-
jugacy. Let Φ′ be its lift to F by the covering F → S2 with invariant foliations given by the
lifts of the invariant foliations associated to Φ. Then Φ′ is pseudo–Anosov with the same
dilatation as Φ. Let φ′ be its isotopy class. Then φ′ defines a hyperelliptic, pseudo–Anosov
mapping class in M(F ; Ŝ ′) with the same dilatation as φ, where Ŝ ′ is the preimage of Ŝ in
F .

Now consider the forgetful map M(F ; Ŝ ′) → M(F ; ∅) = Mg. The invariant foliations

associated to Φ′ have prong orders at Ŝ ′ that are divisible by the degree of the covering
F → S2. Thus, the singularities of Φ′ at Ŝ ′ are all even–pronged. It follows that by
Lemma 2.6, the image of φ′ under the forgetful map is pseudo–Anosov and has the same
dilatations as φ′. ¤

Proposition 2.10 immediately implies the following.

Corollary 2.11 For g ≥ 1, δ(Mg) ≤ δ(Mg,hyp) ≤ δ(B(D, 2g + 1)).
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2.4 Criterion for the pseudo–Anosov property

What follows is a criterion for determining when β ∈ B(D;S) is pseudo–Anosov [2].
Let G be a finite graph embedded on an orientable surface F , possibly with self-loops,

but no vertices of valence 1 or 2. Let Edir(G) be the set of oriented edges of G, E tot(G) the
set of unoriented edges, and V(G) the set of vertices. For e ∈ Edir(G), let i(e) and t(e) be
the initial vertex and the terminal vertex respectively, and e the same edge with opposite
orientation. An edge path τ on G is an oriented path τ = e1 · · · e`, where e1, . . . , e` ∈ Edir(G)
satisfies t(ei) = i(ei+1) for i = 1, . . . , ` − 1. One can associate a fibered surface F(G) ⊂ F
with a projection π : F(G) → G (Figure 7). The fibered surface F(G) is decomposed into
arcs and into polygons modelled on k–junctions for k ≥ 1. The arcs and the k–junctions are
called decomposition elements. Under π, the preimage of the vertices of valence k of G is
the k–junctions, and the preimage of the edges of G is the strips fibered by arcs, which are
complementary components of the set of all junctions of F(G).

Figure 7: Fibered surface

Let G and H be finite graphs embedded on F , and f : F → F a homeomorphism. Assume
that f maps each decomposition element of F(G) into a decomposition element of F(H),
and each junction of F(G) into a junction of F(H). Then f induces a graph map g : G→ H
which sends vertices of G to vertices of H, and each edge of G to an edge path of H. Under
this assumption with the case G = H, we say that F(G) carries f .

Let V tot(G) be the vector space of formal sums
n∑

i=1

aiei, where ai ∈ R and ei ∈ E tot(G).

Any edge path on G determines an element of V tot(G) by treating each oriented edge as an
unoriented edge with coefficient 1, regardless of orientation. For a graph map g : G → H,
define the transition matrix for g to be the transformation

T tot
g : V tot(G) → V tot(H)

taking each e ∈ E tot(G) to g(e) considered as an element of V tot(H).
We now restrict to the case F = D. Let S = {p1, . . . , ps} ⊂ int(D) be a set of marked

points, and Pi a small circle centered at pi whose interior disk does not contain any other
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points of S. We set P =
s⋃

i=1

Pi. Choose a finite graph G embedded on D that is homotopy

equivalent to D \ S such that P is a subgraph of G. Given β ∈ B(D;S), suppose that a
fibered surface F(G) carries some homeomorphim f of φβ ∈M(D;S). Then the graph map
g : G → G, called the induced graph map for φβ, preserves P set-wise. Let preP be the set
of edges e ∈ E tot(G) such that gk(e) is contained in P for some k ≥ 1. By the definition of
preP , the transition matrix T tot

g has the following form:

T tot
g =



P A B
0 Z C
0 0 T


 ,

where P and Z are the transition matrices associated to P and preP respectively, and T
is the transition matrix associated to the rest of edges E(G) called real edges. Let V (G) be
the subspace of V tot(G) spanned by E(G). The matrix T is the restriction of T tot

g to V (G)
and is called the transition matrix with respect to the real edges. The spectral radius of T is
denoted by λ(T ).

Given a graph map g : G → G, define the derivative Dg : Edir(G) → Edir(G) as follows:
For e ∈ Edir(G), write g(e) = e1e2 · · · e`, where ei ∈ Edir(G). The image of e under Dg is
defined by the initial edge e1.

A graph map g : G→ G is efficient if for any e ∈ Edir(G) and any k ≥ 0, gk(e) = e1e2 · · · ej

satisfies Dg(ei) 6= Dg(ei+1) for all i = 1, . . . , j − 1. We also say in this case that gk has no
back track for any k ≥ 0.

A nonnegative square matrix M is irreducible if for every set of indices i, j, there is an
integer ni,j > 0 such that the (i, j)th entry of Mni,j is strictly positive.

Theorem 2.12 [2] Let β ∈ B(D;S), and g : G→ G the induced graph map for φβ. Suppose
that

(BH:1) g is efficient, and

(BH:2) the transition matrix T with respect to the real edges is irreducible with λ(T ) > 1.

Then β is pseudo–Anosov with dilatation equal to λ(T ).

It is not hard to check that the criterion of Theorem 2.12 behaves well under conjugation
of maps. For the case of braids, this yields the following.

Lemma 2.13 Let α1 ∈ B(D;S). Suppose that a fibered surface F(G) carries a homeomor-
phism f ∈ φα1, and let g1 : G → G be the induced graph map for φα1. We now consider
a conjugate braid α2 with α2 = γα1γ

−1, and we take any homeomorphism h ∈ φγ. Then a
fibered surface F(h(G)) carries a homeomorphism hfh−1 ∈ φα2, and hence hfh−1 induces a
graph map g2 : h(G) → h(G), which is the induced graph map for φα2. If g1 satisfies (BH:1)
and (BH:2), then g2 also satisfies (BH:1) and (BH:2).
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Let φ ∈ M(D;S) be pseudo–Anosov, and g : G → G the induced graph map for φ
satisfying satisfying (BH:1) and (BH:2). We construct an associated train track obtained
by graph smoothing given as follows: Let Ev ⊂ Edir(G) be the set of oriented edges of G
emanating from a vertex v. For e1, e2 ∈ Ev, e1 and e2 are equivalent if Dk

g(e1) = Dk
g(e2)

for some k ≥ 1. A gate is an equivalence class in Ev. The train track τg associated to g is
constructed using the following steps:

Step T1: Deform each pair of equivalent edges ei, ej ∈ Ev in a small neighborhood of v so
that ei and ej are tangent at v.

Step T2: Insert a small disk Nv at each vertex v. For each gate γ, assign a point p(γ) on
the boundary of Nv.

Step T3: If, for some edge e of G and some k ≥ 1, gk(e) contains consecutive edges eje`

(ej, e` ∈ Ev) such that γj = [ej] and γ` = [e`] with γj 6= γ`, then join p(γj) and p(γ`)
by a smooth arc in Nv satisfying the following: The arc intersects the boundary of Nv

transversally at p(γj) and p(γ`), and no two such arcs intersect in the interior of Nv.

