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Abstract

This paper surveys some results surrounding Lehmer’s problem in the context of
fibered links and Hopf plumbing. Topics addressed here are Mahler measures of fibered
links, the relation between iterated Hopf plumbings and Salem-Boyd polynomials, and
the question of when monotone growth occurs under iterated plumbing. Explicit cal-
culations for certain “deformations” of links associated to the ADE singularities are
computed.

1 Introduction

The Mahler measure of a monic integer polynomial is the absolute value of the product of
roots with norm greater than one. Lehmer’s problem [Leh] asks whether the Mahler measure
of a monic integer polynomial can be made arbitrarily close to but greater than one. So far,
there is no known monic integer polynomial with Mahler measure greater than one but less
than Lehmer’s number αL = 1.17628 . . ., which is the Mahler measure of the polynomial

fL(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

To solve Lehmer’ s problem it is enough to answer the question for Alexander polynomials
of fibered links. A polynomial f(t) is reciprocal if f(t) = tdf(1/t), where d = deg(f).
Smyth [Smy] showed that the Mahler measure of irreducible non-reciprocal polynomials not
vanishing at zero are bounded below by θ0 = 1.32472 . . ., a number greater than Lehmer’s
number. Thus, it remains to search among reciprocal polynomials. Any monic reciprocal
polynomial occurs as the Alexander polynomial of a fibered link K ⊂ S3 up to cyclotomic
factors [Kan]. Lehmer’s number αL appears in this context as the Mahler measure of the
Alexander polynomial of the (−2, 3, 7)-pretzel knot.

The Mahler measure of a fibered link (K, Σ) can be considered to be a weak measure
of ”hyperbolicity” of the link in the following sense. Let K ⊂ S3 be a fibered link with
monodromy h : Σ → Σ. Define the Mahler measure M(K, Σ) to be the Mahler measure
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of ∆(K,Σ), where ∆(K,Σ) is the characteristic polynomial of the automorphism on the first
singular homology group of Σ

h∗ : H1(Σ; R) → H1(Σ; R)

induced by h. The Mahler measure M(K, Σ) is bounded from below by the leading eigenvalue
λ(K, Σ) of h∗, known as the homological dilatation of the monodromy h. If h is isotopic to
a pseudo-Anosov map, then λ(K, Σ) is also a lower bound for the (geometric) dilatation of
h. In particular, if λ(K, Σ) > 1, and h is irreducible, then h is isotopic to a pseudo-Anosov
homeomorphism [Thu] (see also [FLP], [CB]).

As a first guess, it seems natural to expect small Mahler measures to be attained by “small
deformations” of non-hyperbolic links, for example, algebraic links. Here, we will take small
deformation to mean Hopf or trefoil plumbing along a suitable path on the fibering surface.
For example, the smallest Mahler measures of degrees 2,4,6,8,10 (listed by Lehmer in [Leh])
all arise from Hopf or trefoil plumbings of torus links (see Section 4).

Two problems arise in this approach. The first is that the Alexander polynomial is only a
weak indicator of geometric properties of the fibered link. For example, there are examples
of hyperbolic links (K, Σ) such that M(K, Σ) = λ(K, Σ) = 1. The second is that Mahler
measure and homological dilatation are not always monotone increasing or decreasing under
iterations of Hopf plumbing. Useful connections between Mahler measure and geometry do
hold, however, when we restrict our attention to certain subfamilies of fibered links.

We begin by defining and stating properties of Hopf plumbings in Section 2. In particular,
we give a formula for the Alexander polynomials of fibered links obtained by iterated Hopf
plumbing. These have the form of Salem-Boyd polynomials introduced in [Sal], developed
further in [Boyd], and applied to Hopf plumbings in [Hir2].

In Section 3 we present two families of fibered links with the monotonicity property.
The first example is the family of Coxeter links studied in [Hir1]. For Coxeter links, the
homological dilatations grow or decrease monotonically with iterations of Hopf plumbing.
If the underlying Coxeter graph is a star graph, then the homological dilatation equals the
Mahler measure for any associated Coxeter link. Furthermore, Leininger [Lei] showed that
for pseudo-Anosov Coxeter links associated to bi-colored graph, the monodromy is orientable.
It follows that the homological and geometric dilatations are equal for these examples [Ryk].
The second example is the family of Salem links. These are fibered links whose homological
dilatation is equal to the Mahler measure of the Alexander polynomial. The Coxeter links
associated to star graphs are either cyclotomic or Salem links. We give a criterion for a
sequence of fibered links obtained by iterated Hopf plumbing to be eventually Salem, and
show that for such Salem sequences, the dilatations grow or decrease monotonically.

