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Abstract

We obtain a list of all closed 3-manifolds that are covered by two open
submanifolds, each homeomorphic to an open disk bundle over S1, or an
open I-bundle over the 2-sphere, the projective plane, the torus, or the
Klein bottle.1 2

0 Introduction

The F -category F (M) of a closed 3-manifold M is the minimum number of
critical points of smooth functions M −→ R. A lower bound for F (M) is the
Lusternik-Schnirelmann category cat (M) of M, which is a homotopy invariant
and is defined to be the smallest number of sets, open and contractibe in M,
needed to cover M. An invariant that turns out to be equivalent to F (M) is
the smallest number C (M) of open balls needed to cover M. Note that 2 ≤
C (M) , F (M) , cat (M) ≤ 4 and denote by B a connected sum of any number
of S2-bundles over S1. Then the results about these three invariants can be
summarized as follows:

F (M) = 2 ⇔M = S3, F (M) ≤ 3 ⇔M = B (proved in [12] ).
C (M) = 2 ⇔M = S3, C (M) ≤ 3 ⇔M = B (proved in [8]).
cat (M) = 2 ⇔M ' S3, cat (M) ≤ 3 ⇔M ' B (proved in [3]).
(Here ' denotes homotopy equivalence).
Generalization of these invariants were introduced by Clapp and Puppe [1]

and Khimshiashvili and Siersma [9]: Let A be a closed k-manifold, 0 ≤ k ≤ 2.
A subset G in the 3-manifold M is A - categorical if the inclusion map i :
G −→ M factors homotopically through A. An A-function on M is a smooth
function M −→ R whose critical set is a finite disjoint union of components
each diffeomorphic to A. The A-category catA (M) of M is the smallest number
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of sets, open and A-categorical needed to cover M. The A-complexity FA (M) of
M is the minimum number of components of the critical set over all A-functions
on M.

Then catpoint (M) = cat (M) , Fpoint (M) = F (M) , catS1 (M) is the round
category of M, and FS1 (M) is the round complexity of M, studied in [9].

It is now natural to ask about minimal covers of M by open sets, each
homotopy equivalent to A. In particular when A is a point, S1, or a closed
2–manifold, consider covers of M by open disk bundles over A, i.e. open 3-

balls,
◦
D2-bundles over S1, and

◦
I-bundles over surfaces. For such an open disk

bundle B (A) over A let CB(A) (M) denote the minimal number of sets, each
homeomorphic to B (A), needed to cover M. In this paper we classify all closed
3-manifolds for which CB(A) (M) = 2, where A is S1, S2, the projective plane
P 2, the torus T, or the Klein bottle K. (Note that CB(point) (M) = C (M)).
The results are summarized in a table at the end of the paper. Some results
are unexpected; for example the manifolds for which C

T×
◦
I
(M) = 2 include all

lens spaces (including S3), which can be seen as follows. Let L1 = l1 ∪ l2 be the
Hopf link in S3 and let l′i be parallel to li so that L2 = l′1 ∪ l′2 is a Hopf link

disjoint to L1. Then S3 =
(
S3 − L1

)
∪

(
S3 − L2

)
is a union of two open T ×

◦
I’s.

A similar construction can be made for any lens space.

1 Preliminaries

Throughout this paper we work in the PL-category. Our goal is to obtain
information about closed 3-manifolds that are covered by open sets each of
which is homeomorphic to the interior of a compact 3-manifold. Our main
lemma shows that we can reduce the problem of a covering by two open sets to
a canonical covering by two compact manifolds, each pl embedded.

1.1 (Main Lemma) Suppose M is a closed 3-manifold covered by two
open sets H1, H2 such that Hi is homeomorphic to the interior of a compact
connected 3-manifold Vi (i = 1, 2). Then M admits a covering M = V1 ∪ V2

such that ∂V1 ∩ ∂V2 = ∅ and V1, V2 are pl embedded.

Proof. Using collars on ∂Vi (i = 1, 2) we can write Hi =
∞⋃

k=1

intV
(i)
k , where

V
(i)
k ≈ Vi, V

(i)
k ⊂ intV

(i)
k+1, k = 1, 2, . . . The complement Hc

1 of H1 in M is

a compact subspace of H2 and it follows that Hc
1 ⊂ intV

(2)
n for some n. Now(

intV
(2)
n

)c

is a compact subspace of H1 and hence
(
intV

(2)
n

)c

⊂ intV
(1)
m for

some m. Note that ∂V (2)
n ⊂

(
intV

(2)
n

)c

⊂ V
(1)
m . Hence if we let V1 = V

(1)
m and

V2 = V
(2)
n in M we obtain M = V1 ∪ V2 as desired.
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By a knot space we mean a 3-manifold N homeomorphic to the complement
of the interior of a regular neighborhood of a non-trivial knot in S3. Note that
∂N contains a meridian curve C so that attaching a 2-handle to N with core
along C yields B3. The next lemma is well-known.

1.2 Lemma Suppose M is a compact irreducible 3-manifold.

(i) If M contains a 2-sided compressible torus T then either T bounds a solid
torus or a knot space N in M with an essential curve of ∂N bounding
a disk in M −N. If T is a compressible boundary component of M then
M = D2 × S1.