For example, let v be the initial vertex of four edges e1, e2, e3, e4. Assume that there are
three gates γ1 = [e1] = [e2], γ2 = [e3] and γ3 = [e4], and that there are edges f1 and f2 of G
such that gr(f1) = · · · e2e4 · · · and gs(f2) = · · · e3e4 · · · for some r, s ≥ 1. Then Figure 8(a)
shows Step T1 applied to e1 and e2, Figure 8(b) shows Step T2 applied to γ1, γ2 and γ3, and
Figure 8(c) shows Step T3, which yields arcs connecting p(γ1) to p(γ3), and p(γ2) to p(γ3).

(a) (b) (c)

v

e e

ee

1 2

34

Nvp
p

p

(γ )(γ )
(γ )1

2
3

Figure 8: Example of a graph smoothing.

The arcs constructed in Step T3 are called infinitesimal edges, and the points p(γ) which
join two infinitesimal edges are called cusps of the train track.

If φ ∈ M(D;S) is pseudo–Anosov, and g : G → G is the induced graph map for φ
satisfying (BH:1) and (BH:2), then τg constructed above determines the invariant foliations
F± associated to the pseudo–Anosov representative Φ of φ. In particular, the number of
prongs at the singularities of F± can be found in terms of τg. Each connected component
A of D \ τg is either homeomorphic to an open disk, or is a half-open annulus, one of whose
boundaries is the boundary ∂D of D. In the former case, the boundary of the closure of the
connected component is a finite union of edges and vertices of τg. If two of these edges meet
at a cusp, then that cusp is said to belong to A. In the latter case, the closure of A has two
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boundary components. The boundary component which is not ∂D is a finite union of edges
and vertices of τg, and if two of these edges meet at a cusp, we call the cusp an exterior cusp
of τg.

Lemma 2.14 Let A be a connected component of D \ τg. If A is an open disk, then there is
one k–pronged singularity of F± in A, where k is the number of cusps of τg belonging to A.
If A is a half-open annulus, then ∂D is k–pronged, where k is the number of exterior cusps
of τg.

3 Main examples

This section contains properties of βm,n and σm,n. In Section 3.1, we show that the Thurston-
Nielsen types of βm,n and σm,n do not depend on the order of m and n. In Section 3.2,
we find the Thurston-Nielsen types of βm,n and σm,n, and in Section 3.4, we compute their
dilatations in the pseudo–Anosov cases. Section 3.3 gives the train tracks for φβm,n and φσm,n

In Section 3.5, we apply properties of Salem–Boyd sequences to find the least dilatation
among λ(σm,n) and λ(βm,n) for m + n = 2g fixing g ≥ 2. We also give bounds on these
dilatations.

3.1 Symmetries of βm,n and σm,n

Consider the braid β+
m,n ∈ B(D;S, {p}, {q}) drawn in Figure 9(a).

n

(b) (c)(a)

nmp q m np q p qm

Figure 9: Symmetry of β+
m,n.

Lemma 3.1 The braid β+
n,m is conjugate to the inverse of β+

m,n.

Proof. The inverse of β+
m,n is drawn in Figure 9(b). Assume without loss of generality that

the points of S ∪ {p} ∪ {q} are evenly spaced along a line `. Let η ∈ B(D;S ∪ {p, q}) be the
braid obtained by a half-twist of ` around the barycenter of S ∪{p}∪{q}. Then conjugating
the inverse of β+

m,n by η in B(D;S ∪ {p, q}) yields β+
n,m shown in Figure 9(c). ¤

Lemma 3.2 The braid βm,n is the image of β+
m,n under the forgetful map B(D;S, {p}, {q}) →

B(D;S), and hence βn,m is conjugate to β−1
m,n.
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Proof. Compare Figure 3(a) with Figure 9(a) to get the first part of the claim. Since homo-
morphisms preserve inverses and conjugates, the rest follows from Lemma 3.1. ¤

Lemma 3.2 together with the homomorphism in (5) shows the following.

Lemma 3.3 The mapping class φβn,m is conjugate to φ−1
βm,n

.

Proposition 3.4 The Thurston-Nielsen type of βn,m is the same as that of βm,n.

Proof. The Thurston-Nielsen type of a mapping class is preserved under inverses and conju-
gates. Thus, the claim follows from Lemma 2.8 and Lemma 3.3. ¤

We now turn to σm,n. Let β̂+
m,n and ν be the spherical braids drawn in Figures 10(a) and

11 respectively.

(a)

pnmp q
p

(b)

nm

Figure 10: Spherical braids (a) β̂+
m,n and (b) σ̂m,n.

Lemma 3.5 The spherical braid σ̂m,n is the image of νβ̂+
m,nν

−1 under the forgetful map

B(S2;S, {p}, {q}, {p∞}) → B(S2;S, {p∞}), and hence σ̂n,m is conjugate to σ̂m,n
−1.

Proof. Compare Figure 10(a) and Figure 10(b) to get the first part of the claim. The rest
follows by using the same argument in the proof of Lemma 3.2. ¤
Remark 3.6 In the statement of Lemma 3.5, ν could be replaced by any braid which is the
identity on p and S, and interchanges q and p∞.

1 pqsp

Figure 11: Spherical braid ν: Switching the roles of p∞ and q.

Lemma 3.7 The mapping class φσn,m is conjugate to φ−1
σm,n

.

Proof. By Lemma 3.5, φ dσn,m is conjugate to φ−1
dσm,n

. Since the contraction map c in (4) induces
the isomorphism c∗ on mapping class groups, the claim follows. ¤

Lemma 3.7 immediately shows the following.

Proposition 3.8 The Thurston-Nielsen type of σm,n is the same as that for σn,m.
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3.2 Graph maps

Theorem 3.9 The braid βm,n is pseudo–Anosov for all m,n ≥ 1, and λ(βm,n) = λ(βn,m).

Let Gm,n be the graph with vertices 1, · · · ,m+n+1, p and q in Figure 12(left). Consider
the graph map g = gm,n : Gm,n → Gm,n given in Figure 12, where the ordering of the loop
edges of Gm,n corresponds to the left-to-right ordering of βm,n. We denote the oriented edge
with the initial vertex a and the terminal vertex b by e(a, b).

m+n

1

2
m+1

m+2

m+3

m+n+1

1

2

3

p

q

m+4

m+n+1

m−1
m m m+1

m+2 m+3

Figure 12: Graph map gm,n for φβm,n .

Proposition 3.10 The graph map gm,n : Gm,n → Gm,n is the induced graph map for φβm,n

satisfying (BH:1) and (BH:2).

Proof. It is easy to see that the fibered surface F(Gm,n) carries a homeomorphism of φβm,n ,
and hence gm,n : Gm,n → Gm,n is the induced graph map for φβm,n .