Section 4 contains examples and speculations.

2 Iterated Hopf plumbings

In this section, we review some basic definitions and properties of fibered links, and their
monodromy. Any fibered link can be converted to any other by a finite sequence of Hopf
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plumbings and deplumbings [Gir]. We recall the definition of Hopf plumbing, and give a
formula for the Alexander polynomial of the fibered link for sequences of links obtained by
iterated Hopf plumbing.

A link K ⊂ S3 is fibered, with fiber Σ, if there is a fibration

S3 \ U(K) → S1

of the complement of a regular neighborhood U(K) of K in S3, and Σ is a general fiber. Let
(K, Σ) denote the fibered link. There is a homeomorphism h : Σ → Σ, so that S3 \ U(K)
can be identified with the mapping torus for Σ with respect to h. The map h is called the
(geometric) monodromy of the fibered link (K, Σ).

Let h∗ be the restriction of h to the first homology group H1(Σ; R). The transformation h∗
is the homological monodromy of (K, Σ), and its characteristic polynomial is the Alexander
polynomial ∆(K,Σ)(t) of (K, Σ). This definition of Alexander polynomial is associated to
the pair (K, Σ) and not to the link itself, since if K has more than one component the
fibering structure is not in general unique, and each fibering structure gives rise to a different
Alexander polynomial. The homological dilatation of (K, Σ) is the maximum among absolute
values of roots of ∆(K,Σ)(t), or eigenvalues of h∗.
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Figure 1: Positive Hopf plumbing.

Let τ be a properly embedded path on Σ. The positive (negative) Hopf plumbing on (K, Σ)
along τ is obtained by gluing a positive (negative) Hopf band onto Σ along a thickening of
τ . Figure 1 shows the result of a positive Hopf plumbing. The n-th iterated Hopf plumbing
on (K, Σ) based at τ is shown in Figure 2. We will write (K±

n , Σ±n ) for the result of the n-th
iterated Hopf plumbing. By this convention, (K, Σ) = (K±

1 , Σ±1 ). If (K, Σ) is a fibered link,
so is the result of any Hopf plumbing [Sta]. Thus, (K±

n , Σ±n ) is fibered for all n.
As we will show, the Alexander polynomials of links resulting via iterated Hopf plumbings

from a fixed (K, Σ) based at a path τ satisfy a simple formula. Before stating the result, we
give some definitions.

Given two integer polynomials f and g, we write f
.
= g if there exists cyclotomic polyno-

mials c1, . . . , ck, d1, . . . , d`, and an integer r such that

f(t)c1(t) · · · ck(t) = ±trg(t)d1(t) · · · d`(t).
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positive plumbing
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negative plumbing

Figure 2: Fourth iterated Hopf plumbing.

If f(t) is a polynomial of degree d, define its reciprocal

f∗(t) = tdf(1/t).

A polynomial f(t) is said to be a reciprocal polynomial if f = f∗, and anti-reciprocal if
f = −f∗. If f(t) is anti-reciprocal, then f

.
= g, where g is reciprocal. This is because, if f(t)

is anti-reciprocal, then (t− 1) divides f(t) and f(t)/(t− 1) is reciprocal.
The following theorem is proved in [Hir2].

Theorem 1 Let (K, Σ) be a fibered link, and τ a properly embedded path on Σ. Then there
is a polynomial P = P±(Σ,τ) depending on Σ, τ and the orientation of the plumbings, such

that the Alexander polynomials ∆n(t) = ∆(Kn,Σn) satisfy

∆n(t)
.
= tnP (t) + (−1)n+rP∗(t), (1)

where r is the number of components of K.