(ii) If M contains a 2-sided compressible Klein bottle K then either K bounds
a solid Klein bottle in M or M contains a 2-sided projective plane P 2. If
K is a compressible boundary component then M is a solid Klein bottle.

Proof.
(i) Let D × [−1, 1] be a neighborhood of a compressing disk D = D × {0}

with D× [−1, 1]∩T = ∂D× [−1, 1]∩T. The sphere S = (T −D × [−1, 1] ∩ T )∪
D×{−1}∪D×{1} bounds a ball B in M. If D∩B = ∅ then B ∪D× [−1, 1] is
a solid torus in M bounded by T. If D ⊂ B then T ⊂ B such that ∂B ∩ T is an
essential annulus of T. Hence B −D × [−1, 1] is a knot space (or a solid torus)
in M bounded by T.

(ii) If we surger K as above along a compressing disk D we obtain a 2-
sphere S if ∂D does not separate K. Then B ∪ D × [−1, 1] is a solid Klein
bottle bounded by K. (The case D ⊂ B can not happen since a Klein bottle
does not imbed in a ball). If ∂D separates K into two moebius bands then
(K −D × [−1, 1] ∩K) ∪D × {−1} ∪D × {1} gives two 2-sided P 2’s in M.

Notation.
By B×̃F we denote a twisted F -bundle over B, not homeomorphic to B×F.

In particular, S1×̃D2 is the solid Klein bottle, S1×̃S2 is the non-orientable S2

-bundle over S1, and P 2×̃I is the once-punctured projective space P 3. The
twisted I-bundles over a torus T and a Klein bottle K are described in the next
section.

The union of two 3-manifolds N1, N2 glued together along boundary com-
ponents is denoted by N1 ∪∂ N2.

L denotes any lens space (including S3 and S1 × S2).
S (2, 2, n) denotes a Seifert fiber space over the 2-sphere with three excep-

tional fibers of orders 2, 2, n (n ≥ 0).
The symbol ∼ means homologous to.
The symbol ≈ means homeomorphic.
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2 I-bundles and (semi)-bundles over the torus
and Klein bottle

Recall that an I-bundle over a surface F is twisted if it is not the product I-
bundle F × I. The twisted I-bundle a2×̃I over the annulus a2 is homeomorphic
to the product I-bundle m2×I over the moebius band m2. The twisted I-bundle
m2×̃I over m2 is homeomorphic to the solid torus D2 × I (with m2 embedded
in D2 × I so that ∂m2 is a (1, 2)-curve on ∂D2 × S1).

(2.1) There is only one twisted I-bundle T ×̃I = m2 × S1 over the torus T =
S1 × S1.

To see this, note that in such an I-bundle N there is a simple closed curve c
on T such that the restriction of the I-bundle over c is a moebius band. Now c
cuts T into an annulus a2 and the restriction of the I-bundle over a2 is twisted.
Hence N is the quotient m2 × I/ (x, 0) ∼ (ϕ (x) , 1) for a homeomorphism ϕ of
m2. If ϕ is isotopic to the identity then N = m2 × S1. The case that ϕ is not
isotopic to the identity can not happen since then ϕ would reverse on orientation
of ∂m2 which would cause ∂N to be a Klein bottle; but ∂N is a torus since it
is 2-sheeted cover of T.

(2.2) There are exactly two twisted I-bundles over the Klein bottleK = S1×̃S1.

These can be described as follows. The restriction of such an I-bundleN over
a separating simple closed curve on K splits N into two I-bundles over moebius
bands m2

1, m
2
2, at least one of which is twisted. There are two possibilities.

(i) N = m2
1×̃I ∪m2

2×̃I is a union of two solid tori along an annulus in their
boundary and N can be described as a Seifert fiber space with orbit a disk
and two exceptional fibers of order 2. In this case N is orientable and is
denoted by

(
K×̃I

)
0
.

(ii) N = m2
1 × I ∪m2

2×̃I, where ∂m2
1 × I is identified with an annular neigh-

borhood of ∂m2
2 in ∂D2 × S1 = ∂

(
m2

2×̃I
)
. In this case ∂N is a Klein

bottle and we denote this I-bundle over K by
(
K×̃I

)
N0
.

Another description of
(
K×̃I

)
N0

is obtained by cutting K along a 2-sided
non-separating curve into an annulus. As for T ×̃I we obtain

(
K×̃I

)
N0

as the
quotient m2 × I/ (x, 0) ∼ (ψ (x) , 1) , where ψ is not isotopic to the identity.
Viewing m2 as a rectangle with a pair of opposite edges identified, ψ is induced
by a reflection about a line mid-way betwen the two edges (cf [10]). Thus(
K×̃I

)
N0

≈ S1×̃m2, the twisted m2-bundle over S1.

Following Hatcher [4] we call a union of two twisted I-bundles over a torus T
(resp. Klein bottle K) glued together along their boundary component a torus
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(resp. Klein bottle) semi-bundle. These semi-bundles are essentially classified
by the isotopy classes of the gluing maps (see e.g. [4, Thm 5.1]).