As shown in Figure 12, any back track must occur at e(p,m), that is, if gk has back tracks,
and k is chosen minimally, then there is an edge e ∈ Edir(Gm,n) such that

gk−1(e) = · · · e1 · e2 · · · with Dg(e1) = Dg(e2) = e(m, p). (6)

This implies that e1 = e(p,m + 1) and e2 = e(m + 1, q) (or e1 = e(q,m + 1) and e2 =
e(m + 1, p)). As can be seen by Figure 12, one can verify that there can be no edge of the
form given in (6). This proves (BH:1).

To prove (BH:2), it suffices to note that gm+n(e(q,m + 1)) crosses all non-loop edges of
Gm,n in either direction, and for any non-loop edge e of Gm,n, gk(e) crosses e(q,m + 1) in
either direction for some k ≥ 1. ¤

Proof of Theorem 3.9. By Proposition 3.10, βm,n is pseudo–Anosov for all m,n ≥ 1. By
Lemma 3.3, we have λ(βm,n) = λ(βn,m). ¤

We now turn to σm,n.

Theorem 3.11 The braid σm,n is pseudo–Anosov for all m,n ≥ 1 satisfying |m − n| ≥ 2.
In these cases λ(σm,n) = λ(σn,m). For any m ≥ 1, σm,m is periodic, and σm,m+1 and σm+1,m

are reducible.
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s−b−1 pa

b

Figure 13: Spherical braid τa,b ∈ B(S2;S, {p∞}).

In light of Proposition 3.8, we will consider only σm,n when n ≥ m ≥ 1. To prove Theo-
rem 3.11, we first redraw σm,n in a conjugate form using induction. Let τa,b be the spherical
braid drawn in Figure 13. Roughly speaking, conjugation by τa,b on σm,n is the same as
passing a strand counterclockwise around the other strands, and then compensating below
after a shift of indices.

n−1p p

=

m−1 n−1 m−1

Figure 14: Conjugating σ̂m,n: Initial step.

Let σ̂m,n
(0) = σ̂m,n be the image of σm,n in B(S2;S, {p∞}) as drawn in Figure 10(b). Let

σ̂m,n
(1) = τ1,m+1σ̂m,nτ

−1
1,m+1,

shown in Figure 14. The inductive step is illustrated in Figure 15. The kth braid σ̂m,n
(k)

is constructed from the (k − 1)st braid by conjugating by τ2k+1,m+k+1 for k = 1, . . . ,m− 1.

The resulting braid σ̂m,n
(m−1) takes one of three forms: Figure 16(a) shows the general case

when n ≥ m+ 2, Figure 16(b) shows the case when n = m+ 1, and Figure 16(c) shows the
case when n = m.

Proposition 3.12 When n = m+ 1, σm,n is a reducible braid.

Proof. By applying one more conjugation by τ2m+1,2m+1, we obtain the left-hand braid in
Figure 17(a), which equals the right-hand braid. One sees that there is a collection of disjoint
disks enclosing pairs of marked points in S2 whose boundaries are invariant by φ dσm,n . The
claim now follows from Lemma 2.8. ¤
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m−k−1p p

(a)

2k−1m−k n−k−1

(b)

2k−1 n−k−1

Figure 15: Induction step.

(c)

p2m−1 n−m−1 p2m−1 p2m−1

(a) (b)

Figure 16: After (m− 1) inductive steps: (a) n ≥ m+ 2 (b) n = m+ 1 (c) n = m.

2m−1 2m−1p p p p

= =

(b)(a)

2m

Figure 17: (a) Reducible and (b) periodic cases.
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Proposition 3.13 When n = m, σm,n is a periodic braid.

Proof. Figure 17(b) shows an equivalence of spherical braids. It is not hard to see that the
right-hand braid is periodic in B(S2;S, {p∞}). The rest follows from Lemma 2.8. ¤

The general case when n ≥ m+2 is shown in Figure 18. The transition from Figure 18(a)
to 18(b) is given by doing successive conjugations by τ2m+k,2m+k for k = 1, . . . , n−m. The
braid in 18(b) equals the braid in 18(c).

(c)

p2m−1 n−m−1 p2m n−m−1 p2m n−m−1

(a) (b)

Figure 18: General case.

Let Hm,n be the graph with vertices 1, · · · ,m + n + 1 and p in Figure 19(left), and we
consider the graph map hm,n : Hm,n → Hm,n drawn in Figure 19. The unusual numbering of
vertices comes from the left-to-right ordering of the strands (excluding p∞) of σ̂m,n shown in
Figure 3(b). This ordering proves useful for comparing the transition matrices of φβm,n and
φσm,n in Section 3.5.

Let σ′m,n ∈ B(D;S) be the braid given by the preimage of the braid in Figure 18(c) under
the contraction map of Lemma 2.8. (Hence σm,n is obtained from the braid in Figure 18(c)
by removing the strand p∞.)

1
2

p

m

3

m+1

m+4

2m+1

2m+3

m+3

2m+2

m+2

m+n+1

1

2

m
m−1m+3

2m

m+2

p

2m+1

m+1

2m+2 m+n

m+n+1

Figure 19: Graph map hm,n for φσm,n .

Proposition 3.14 For n ≥ m+ 2, the graph map hm,n : Hm,n → Hm,n is the induced graph
map for φσ′m,n

satisfying (BH:1) and (BH:2).
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Proof. One can see that the fibered surface F(Hm,n) carries a homeomorphism of φσ′m,n
, and

hence hm,n : Hm,n → Hm,n is the induced graph map for φσ′m,n
. The proof that hm,n satisfies

(BH:1) and (BH:2) is similar to that of Proposition 3.10. ¤
Proof of Theorem 3.11. By Proposition 3.8, it suffices to classify the braids σm,n with

n ≥ m ≥ 1. By Proposition 3.12, σm,n is reducible if n = m + 1, and by Proposition 3.13
σm,n is periodic if n = m. In all other cases, Proposition 3.14 shows that σm,n is pseudo–
Anosov since σm,n is conjugate to σ′m,n, and Lemma 3.7 implies that λ(σm,n) = λ(σn,m).
¤

3.3 Train tracks

By using the graph smoothing in Section 2.4, the train track τgm,n for φβm,n and the train
track τhm,n for φσ′m,n

are given in Figures 20 and 21. Applying Lemma 2.14 to τgm,n and τhm,n ,
we immediately see the following.

(m+1)−gon

−gon(n+1)

Figure 20: Train track τgm,n .

(m+1)−gon (n−m−2)

Figure 21: Train track τhm,n .

Lemma 3.15 The invariant foliations associated to the pseudo–Anosov representative Φ dβm,n

of φ dβm,n
∈M(S2;S, {p∞}) have a 1–pronged singularity at each point of S∪{p∞}, an (m+1)–

pronged singularity at a point p ∈ S2 \ (S ∪ {p∞}), and an (n + 1)–pronged singularly at a
point q ∈ S2 \ (S ∪ {p∞}).
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Lemma 3.16 For n ≥ m + 2, the invariant foliations associated to the pseudo–Anosov
representative Φ dσm,n of φ dσm,n ∈ M(S2;S, {p∞}) have a 1–pronged singularity at each point
of S, an n–pronged singularity at p∞, and an (m + 1)–pronged singularity at a point p ∈
S2 \ (S ∪ {p∞}).