Polynomials of the form given in Equation (1) were studied by Salem [Sal], and Boyd
[Boyd] in their investigations of Salem and P-V numbers. We will call Equation (1), the
Salem-Boyd form of the polynomial ∆n. Given a polynomial f , let N(f) be the number
of roots outside the unit circle, λ(f) (called the radius of f) the maximum among absolute
values of roots of f , and M(f) the Mahler measure of f . The following is proved in [Boyd]
(see also, [Hir2]).

Theorem 2 Let P (t) be a monic integer polynomial and

Qn(t) = tnP (t)± P∗(t).

Then Qn is reciprocal or anti-reciprocal for all n, and furthermore

(1) N(Qn) ≤ N(P ) for all n;

(2) limn→∞ λ(Qn) = λ(P ); and

(3) limn→∞M(Qn) = M(P ).
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Analogously define, for a fibered link (K, Σ), N(K, Σ) (respectively, λ(K, Σ), and M(K, Σ)),
to be N(∆(K,Σ)) (respectively, λ(∆(K,Σ)), M(∆(K,Σ))). Then Theorem 3 below follows im-
mediately from Theorem 2.

Theorem 3 Let (Kn, Σn) be fibered links obtained from (K, Σ) by iterated Hopf plumbing.
Then N(Kn, Σn) is eventually constant, and λ(Kn, Σn) and M(Kn, Σn) are convergent se-
quences.

We give two explicit formulae for P(Σ,τ). Before doing this, recall that for any link K and
Seifert surface Σ, there is an associated Seifert matrix S with respect to some choice of basis
for H1(Σ; R) (see, for example, [Rolf] for terminology). Then the Alexander polynomial of
K with respect to Σ is given by ∆(K,Σ)(t) = |tS − Str| up to multiplies of ±t, where |A|
denotes the determinant of A and Atr the transpose of A. This definition specializes to our
previous definition of Alexander polynomials for fibered links. For an invertible matrix A,
let s(A) be the sign of the determinant of A. For example, if K is a fibered knot with fiber
Σ, and S is any invertible Seifert matrix for K, then s(S) = ∆(K,Σ)(1). Since s(S) doesn’t
depend on the choice of basis, we will define s(K, Σ) = s(S). If (K, Σ) is fibered and S is a
Seifert matrix with respect to some choice of basis for H1(Σ; R), then S−1St represents the
homological monodromy h∗ with respect to this basis.

Let (K, Σ) be a fibered link, and let τ be a properly embedded path in Σ. Let Στ be the
surface in S3 obtained by taking Σ and removing a regular neighborhood of τ . Let Kτ be
the boundary of Στ . The first formula is reminiscent of the skein relations, where one keeps
track of the associated Seifert surfaces.

P(Σ,τ)(t) = ∆(K,Σ)(t)± s(Σ)s(Στ )∆(Kτ ,Στ )(t). (2)

The second formula is given as a determinant:

P(Σ,τ)(t) = |tS − (Str ∓ vvtr)|, (3)

where v ∈ H1(Σ; R) is the dual vector to τ considered as an element of H1(Σ, ∂Σ; R).

Remark. Silver and Williams proved the following related result [SW].

Theorem 4 Let K be any link, and let ` be an unknot disjoint from K, whose linking number
with K is nonzero. Let K(n) be obtained by 1/n surgery on a tubular neighborhood of `, and

let ∆̃K(n) be the multi-variable Alexander polynomial of K(n). Then the multi-variable Mahler
measures of ∆̃K(n) converge to the multi-variable Mahler measure of ∆̃K∪`.

If K is a knot, then K(n) is a knot for all n, and we have ∆̃K(n) = ∆K(n) . If (K, Σ) is a fibered
knot, and (K±

n , Σ±n ) is obtained from (K, Σ) by iterated Hopf plumbing, then K(n) = K±
2n is

a sequence satisfying the conditions of Theorem 4.
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3 Monotone sequences

In general, the sequences described in Theorem 2 are not monotone. This section contains
two large families of examples where monotonicity does hold.

3.1 Coxeter links

Let (K, Σ) be the fibered link obtained by positive Hopf plumbing along an ordered system
of chords `1, . . . , `k on an oriented disk in S3. Let Γ be the dual graph. We say that (K, Σ)
is a Coxeter link for Γ, if

(1) all plumbings are positive; and

(2) whenever i < j, the intersection of `i with `j on the disk is negative, with respect to
the skew-symmetric intersection form on the disk.