By Lemmas 2.6 and 3.16, we have the following.

Corollary 3.17 For n ≥ m+ 2, σm,n is pseudo–Anosov, and λ(σm,n) = λ(σm,n).

A pseudo–Anosov map Φ is said to be orientable if the stable and unstable foliations
associated to Φ are orientable.

Proposition 3.18 Let m + n = 2g. If both m and n are odd, there is a pseudo–Anosov
element of Mg whose pseudo–Anosov representative is orientable with the same dilatation
as βm,n.

Proof. Let Φ′
dβm,n

be the lift of Φ dβm,n
to the double branched covering Fg of S2 branched along

Ŝ = S ∪ {p∞}, and Ŝ ′ the preimage of Ŝ in Fg. By the proof of Proposition 2.10, Φ′
dβm,n

is a pseudo-Anosov map with λ(Φ′
dβm,n

) = λ(Φ dβm,n
)(= λ(βm,n)). By Lemma 3.15, Φ′

dβm,n
has

an invariant foliation F± with two (m + 1)–pronged singularities and two (n + 1)–pronged

singularities at points of Fg \ Ŝ ′, and regular points of Ŝ ′. Hence all singularities of F± are
even–pronged.

To show that F± is orientable, it suffices to note that the natural map from the funda-
mental group of Fg to Z/2Z induced by F± is trivial. Consider the invariant foliation on

S2 associated to Φ dβm,n
with 1–pronged singularity at each point of Ŝ and even–pronged sin-

gularity elsewhere. The punctured sphere S2 \ Ŝ has fundamental group generated by loops

emanating from a basepoint, following a path γp to a point near a marked point p ∈ Ŝ, going
around a small circle centered at p, then returning in the reverse direction along γp back to

the basepoint. Consider the double unbranched covering of S2 \ Ŝ. Then by construction,
the natural map from the fundamental group of the covering surface to Z/2Z defined by
the lifted foliation is trivial. The same is true for the fundamental group of the branched
covering surface Fg, and hence the natural map from the fundamental group of Fg to Z/2Z
defined by the lifted foliation F± is trivial. ¤

Proposition 3.19 Let m + n = 2g. For each m,n ≥ 1 with |m − n| ≥ 2, there is a
pseudo–Anosov element of Mg whose pseudo-Anosov representative is orientable with the
same dilatation as σm,n.

Proof. By Lemma 3.7, we can assume n ≥ m+ 2. Lemma 3.16 says that the invariant folia-
tions associated to Φ dσm,n have an n–pronged singularity and an (m+1)–pronged singularity.
Since m+ n = 2g, (m+ 1) and n have the opposite parity.
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Let Fg be the branched covering of S2 branched along S and either an (m + 1)–pronged
singularity if (m + 1) is odd, or p∞ if n is odd. Let Φ′

dσm,n
be the lift of Φ dσm,n to Fg. Then

Φ′
dσm,n

is pseudo–Anosov with dilatation equal that of Φ dσm,n . Furthermore, by our choice of
branch points, the invariant foliations have only even order prongs. One shows that they are
orientable by using the same arguments as in the proof of Proposition 3.18. ¤

We conclude this section by relating gm,n and hm,n in a way that is compatible with the
conjugations used in Section 3.1.

p q q
1

2

m−1
m

m+1

m+2 m+3

m+n

m+n+1
m+2

m+3

m+n+1

1

2

m
m+1

3

Figure 22: Graph map g′m,n for φm,n.

Since q is a fixed point for gm,n (see Figure 12), Φ dβm,n
defines a mapping class φm,n =

[Φ dβm,n
] in M(S2;S, {q}, {p∞}). Let g′m,n : G′m,n → G′m,n be the graph map obtained from

gm,n after puncturing D at q as in Figure 22. Then g′m,n : G′m,n → G′m,n is the induced graph
(satisfying (BH:1) and (BH:2)) for the mapping class which is the preimage of φm,n under
the map from M(D;S, {q}) to M(S2;S, {q}, {p∞}). Identify g′m,n with the graph map on
S2 obtained by pushed forward by the contraction map in Lemma 2.8.

2m+2

1

2

m
m−1

m+1

m+n

m+3

2m+2m+2

p

2

p

m

3

m+1

1m+2

m+4

2m+1

2m+3

m+3

m+n
m+n+1

m+n+1

2m+1

2m

Figure 23: Exchanging the roles of q and p∞ for g′m,n: ∞ in the figure indicates p∞.

Exchanging the roles of q and p∞ (i.e., bringing p∞ into the visual plane) yields the graph
map shown in Figure 23, which is equivalent to g′m,n. Now remove p∞, and consider the
graph map

fm,n : G′m,n → Hm,n (7)
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obtained by a natural identification of edges of G′m,n to edges of the graph in Figure 22(left)
removing p∞. Figure 24 shows the natural projection map applied to the image of the edges
of G′m,n under fm,n. The map hm,n : Hm,n → Hm,n in Figure 19 is the one induced by pushing
forward g′m,n by the map fm,n.

m+n
1

2

m
m−1

m+1

m+n

m+3

2m+2

2m

m+2

p
m+n+1

2m+1

1

2

m
m−1m+3

2m

m+2

p

2m+1

m+1

2m+2

m+n+1

Figure 24: Identifying edges of G′m,n with edges of Hm,n.

3.4 Characteristic equations for dilatation

Consider the graph map rm : Γm → Γm, shown in Figure 25. As seen in Figures 12 and 19,
the graph maps for φβm,n and φσm,n “contain” rm as the action on a subgraph.

1  p 1

m+1

m

2m+1 p

m
m−1

Figure 25: Graph map rm : Γm → Γm.

The transition matrix for rm has the following form with respect to the basis of edges
e(p, 1), . . . , e(p,m+ 1):

Rm =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . .
0 0 0 . . . 1 0
0 0 0 . . . 0 2
1 0 0 . . . 0 1



.

The characteristic polynomial for Rm is Rm(t) = tm(t−1)−2. As we will see in the proof of
Theorem 3.20, the appearance of Rm within the transition matrices of φβm,n and φσm,n gives
rise to a similar form for their characteristic equations.

Given a polynomial f(t) of degree d, the reciprocal of f(t) is f∗(t) = tdf(1/t).
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Theorem 3.20 (1) For m,n ≥ 1, λ(βm,n) is the largest root of

Tm,n(t) = tn+1Rm(t) + (Rm)∗(t).

(2) For m,n ≥ 1 with |m− n| ≥ 2, λ(σm,n) is the largest root of

Sm,n(t) = tn+1Rm(t)− (Rm)∗(t).

Proof. We note that the spectral radius of the transition matrix for gm,n is equal to that
for g′m,n by the construction of g′m,n (Section 3.3). Thus, to find characteristic polynomials
for λ(βm,n) and λ(σm,n), it is enough to compute the transition matrices for g′m,n and hm,n

respectively.
Consider the basis for V tot(G′m,n):

vk = e(p, k), k = 1, . . . ,m,

vm+1 = e(p,m+ 1) + e(m+ 1,m+ n+ 1),

vm+1+k = e(m+ k,m+ k + 1), k = 1, . . . , n, and

vm+n+2 = e(p,m+ 1).