Recall that for any ordered finite graph Γ with no self- or double-edges, there is an
associated simply-laced Coxeter system (see for example, [Hum]). Let c(Γ) be the associated
Coxeter element.

The Coxeter element gives important information about the Coxeter link. For example,
an irreducible Coxeter system is spherical or affine if and only if λ(c(Γ)) = 1, where λ(c(Γ))
is the leading eigenvalue of c(Γ) [Hum], [A’C]. It follows that the Coxeter links whose Mahler
measure equals one are those associated to disjoint unions of spherical and affine Coxeter
diagrams. In the irreducible case, these are just An, Dn, E6, E7, and E8, and their affine
extensions. For the irreducible spherical cases, the graphs are trees, and it follows that the
Coxeter links are uniquely determined (see [Hir1]), and are the algebraic links associated to
the A-D-E plane curve singularities.

For a graph Γ, let µ(Γ) be the leading eigenvalue of the adjacency matrix for Γ, known
as the radius of the graph Γ. Let λ(Γ) be the leading eigenvalue of c(Γ). Let µ = µ(Γ), and
consider the equation

λ + λ−1 = µ2 − 2

The solutions λ are roots of unity if and only if µ ≤ 2, and we set λ(Γ) = 1. Otherwise the
solutions are real and positive, and we set λ(Γ) to be the larger (real) solution.

An ordered bi-colored graph is a graph with ordered vertices ν1, . . . , νk such that for some
s with 1 ≤ s ≤ k, νi and νj are not connected by an edge whenever i, j ≤ s or i, j > s. In
the following theorem, McMullen shows that λ(c(Γ)) is bounded from below by λ(Γ) ([Mc]
Theorem 1.3).

Theorem 5 Let Γ be any Coxeter graph. Then

λ(Γ) ≤ λ(c(Γ)),

and equality holds if Γ is bi-colored.
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Since µ(Γ) 7→ λ(Γ) is order preserving, one can get information about the smallest possible
values of λ(c(Γ)) using properties of graph radii.

An arm of Γ, is a chain of edges ξ1, . . . , ξn and vertices ν0, . . . , νn, so that

(1) deg(ν0) = 1;

(2) deg(νi) = 2 for i = 1, . . . , n− 1; and

(3) The end vertices of ξi are νi−1 and νi for each i = 1, . . . , n.

Choose an edge ξ on Γ connecting vertices γ1 and γ2. A graph Γξ,n is obtained from Γ
by extending the edge ξ if Γξ,n is obtained by replacing ξ on Γ with n edges ξ1, . . . , ξn and
vertices ν1, . . . , νn−1 so that

(1) ξ1 connects γ1 and ν1;

(2) ξi connects νi and νi+1 for i = 2, . . . , n− 1; and

(3) ξn−1 connects νn−1 with γ2.

Figure 3 gives an illustration.

Figure 3: Extending an edge of a graph.

Hoffman proves the following theorem about monotonicty of µ(Γ) and hence of λ(Γ) with
respect to extending edges [Hof].

Theorem 6 Let ξ be an edge of a graph Γ, and let Γξ,n be obtained by extending Γ along ξ.
There exists N such that

µ(Γξ,n) ≤ 2

if and only if n < N . For n ≥ N , µ(Γξ,n) is monotone increasing if ξ lies on a free arm of
Γ, and µ(Γξ,n) is monotone decreasing otherwise.

The following property is proved in [Hir1].

Theorem 7 If (K, Σ) is a Coxeter link associated to Γ, then after a natural identification
of underlying vector spaces,

h∗ = −c(Γ).

It follows that in this case λ(K, Σ) = λ(c(Γ)).
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Let (K, Σ) be a Coxeter link associated to a graph Γ. Then extending an edge of Γ
corresponds to performing an iterated Hopf plumbing on (K, Σ). Thus, Hoffman’s theorem
implies the following.

Theorem 8 Let Γ be a Coxeter graph that is not the union of spherical and affine Coxeter
graphs. Let (K, Σ) be an associated Coxeter link, and let (Kn, Σn) be obtained by an iterated
Hopf plumbing on (K, Σ) associated to extending an edge Γ. Then, for some N , the sequence
λ(Kn, Σn), n > N , is monotone.

Lehmer’s number αL occurs as the Mahler measure of the E10 Coxeter graph, which is
also known as the (2,3,7) star-like graph (cf. [MRS]). The following theorem was proved in
greater generality for all Coxeter systems in [Mc], but we give a simpler version here that
applies to Coxeter links.

Theorem 9 If Γ is any connected Coxeter graph, then either Γ is spherical or affine, or

M(E10) = λ(E10) ≤ λ(Γ) ≤ M(Γ).

The (-2,3,7)-pretzel knot K2,3,7 is a Coxeter link associated to E10 (see [Hir1]).

Theorem 10 If (K, Σ) is a Coxeter link, then either M(K, Σ) = 1, or

M(K, Σ) ≥ M(∆K2,3,7).

If Γ is bi-colored, the monodromy of the Coxeter link is pseudo-Anosov if and only if Γ
is connected and the simply-laced Coxeter system associated to Γ is not spherical or affine
[Lei]. Furthermore, the invariant stable and unstable foliations are orientable, and hence
the homological and geometric dilatations are equal. By Rykken’s result [Ryk], we have the
following.

Theorem 11 If (K, Σ) is a Coxeter link associated to a connected bi-colored graph which is
not spherical or affine, then the homological and geometric dilatations of (K, Σ) are equal.

Theorem 12 Let (K, Σ) be a Coxeter link associated to a non-spherical or affine connected
Coxeter graph Γ. Let (Kn, Σn) be obtained by iterated Hopf plumbing on (K, Σ) associated
to extending an edge of Γ. Then for some N > 0, the sequence of geometric dilatations of
(Kn, Σn) is monotone.

3.2 Salem sequences

A Salem number is a real algebraic integer α > 1 such that all other algebraic conjugates lie
on or within the unit circle C with at least one on C. The minimal polynomial of a Salem
number is always reciprocal. For convenience, we will also include among Salem numbers real
quadratic integers α > 1 whose other algebraic conjugate equals α−1. With this addition,
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α is a Salem number if and only if it is the Mahler measure of a reciprocal monic integer
polynomial f and satisfies N(f) = 1 (see notation in Section 2). Lehmer’s problem is still
open for Salem numbers, for example, it is not known if there is a Salem number smaller
than Lehmer’s number. Furthermore, it is not known whether the minimization problem for
Salem numbers is equivalent to the minimization problem for Mahler measures greater than
one.

Closely related to Salem numbers are P-V numbers, or Pisot-Vijayaraghavan numbers.
These are algebraic integers θ > 1 all of whose other algebraic conjugates lie strictly within
the unit circle. For our purposes we will redefine P-V numbers to be the Mahler measure of
a monic integer polynomial f such that f 6= f∗, f 6= −f∗, and N(f) = 1. The set of P-V
numbers is closed [Sal] and its smallest element is θ0 = 1.32472 . . . [Sie].

If (K, Σ) is a fibered link whose homological dilatation is a Salem number, we say that
(K, Σ) is a Salem (fibered) link. If (Kn, Σn) is a sequence obtained from (K, Σ) by an iteration
of Hopf plumbings, and if (Kn, Σn) is a Salem link for large enough n, we call (Kn, Σn) a
Salem sequence.

The minimal polynomial of a P-V number will be called a P-V polynomial, and the
minimal polynomial of a Salem number will be called a Salem polynomial. Theorem 2 has a
stronger form when restricting to the case when P (t) is a P-V polynomial (see [Sal], [Boyd]).

Theorem 13 If P (t) is a P-V polynomial, then there exist constants N± such that M(Q±n ) =
1 for n < N±, and N(Q±n ) = 1 for n ≥ N±. Furthermore, M(Q±n ) converges monotonically
to M(P ) from below (respectively, above) if and only if ±P (0) > 0 (respectively < 0).

From Theorem 13 it follows that to each Salem sequence (Kn, Σn) there corresponds a
P-V number θ(Σ,τ) ≥ θ0 to which the Salem numbers converge. Furthermore, one has an
effective way to find the smallest Salem number occurring in the sequence, as seen in the
following corollary.