The corresponding transition matrix T ′
m,n for g′m,n is given by

T ′
m,n =




0 1 0 . . . 0 0 0 0 . . . 0
0 0 1 . . . 0 0 0 0 . . . 0

. . . . . .
0 0 0 . . . 1 0 0 0 . . . 0
0 0 0 . . . 0 2 1 0 . . . (1)b

1 0 0 . . . 0 1 2 0 . . . 0
0 0 . . . 0 0 0 1 0 . . . 0
0 0 . . . 0 0 0 0 1 . . . 0

. . . . . .
0 0 . . . 0 0 0 0 . . . 1 0
0 0 . . . 0 (1)ab 0 0 . . . 0 0
0 0 . . . 0 0 (−1)b 0 . . . 0 (0)a




.

We will show that the characteristic polynomial for T ′
m,n is given by

Tm,n(t) = tn+1Rm(t) + (Rm)∗(t).

The upper left block matrix of T ′
m,n corresponding to the vectors v1, . . . , vm+1 is identical to

Rm. Multiplying the characteristic polynomials of the upper left and lower right diagonal
blocks gives tn+1Rm. The rest of the characteristic polynomial has two nonzero summands.
One corresponds to the matrix entries marked a, and is given by

t(−1)
n+1

∣∣∣∣∣∣∣∣

−1 0 · · · 0 0
t −1 · · · 0 0

· · ·
0 0 · · · t −1

∣∣∣∣∣∣∣∣
(n−1)×(n−1)

∣∣∣∣∣∣∣∣∣∣

t −1 · · · 0 0
0 t · · · 0 0

· · ·
0 0 · · · t −1
−1 0 · · · 0 −2

∣∣∣∣∣∣∣∣∣∣
(m+1)×(m+1)
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which yields −t(2tm + 1). The other summand corresponds to the matrix entries marked b
and is given by

(−1)
n+1

∣∣∣∣∣∣∣∣

−1 0 · · · 0 0
t −1 · · · 0 0

· · ·
0 0 · · · t −1

∣∣∣∣∣∣∣∣
(n−2)×(n−2)

∣∣∣∣∣∣∣∣∣∣

t −1 0 · · · 0 0
0 t −1 · · · 0 0

· · ·
0 0 0 · · · t −1
−1 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣
m×m

which yields 1. This completes the proof of (1).
Let Sm,n be the transition matrix for hm,n : Hm,n → Hm,n. We will pull back Sm,n to an

invertible linear transformation on V tot(G′m,n) using fm,n given in (7). Let h′m,n(vi) be the
image of g′m,n(vi) under fm,n. Then the transition matrix S ′m,n for h′m,n : G′m,n → Hm,n is the
same as T ′

m,n except at the vector vm+n+1. As can be seen in Figure 23, we have

S ′m,n(vm+1) = T ′
m,n(vm+1)− 2vm+n+1

Thus, S ′m,n differs from T ′
m,n only by changing the entry labeled by both a and b from 1 to

−1.
Recall that the sign of the entry marked both a and b in T ′

m,n determines the sign of in
front of (Rm)∗. Since this sign is the only difference between S ′m,n and T ′

m,n, the characteristic
polynomial for S ′m,n is given by

Sm,n(t) = tn+1Rm(t)− (Rm)∗(t).

To finish the proof of (2), we have left to check that λ(σm,n) is the largest root of Sm,n.
Thus (2) follows if we can show that the extra eigenvalue of S ′m,n has absolute value 1. From
Figure 24, we see that the kernel of the linear map induced by fm,n is spanned by

w = 2(v1 + · · ·+ vm) + vm+1 − (vm+2 + · · ·+ vm+n+1) + vm+n+2.

Under h′m,n, we have

2(v1 + · · · vm) 7→ 2(vm+1 + v1 + · · ·+ vm−1),

vm+1 7→ 2vm + vm+1 − vm+n+1,

vm+2 + · · ·+ vm+n+1 7→ vm + 2vm+1 + vm+2 + · · ·+ vm+n − vm+n+2,

vm+n+2 7→ vm,

and hence, h′m,n(w) = w. Thus, the characteristic polynomial for S ′m,n differs from that for
Sm,n by a factor of (t− 1). ¤

Remark 3.21 Minakawa independently discovered the pseudo–Anosov maps on Fg con-
structed in the proof of Proposition 3.19 for the case when (m,n) = (g − 1, g + 1) using
a beautiful new method for constructing orientable pseudo–Anosov maps on Fg [24]. He also
directly computes their dilatation using different techniques from ours.
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3.5 Dilatations and Salem–Boyd sequences

Recall that given a polynomial f(t) of degree d, the reciprocal of f(t) is f∗(t) = tdf(1/t).
The polynomial f satisfying f = f∗ (respectively, f = −f∗) is a reciprocal polynomial (re-
spectively, anti-reciprocal polynomial). For a monic integer polynomial P (t) of degree d, the
sequence

Q±n (t) = tnP (t)± P∗(t)

is called the Salem–Boyd sequence associated to P .

Theorem 3.22 Let Qn be a Salem–Boyd sequence associated to P . Then Qn is a reciprocal
or an anti-reciprocal polynomial, and the set of roots of Qn outside the unit circle converge
to those of P as n goes to infinity.

Theorem 3.22 is a consequence of Rouché’s Theorem applied to the sum P (t)
td
± P∗(t)

tn+d considered
as a holomorphic function on the Riemann sphere minus the unit disk.

For a monic integer polynomial f(t), let N(f) be the number of roots of f outside the
unit circle, λ(f) the maximum norm of roots of f , and M(f) the product of the norms of
roots outside the unit circle, which is called the Mahler measure of f . By Theorem 3.22, we
have the following.

Corollary 3.23 Let Qn be a Salem–Boyd sequence associated to P . Then

lim
n→∞

M(Qn) = M(P ) and lim
n→∞

λ(Qn) = λ(P ).

Any algebraic integer on the unit circle has a (anti-)reciprocal minimal polynomial. Sup-
pose that P (t) = P0(t)R(t), where R is a (anti-)reciprocal and P0 has no roots on the unit
circle. Then the Salem–Boyd sequence associated to P satisfies

Qn(t) = R(t)(tnP0(t)± (P0)∗(t)).

We have thus shown the following.

Lemma 3.24 All roots of P on the unit circle are also roots of Qn for all n.

The following theorem can be proved by first restricting to the case when P has no roots on
the unit circle, and then by defining a natural deformation of the roots of P (t) to those of
Qn(t), which don’t cross the unit circle [5].

Theorem 3.25 Let Qn be a Salem–Boyd sequence associated to P . Then N(Qn) ≤ N(P )
for all n.

We now apply the above results to the Salem–Boyd sequences Sm,n and Tm,n associated
to Rm of Theorem 3.20. To do this, we first study Rm.
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Lemma 3.26 For all m ≥ 1, M(Rm) = 2.