Corollary 14 If (Kn, Σn) is a Salem sequence associated to a P-V polynomial P , then the
values greater than one attained by M(Kn, Σn) are bounded from below by the minimum of
θ0, and the first nontrivial terms in the sequences M(K2n, Σ2n) and M(K2n+1, Σ2n+1).

Remark. The role of Salem links in studying Mahler measures of fibered links is still
mysterious. For Salem links, the homological dilatation and the Mahler measure of ∆(K,Σ)

are equal. While both geometric and homological dilatation can be made arbitrarily close to
one, a lower bound greater than one for Salem numbers would imply a lower bound greater
than one for dilatations for Salem links. This leads to the following problem, which we leave
for further research.

Problem 15 Give a geometric interpretation for the algebraic conjugates of the dilatation
of a fibered link.
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4 Small deformations of A-D-E singularities.

We make use of the Salem-Boyd equations given in Section 3 to find the minimal Mahler
measures greater than one occuring in certain families.

The fibered links in this section are obtained by positive or negative Hopf plumbings
along an ordered system of chords arranged on a disk in S3. Let Γ be the dual graph of
the chord arrangement. The polynomials P±Σ,τ of Theorem 1 are easy to compute from the
combinatorics of Γ using Equation 2, especially in the case when Γ is a tree, and the locus of
plumbing is one of its nodes. A filled (unfilled) vertex ν corresponds to positive (negative)
Hopf plumbing, as shown in Figure 4. We will refer to Γ as the plumbing graph for the
associated link.

=
=

Figure 4: Graphs and plumbing.

If Γ is a tree, then the fibered link associated to any realization is an arborescent link
with underlying graph Γ. If Γ is a tree and has no vertices of degree greater than 3, then
the link is determined by Γ.

It is not hard to see that for fixed degree, there is a positive gap between 1 and the
next smallest Mahler measure. In [Leh], Lehmer lists polynomials with the smallest Mahler
measures for non-cyclotomic polynomials in all even degrees up to 10. For degree 2 the
minimal Mahler measure is attained by the Figure 8 knot, which can also be thought of a
(2, 3, 1)-pretzel link. This appears in the sequence described in Section 4.3. For degrees 4,6,8
and 10, the minimal Mahler measures can be obtained by Coxeter links of star graphs (see
Section 4.1).

We end by giving an application of Theorem 1, Theorem 2, and Theorem 13, by com-
puting the minimum Salem number occurring for certain positive (Section 4.2) and negative
(Section 4.3) deformations of the algebraic links associated to An.

4.1 Coxeter links and pretzel links from star graphs.

The (−2, m, n)-pretzel links K−2,m,n and more generally the (p1, . . . , pk,−1, . . . ,−1)-pretzel
links, where the number of -1’s is k − 2, are Coxeter links associated to (p1, . . . , pk)-star
graphs [Hir1].
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The star graphs are defined as follows. Let Ap be the graph consisting of p nodes ν0, . . . , νp

and edges between νi and νi+1 for i = 1, . . . , p − 1. The vertex ν0 will be called the base
of the Ap. A (p1, . . . , pk)-star graph is a connected tree Γ that is the union of subgraphs
isomorphic to Ap1 , . . . , Apk

with their bases identified as in Figure 5.

Figure 5: The (2, 3, 4)-star graph.

For star graphs with less than or equal to 3 branches, the Coxeter link is an arborescent
link completely determined by the graph. If the star graph is one of An, Dn, E6, E7 or
E8, or their affine extensions, then the links are iterated torus links, and the geometric and
homological monodromy equal 1. In all other cases, the fibered links have pseudo-Anosov
monodromy with orientable stable and unstable invariant foliations [Lei], and hence the
homological and geometric dilatations are also equal [Ryk]. Furthermore, the dilatations are
Salem numbers and hence are equal to the Mahler measures of the Alexander polynomials
[MRS].

The minimal hyperbolic extensions of D4, E6, E7 and E8 are respectively the (2, 2, 2, 3),
(3, 3, 4), (2, 4, 5), and (2, 3, 7) star links. The Mahler measures for the characteristic polyno-
mials of these links are the minimal ones greater than one in degrees 4,6, 8 and 10 (cf. [Mc],
Proposition 7.3 and page 175).