Proof. For |t| < 1, we have |tm(t−1)| < 2, and hence Rm has no roots strictly within the unit
circle. Therefore, the Mahler measure of Rm must equal the absolute value of the constant
coefficient, namely 2. ¤

Applying Corollary 3.23, we have the following.

Corollary 3.27 Fixing m ≥ 1 and letting n increase, the Mahler measures of Tm,n and Sm,n

converge to 2.

Lemma 3.28 The polynomial Rm has one real root outside the unit circle. This root is
simple and greater than 1.

Proof. Taking the derivative R′m(t) = (m + 1)tm −mtm−1, we see that Rm is increasing for
t > m

m+1
, and hence also for t ≥ 1. Since Rm(1) = −2 < 0 and Rm(2) > 0, it follows that

Rm has a simple root µm with 1 < µm < 2. Similarly, we can show that for t < 0, Rm has
no roots for m even, and one root if m is odd. In the odd case, Rm(−1) = 0, so Rm has no
real roots strictly less than −1. ¤

Lemma 3.29 The sequence λ(Rm) converges monotonically to 1 from above.

Proof. Since M(Rm) = 2, we know that µm = λ(Rm) > 1. Take any ε > 0. Let Dε be the
disk of radius 1+ ε around the origin in the complex plane. Let g(t) = t−1

t
and hm(t) = −2

tm+1 .
Then for large enough m, we have

|g(t)| =
∣∣∣∣
t− 1

t

∣∣∣∣ >
∣∣∣∣

2

tm+1

∣∣∣∣ = |hm(t)|

for all t on the boundary of Dε, and g(t) and hm(t) are holomorphic on the complement of
Dε in the Riemann sphere. By Rouché’s theorem, g(t), g(t) + hm(t), and hence Rm(t) have
the same number of roots outside Dε, which is zero.

To show the monotonicity consider Rm(µm+1). Note that (µm+1)
m+1(t−1)−2 = 0. Hence

we have

Rm(µm+1) = (µm+1)
m(t− 1)− 2

= ((µm+1)
m − (µm+1)

m+1)(t− 1)

< 0.

Since Rm(t) is an increasing function for t > 1, we conclude that µm+1 < µm. ¤
Corollary 3.23 and Lemma 3.29 imply the following.

Corollary 3.30 Fixing m ≥ 1, the sequences λ(βm,n) and λ(σm,n) converge to λ(Rm) as
sequences in n. Furthermore, we can make λ(βm,n) and λ(σm,n) arbitrarily close to 1 by
taking m and n large enough.
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We now determine the monotonicity of λ(βm,n) and λ(σm,n) for fixed m ≥ 1.

Proposition 3.31 Fixing m ≥ 1, the dilatations λ(βm,n) are strictly monotone decreasing,
and the dilatations λ(σm,n) are strictly monotone increasing for n ≥ m+ 2.

Proof. Consider f(t) = (Rm)∗(t) = −2tm+1 − t+ 1. Then, for t > 0,

f ′(t) = −2(m+ 1)tm − 1 < 0.

Also f(1) = −2 < 0. Since bm,n = λ(βm,n) > 1, and for n ≥ m + 2, sm,n = λ(σm,n) > 1, it
follows that (Rm)∗(bm,n) and (Rm)∗(sm,n) are both negative. We have

0 = Tm,n(bm,n) = (bm,n)n+1Rm(bm,n) + (Rm)∗(bm,n), and

0 = Sm,n(sm,n) = (sm,n)n+1Rm(sm,n)− (Rm)∗(sm,n),

which imply that Rm(bm,n) > 0 and Rm(sm,n) < 0. Since Rm is increasing for t > 1, we have

sm,n < µm < bm,n. (8)

Plug bm,n into Tm,n−1, and subtract Tm,n(bm,n) = 0:

Tm,n−1(bm,n) = (bm,n)n−1Rm(bm,n) + (Rm)∗(bm,n)

= ((bm,n)n−1 − (bm,n)n)Rm(bm,n)

< 0.

Since bm,n−1 is the largest real root of Tm,n−1, we have bm,n < bm,n−1.
We can show that sm,n < sm,n+1 for n ≥ m + 2 in a similar way, by adding the formula

for Sm,n(sm,n) to Sm,n+1(sm,n). ¤
The inequalities (8) give the following.

Corollary 3.32 For all m,n ≥ 1 with |m− n| ≥ 2, λ(βm,n) > λ(σm,n).

We now fix 2g = m+ n (g ≥ 2), and show that among the braids βm,n and σm,n, σg−1,g+1

has the least dilatation.

Proposition 3.33 (1) For k = 1, . . . ,m− 1,

λ(βm,m) < λ(βm−k,m+k), and

λ(βm,m+1) < λ(βm−k,m+k+1).

(2) For k = 2, . . . ,m− 1,

λ(σm−1,m+1) < λ(σm−k,m+k), and

λ(σm−1,m+2) < λ(σm−k,m+k+1).
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Proof. Let λ = λ(βm,m). Then plugging λ into Tm−k,m+k gives

Tm−k,m+k(λ) = λm+k+1(λm−k(λ− 1)− 2)− 2λm−k+1 − λ+ 1

= λ2m+2 − λ2m+1 − 2λm+k+1 − 2λm−k+1 − λ+ 1.

Subtracting
0 = Tm,m(λ) = λ2m+2 − λ2m+1 − 4λm+1 − λ+ 1,

we obtain

Tm−k,m+k(λ) = 4λm+1 − 2λm+k+1 − 2λm−k+1 = −2λm−k+1(λk − 1)2 < 0.

Since λ(βm−k,m+k) is the largest real root of Tm−k,m+k, we have λ(βm,m) < λ(βm−k,m+k).
The other inequalities are proved similarly. ¤

Proposition 3.34 For m ≥ 2,

λ(βm,m) > λ(σm−1,m+1), and

λ(βm,m+1) ≥ λ(σm−1,m+2)

with equality if and only if m = 2.

Proof. Let λ = λ(σm−1,m+1). Then Tm,m(λ) = λ2m+2 − λ2m+1 − 4λm+1 − λ + 1. Plugging in
the identity

0 = Sm−1,m+1(λ) = λ2m+2 − λ2m+1 − 2λm+2 + 2λm + λ− 1,

and subtracting this from Tm,m(λ), we have

Tm,m(λ) = 2λm+2 − 4λm+1 − 2λm − 2λ+ 2 = 2λm(λ2 − 2λ+ 1) + 2(1− λ).

The roots of t2 − 2t + 1 are 1±√2. Since 1−√2 < 1 < λ < 2 < 1 +
√

2, λ2 − 2λ + 1 and
1 − λ are both negative, and hence Tm,m(λ) < 0. Since λ(βm,m) is the largest real root of
Tm,m(t), it follows that λ(σm−1,m+1) = λ < λ(βm,m).

For the second inequality, we plug in λ = λ(σm−1,m+2) into Tm,m+1. This gives

Tm,m+1(λ) = 2λm(λ3 − λ2 − λ− 1)− λ− 1.