4.2 Positive deformations of An.

For the calculations in this Section, and the next, we will make use of the following Lemma.
Let C denote the unit circle |z| = 1. Let θG, known as the golden mean, be the sole root of
t2 − t− 1 that is greater than one.

Lemma 16 Consider the polynomials

f±m(t) = tm(t2 − t− 1)± 1.

Then f−m has exactly one root θ−m outside C for all m ≥ 1, and the sequences θ−m converge to
θG monotonically from above. The roots of f+

m are roots of unity for m = 1, 2, and for m ≥ 3,
they have exactly one root θ+

m outside C. The sequences θ+
m converge to θG monotonically

from below.

Proof. To show that f−m has at most one root outside C, we will use an argument similar
to that of Boyd in [Boyd]. Consider the polynomials

F±m(t, s) = tm(t2 − t− 1)± s

11



where s is a variable ranging in the interval [0, 1]. Let α(s) be any branch of F±m(t, s) = 0
considered as curve lying over [0, 1]. Then α(s) can never lie on C as long as 0 ≤ s < 1,
since, on C, |t2 − t− 1| is bounded from below by 1. If such an α = α(s) existed, we would
have

|α2 − α− 1| > s = |α2 − α− 1|
yielding a contradiction. It follows that the number of roots of f±m(t) outside C is bounded
from above by N(t2 − t− 1) = 1.

The cases for small m can be checked by hand. Monotonicity follows from the fact that as
soon as f±m(t) has a root α outside C, then f±m+1(t) is forced to have a root strictly between
α and θG.

The Coxeter link KAn associated to An is the torus link T (2, n + 1), and the Alexander
polynomial is

∆An =
tn+1 + (−1)n

t + 1
= tn − tn−1 + · · ·+ (−1)n. (4)

The (−2, m, n)-pretzel links K−2,m,n are obtained by positive iterated Hopf plumbing on
KAm+1 along τ , where [τ ]dual = [0, 1, 0, . . . , 0]. The link K−2,m,1 has one component if m is
odd and two components if m is even. Thus, the Alexander polynomial for K−2,m,n is given
by

∆K−2,m,n(t) = tnPm(t) + (−1)m+n(Pm)∗(t),

where

Pm(t) = ∆Am+1(t) + ∆A1(t)∆Am−1(t)

= (tm+1 − tm + · · ·+ (−1)m+1) + (t− 1)(tm−1 − tm−2 + . . . + (−1)m−1)

= tm+1 − tm−1 + tm−2 − . . . + (−1)mt.

The polynomials Pm(t) satisfy

Pm(t) + Pm+1(t) = tm+2 + tm+1 − tm = tm(t2 + t− 1).

Thus

Pm(t) + (−1)mP1(t) =
m−1∑
i=1

(−1)m−i−1(Pi(t) + Pi+1(t))

= (tm−1 − tm−2 + · · ·+ (−1)mt)(t2 + t− 1)

and

Pm(t) =
(tm−1 + (−1)m)t(t2 + t− 1) + (−1)m+1t2(t + 1)

t + 1

=
tm(t2 + t− 1) + (−1)m+1t

t + 1

12



Let (Pm)(t) = Pm(−t). Then

Pm(t) =
(−1)m [tm(t2 − t− 1) + t]

t + 1
,

and

(Pm)∗(t) =
−(Pm)∗(−t)

t + 1
.

By Lemma 16, Pm(−t) is cyclotomic for m = 1, 2, and is a P-V polynomial for θm, for m ≥ 3
where θm converges monotonically to θG from below.

Replacing t by −t in the formula for ∆K−2,m,n , we have

∆K−2,m,n(−t)
.
= tnPm(t) + (Pm)∗(t)

= tnPm(−t)− (Pm)∗(−t).

By Theorem 13, all the Salem sequences arising from (2, m, n)-stars are monotone increasing.
The minimal elements in this family are listed below.

pretzel type Salem number
(−2, 3, 7) ≈ 1.17628
(−2, 4, 5) ≈ 1.36

Thus, the (−2, 3, 7)-pretzel is minimal in this family.
For the particular case when m = 3, we have

P3(t) = t4 − t2 + t = t(t3 − t + 1) = tg(−t),

where g is the minimal polynomial for the smallest P-V number θ0. Lehmer’s polynomial
fL(t) can thus be written as

fL(t) = t8(g(t))− g∗(t) = ∆K−2,3,7(−t).