Thus, λ3−λ2−λ− 1 < 0 would imply Tm,m+1(λ) < 0. The polynomial g(t) = t3− t2− t− 1
has one real root (≈ 1.83929) and is increasing for t > 1. Since λ(Rm) is decreasing with
m, and λ < λ(R2) ≈ 1.69562 < 1.8 by (8), we see that Tm,m+1(λ) < 0 for m ≥ 3. For the
remaining case, we check that T2,3 = S1,4. ¤

Propositions 3.33 and 3.34 show the following.

Corollary 3.35 The least dilatation among σm,n and βm,n for m+ n = 2g (g ≥ 2) is given
by λ(σg−1,g+1).
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By Corollary 3.23, Lemma 3.29 and Proposition 3.31, the dilatations λ(σm,n) for n ≥ m+2
converge to 1 as m,n approach infinity. We prove the following stronger statement, which
implies Theorems 1.1 and 1.2.

Proposition 3.36 For g ≥ 2,

log(2 +
√

3)

g + 1
< log(λ(σg−1,g+1)) <

log(2 +
√

3)

g
.

Proof. Using Theorem 3.20, we see that λ = λ(σg−1,g+1) satisfies

0 = λ2g+1 − 2λg+1 − 2λg + 1 = λ(λg)2 − 2(λ+ 1)λg + 1. (9)

Since λ is the largest real solution, the quadratic formula gives

λg =
2(λ+ 1) +

√
4(λ+ 1)2 − 4λ

2λ
=
λ+ 1 +

√
λ2 + λ+ 1

λ
.

It follows that

λg+1 = λ+ 1 +
√
λ2 + λ+ 1. (10)

Since 1 < λ < 2 for all g ≥ 2, (10) implies 2 +
√

3 < λg+1 < 3 +
√

7.
We improve the upper bound using an argument conveyed to us by Minakawa. Rewrite

(9) as follows

0 = λ2g+1 + λ2g − λ2g − 2(λ+ 1)λg + 1 = λ2g(λ+ 1)− (λ2g − 1)− 2(λ+ 1)λg.

Factoring out (λ+ 1) gives

0 = λ2g − λ2g − 1

λ+ 1
− 2λg.

On the other hand, since λ > 1, we have

λ2g − 1

λ+ 1
<

1

2
(λ2g − 1).

This implies the inequality

x2g − x2g − 1

x+ 1
− 2xg > x2g − 1

2
(x2g − 1)− 2xg =

1

2
(x2g − 4xg + 1) =: p(x)

for x near λ. Thus, p(x) has a real root µ larger than λ. Using the quadratic formula again,
we see that µg = 2 +

√
3, and hence λg < µg = 2 +

√
3. ¤
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4 Further discussion and questions

By Propositions 3.33 and 3.34, for s ≥ 5 strands, the minimal dilatations by our construction
come from σg−1,g+1 when s = 2g + 1; and σg−1,g+2 when s = 2g + 2. For s even, there is an
example of a braid with smaller dilatation than that of σg−1,g+2 (see the end of Section 4.1),
but for s odd, we know of no such examples.

Since Σ(B(D, 2g+1)) ⊂ Σ(Mg) (Proposition 2.10), Penner’s lower bound for elements of
Σ(Mg) [25] extend to Σ(B(D, 2g + 1)). Hence we have

δ(B(D, 2g + 1)) ≥ δ(Mg) ≥ log 2

12g − 12
.

For g = 2, Zhirov shows that if φ ∈M2 is pseudo–Anosov with orientable invariant foliations,
then λ(φ) is bounded below by the largest root of x4−x3−x2−x+1 [30]. For s = 5, σ1,3 is
pseudo–Anosov, and its lift to F2 is orientable. Our formula shows that the dilatation of σ1,3

is the largest root of Zhirov’s equation, and hence σ1,3 achieves the least dilatation among
orientable pseudo–Anosov maps on F2. This yields the following weaker version of Ham and
Song’s result [13], which doesn’t assume any conditions on the combinatorics of train tracks.

Corollary 4.1 The braid σ1,3 is pseudo–Anosov with the least dilatation among braids β ∈
B(D;S) on 5 strands such that all singularities of S2 \ (S ∪{p∞}) for the invariant foliations
associated to the pseudo–Anosov map Φbβ are even–pronged.

We discuss the following general question and related work on the forcing relation in
Section 4.1.

Question 4.2 Is there a braid β ∈ B(D, 2g + 1) such that λ(β) < λ(σg−1,g+1)?

Let Ks
g ⊂Ms

g be the subset of mapping classes that arise as the monodromy of a fibered
link (K,F ) in S3, where the fiber F has genus–g and the link K has s components.

Question 4.3 Is there a strict inequality δ(Ms
g) < δ(Ks

g)?

In Section 4.2, we briefly discuss what is known about bounds on dilatations of pseudo–
Anosov monodromies of fibered links, and show how the braids βm,n arise in this class.

4.1 The forcing relation on the braid types

The existence of periodic orbits of dynamical systems can imply the existence of other
periodic orbits. Continuous maps of the interval give typical examples for such phenomena.
Boyland introduced the notion of braid types, and defined a relation on the set of braid
types to study an analogous phenomena in the 2–dimensional case. Recall that there is an
isomorphism

B(D;S)/Z(B(D;S)) →M(D;S).
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Let f : D → D be an orientation preserving homeomorphism with a single periodic orbit S.
The isotopy class of f relative to S is represented by βZ(B(D;S)) for some braid β ∈ B(D;S)
by using the isomorphism above. The braid type of S for f , denoted by bt(S, f), is the
conjugacy class [βZ(B(D;S))] in the group B(D;S)/Z(B(D;S)). To simplify the notation,
we will write [β] for [βZ(B(D;S))]. Let

bt(f) = {bt(P, f) | P is a single periodic orbit for f},

and BT the set of all braid types for all homeomorphisms of D. A relation º on BT is
defined as follows: For bi ∈ BT (i = 1, 2),

b2 º b1 ⇐⇒ (For any f : D → D, if b2 ∈ bt(f), then b1 ∈ bt(f)).

We say that b2 forces b1 if b2 º b1. It is known that º gives a partial order on BT [6], [21],
and we call the relation the forcing relation.

The topological entropy gives a measure of orbits complexity for a continuous map of the
compact space [29]. Let h(f) ≥ 0 be the topological entropy of f . For a pseudo–Anosov
braid β ∈ B(D;S), log(λ(β)) is equal to h(β), which in turn is the least h(f) among all f
with an invariant set S such that bt(S, f) = [β] [10, Exposé 10]. One of the relations between
the forcing relation and the dilatations is as follows.

Theorem 4.4 [21] Let β1 and β2 be pseudo–Anosov braids. If [β2] º [β1] and [β2] 6= [β1],
then λ(β2) > λ(β1).

The forcing relation on braids βm,n and σm,n was studied in [17].

Theorem 4.5 For any m,n ≥ 1,

(1) [βm,n] º [βm,n+1],

(2) [βm,n] º [βm+1,n],

(3) [βm,n] º [σm,`] if ` ≥ m+ 2, and

(4) [σm,n] º [σm,`] if n ≥ ` ≥ m+ 2.