4.3 Negative deformations of An.

We now consider the positive (2, m, n)-pretzel links. These are not Coxeter links, since
they have a negative twist in their plumbing graph as in Figure 6. Just as in the previous
example, these links are arborescent links, and the Alexander polynomials are independent
of the choice of directions on the plumbing graphs.

We begin with the (2, m, 1)-pretzel links. These have plumbing graph as in Figure 7.
Let Km be the (2, m, 1)-pretzel link. When m = 1, 3, 5, 7 these links are, respectively,

denoted by 42, 62, 82, and 102 in Rolfsen’s knot table ([Rolf] p. 391–429). The knot 42 is
more commonly known as the figure eight knot. By Theorem 1, the Alexander polynomials
of Kn are given by

∆Km(t) =
tm+1P (t) + (−1)m+1P∗(t)

t + 1
,

13



Figure 6: Plumbing graph for the (2, 3, 4)-pretzel.

Figure 7: Plumbing graph for the (2, 3, 1)-pretzel.

where

P (t) = ∆K1 + ∆K0

= (t2 − 3t + 1) + (t− 1)

= t2 − 2t = t(t− 2).

It follows that
∆Km(t) = tm+1 − 3tm + 3tm−1 − · · · (−1)m(3t− 1).

Since P (t) has one root outside C, the Km are eventually Salem links. Looking at the even
and odd subsequences, we see that the only cyclotomic link that occurs is K2. Thus, the
minimal elements in this family are the figure eight knot K1, and K4. The sequences are
decreasing for n odd and increasing for n even. Thus, the smallest Salem number arising in
this sequence is 1.8832 . . . = α(K4).

Let Km,n be the (2, m, n)-pretzel link. Then this is an iterated Hopf sequence using the
index n, and starting with the (2, m, 1)-pretzel. We find Pm(t) as follows.

Pm(t) = ∆Km(t) + ∆A1(t)∆Am−1(t)

= ∆Km(t) + (t− 1)(tm−1 − tm−2 + · · ·+ (−1)m−1)

= tm+1 − 2tm + tm−1 − tm−2 + · · ·+ (−1)mt

Adding consecutive functions, yields the formula

Pm(t) + Pm+1(t) = tm(t2 − t− 1).

Thus,

Pm(t) + (−1)m−1P1(t) =
m−1∑
i=1

(−1)m−i−1(Pi(t) + Pi+1(t))

=
m−1∑
i=1

(−1)m−i−1ti(t2 − t− 1).
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Isolating Pm(t), we get

Pm(t) =
(tm−1 + (−1)m)t(t2 − t− 1) + (−1)m−1t(t− 2)(t + 1)

t + 1

=
tm(t2 − t− 1) + (−1)mt

t + 1
.

By Lemma 16, Pm(t) has exactly one root θm outside C for m = 1 and m ≥ 3, and θm tends
to the root θG of PG(t) = t2 − t− 1 from above (for odd m) and below (for even m).

The number r of components of Km is 1 if m is odd and 2 if m is even. We thus have,

∆Km,n(t)
.
= Pm(t) + (−1)m+n(Pm)∗(t).

and the leading coefficient of (−1)m+nPm(t) is (−1)n. It follows from an argument similar
to that in the proof of Lemma 16 that M(Km,2n+1) is monotone decreasing and M(Km,2n)
is monotone increasing.

Since the (2, 4, 4)- and all (2, 2, n)-pretzel links are cyclotomic, the minimal elements of
(2, m, n)-pretzel knots with respect to trefoil plumbing are those listed below.

pretzel type Salem number
(2, 1, 1) ≈ 2.61803
(2, 1, 4) ≈ 1.8832
(2, 4, 6) ≈ 1.36

Of these only the (2, 4, 6)-pretzel gives Salem number smaller than θG. Thus, M(K4,6) ≈ 1.36
has minimal Mahler measure greater than one among the (2, m, n)-pretzel links.
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