S S1
1

R R1
1

0
0 0

R0
H(S )

H(S )

H(R )

H(R )

Figure 26: Smale–horseshoe map.
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The Smale–horseshoe map H : D → D is a diffeomorphism such that the action of H

on three rectangles R0, R1, and R and two half disks S0, S1 is given in Figure 26. The
restriction of H to Ri (i = 0, 1) is an affine map such that H contracts Ri vertically and
stretches horizontally. The restriction of H to Si (i = 0, 1) is a contraction map. Katok
showed that any C1+ε surface diffeomorphism (ε > 0) with positive topological entropy has a
horseshoe in some iterate [15]. This suggests that the Smale–horseshoe map is a fundamental
model for chaotic dynamics.

The set Ω =
⋂

n∈Z
Hn(R0 ∪R1) is invariant under H. Let Σ2 = {0, 1}Z, and

σ : Σ2 → Σ2

(· · ·w−1 · w0w1 · · · ) 7→ (· · ·w−1w0 · w1 · · · ), wi ∈ {0, 1}

the shift map. There is a conjugacy K : Ω → Σ2 between the two maps H|Ω : Ω → Ω and
σ : Σ2 → Σ2 as follows:

K : Ω → Σ2

x 7→ (· · · K−1(x)K0(x)K1(x) · · · ),

where

Ki(x) =

{
0 if Hi(x) ∈ R0,
1 if Hi(x) ∈ R1.

If x is a period k periodic point, then the finite word (K0(x)K1(x) · · · Kk−1(x)) is called the
code for x. We say that a braid β is a horseshoe braid if there is a periodic orbit for the
Smale–horseshoe map whose braid type is [β]. We define a horseshoe braid type in a similar
manner. For the study of the restricted forcing relation on the set of horseshoe braid types,
see [8], [11].

R1

1

R0

0

a

a

b

b

c

c

d

d

e

e

Figure 27: Periodic orbit with the code 10010 and its braid representative.

The result by Katok together with Theorem 4.4 implies that horseshoe braids are relevant
candidates realizing the least dilatation. It is not hard to see that the braid type of the
periodic orbit with the code 1 0 · · · 0︸ ︷︷ ︸

n−1

1 0 · · · 0︸ ︷︷ ︸
m

or 1 0 · · · 0︸ ︷︷ ︸
n−1

1 0 · · · 0︸ ︷︷ ︸
m−1

1 (n ≥ m+ 2) is represented

by [σ′m,n](= [σm,n]) (For the definition of σ′m,n, see the end of Section 3.2). Hence, σm,n
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(n ≥ m + 2) is a horseshoe braid. Figure 27 illustrates the periodic orbit with the code
10010 and its braid representative.

For the case of even strands, there is a horseshoe braid having dilatation less than our
examples. In fact, the braid type of period 8 periodic orbit with the code 10010110 is given
by [β = (σ1σ2σ3σ4σ5σ6)

3σ7], which satisfies λ(β) = 1.4134 · · · < λ(σ2,5) = 1.5823 · · · .

4.2 Fibered links

For a fibered link (K,F ) with fibering surface F , the monodromy Φ(K,F ) : F → F is the
homeomorphism defined up to isotopy such that the complement of a regular neighborhood
of K in S3 is a mapping torus for Φ(K,F ). Define ∆(K,F ) to be the characteristic polynomial
for the monodromy Φ(K,F ) restricted to first homology H1(F,R). If K is a fibered knot, then
∆(K,F ) is the Alexander polynomial of K [16], [26].

The homological dilatation of a pseudo–Anosov map Φ: F → F is defined to be λ(f),
where f is the characteristic polynomial for the restriction of Φ to H1(F ;R). Thus, if (K,F )
is a fibered link and Φ(K,F ) is the monodromy, then λ(∆(K,F )) is the homological dilatation
of Φ(K,F ). In the case where Φ(K,F ) is a pseudo–Anosov map, λ(∆(K,F )) and λ(Φ(K,F )) are
equal if Φ(K,F ) is orientable [27].

Any monic reciprocal integer polynomial is equal to ∆(K,F ) for some fibered link (K,F )
up to multiples of (t− 1) and ±t [14]. In particular, any reciprocal Perron polynomial 1 can
be realized. On the other hand, if Φ(K,F ) is orientable, then λ(Φ(K,F )) is in general strictly
greater than λ(∆(K,F )).

Leininger [20] exhibited a pseudo–Anosov map ΦL : F5 → F5 with dilatation λL, where

log(λL) = 0.162358.

A comparison shows that this number is strictly less than our candidate for the least element
of Σ(B(D, 2g + 1) for g = 5:

log(λ(σ4,6)) = 0.240965.

The pseudo–Anosov map ΦL is realized as the monodromy of the fibered (−2, 3, 7)–pretzel
knot. Its dilatation λL is the smallest known Mahler measure greater than 1 among monic
integer polynomials [4], [19].

In the rest of this section, we will construct fibered links whose monodromies are obtained
by lifting the spherical mapping classes associated to βm,n. We set g = bm+n

2
c. Let S be

the set of marked points on int(D) corresponding to the strands of βm,n, and F the double
covering of D, branched over S. Then F has one boundary component if m + n is even
and two boundary components if m + n is odd. Let Φ′

m,n be the lift of the pseudo–Anosov
representative Φβm,n of φβm,n ∈ M(D;S) to F . Using an argument similar to that in the
proof of Proposition 2.10, we have

λ(Φ′
m,n) = λ(Φβm,n) = λ(βm,n).

1A monic integer polynomial f is Perron if f has a root λ(f) > 1 such that λ(f) > |α| for all roots
α 6= λ(f).
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Note that Φ′
m,n is 1–pronged near each of the boundary of F if m+ n is odd.

Let Km,n be the two–bridge link given in Figure 28. By viewing (S3, Km,n) as the result
of a sequence of Hopf plumbings [12, Section 5], one has the following.

=

=

(N negative half twists)

m+1

−n
N

(N positive half twists)

−N

Figure 28: Two–bridge link associated to βm,n.

Proposition 4.6 The complement of a regular neighborhood of Km,n in S3 is a mapping
torus for Φ′

m,n.

The fibered links Km,n and the dilatations of Φ′
m,n were also studied in [7].

Let ∆m,n be the Alexander polynomial for Km,n. Salem–Boyd sequences for ∆m,n were
computed in [12]. Proposition 3.18 implies the following.

Lemma 4.7 If m and n are both odd, then λ(βm,n) = λ(Φ′
m,n) = λ(∆Km,n).

Question 4.8 Let Φσm,n be the pseudo–Anosov representative of φσm,n. Is there a fibered
link K in S3 such that the complement of a regular neighborhood of K in S3 is a mapping
torus for a lift of Φσm,n ?
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lacements fibrés, Math. Sem. Notes Kobe Univ. 9 (1981) 75–84

[15] A Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ.
Math. Inst. Hautes Études Sci. 51 (1980) 137–174

[16] A Kawauchi, A Survey of Knot Theory, Birkhäuser–Verlag, Basel (1996)
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