There are exactly four isotopy classes of homeomorphisms of the Klein bottle
([10]) that lead to exactly four Klein bottle-bundles over S1, described in [6].

3 Covers by intM1 and intM2

In this and the following sections we consider a closed 3-manifold M that is
covered by two open sets intM1, intM2 where M1, M2 are compact connected
3-manifolds. By the Main Lemma we assume throughout that

M = M1 ∪M2, M1 ≈ M2 compact, ∂M1 ∩ ∂M2 = ∅. (*)

We let Q = M1 ∩M2 ⊂ M. Note that the boundary of each component of
Q contains a component of both ∂M1 and ∂M2. We observe

(i) If M1, M2 are irreducible then Mi −Q is irreducible (i = 1, 2).

For a 2-sphere in int
(
M1 −Q

)
bounds a ball B in int (M1) . If B does not

lie in M1 −Q then B contains a component of Q, hence a component of ∂M1,
a contradiction.

(ii) If M1, M2 are irreducible and M 6= S3 then Q is irreducible.

For a 2-sphere S in Q bounds balls B1 ⊂M1, B2 ⊂M2. Either B1 = B2 ⊂ Q
or B1 ∩B2 = S and M = B1 ∪∂ B2 = S3.

3.1 Covers by open balls and open disk bundles over S1

(a) If Mi ≈ B3 then M = S3.

Proof. ∂M2 bounds a ball B in M1 and M = M2 ∪∂ B = S3.

(b) If Mi = S1 ×D2 then M = L.

Proof. Since M1 does not contain a closed incompressible surface there
is a compressing disk D for ∂M2 in M1. If D ⊂M1 −Q then M1 −Q is a
solid torus (by Lemma 1.2(i) and 3(i)) and M = M1 −Q ∪∂ M2 is a lens
space.

If D ⊂ Q then viewing a regular neighborhood of D in Q as a 2-handle
U (D) we get M1 −Q ∪ U (D) ⊂ M1 bounded by a 2-sphere. Hence
M =

(
M1 −Q ∪ U (D)

)
∪∂

(
M2 − U (D)

)
is a union of two balls, i.e.

M = S3.
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(c) If Mi ≈ S1×̃D2 then M = S1×̃S2.

Proof. ∂M2 is compressible in M1 and M1 does not contain a projective
plane. By Lemma 1.2(ii), ∂M2 bounds a solid Klein bottle M ′

1 ⊂M1 and
M = M ′

1 ∪∂ M2 = S2×̃S1 (see e.g. [7, 2.14]).

3.2 Covers by open I-bundles over S2 or P 2

(a) If Mi ≈ S2 × I then M = S3, S1 × S2 or S1×̃S2.

Proof. Let ∂M2 = S0 ∪ S1 ⊂ intM1.

If S0 bounds a ball B0 in M1 then B0 ⊂M1 −Q since M is closed. Now
M ′

2 = M2 ∪∂ B0 is a ball and M = M1 ∪M ′
2. The boundary S1 of M ′

2

is not isotopic to a boundary sphere of M1 (since M is closed) and hence
bounds a ball B1 in M1, different from M ′

2 and M = M ′
2 ∪∂ B1 = S3.

If both S0 and S1 are parallel to the boundary spheres of M1 then S0

and S1 bound a submanifold M ′
2 ≈ S2 × I in M1 and we obtain M =

M1 −M ′
2 ∪∂ M

′
2, hence M = S1 × S2 or S1×̃S2.

(b) If Mi = P 2 × I then M = P 2 × S1.

Proof. This follows from the fact that any projective plane in M1 is
isotopic to a boundary component, hence M ≈ M1 ∪∂ M2. (Note that
there is no twisted P 2-bundle over S1).

(c) If Mi = P 2×̃I then M = P 3 or P 3#P 3.

Proof. If ∂M2 bounds a ball B inM1 thenM = M2∪∂B = P 3. Otherwise
∂M2 is parallel in M1 to ∂M1 and M ≈ M1 ∪∂ M2 = P 3#P 3.

3.3 Covers by open I-bundles over S1 × S1 and S1×̃S1.

Let T = S1 × S1 and K = S1×̃S1.

(a) If Mi = T × I then M = L or a T -bundle over S1.

Proof. Let ∂M2 = T0 ∪ T1, ∂M1 = T ′0 ∪ T ′1.
If T0 is incompressible in M1 then it is isotopic to a component of ∂M1

and splits M1 into two copies M ′
1, M

′′
1 . Assume T ′0 ⊂ M ′′

1 , T
′
1 ⊂ M ′

1.
Then T1 ⊂M ′

1 , say. Then (since T ′0, T0 ⊂ ∂Q and T ′0 ⊂ intM2) it follows
that M ′′

1 is a component of Q ⊂M1. The other component(s) of Q are in
M ′

1 and are bounded by T ′1 and T1. Since T ′1 � 0 in M ′
1 there is exactly

one component P of Q in M ′
1 bounded by T ′1 and T1. Hence T1 � 0 in

M ′
1 and Lemma 1.2(i) implies that T1 is incompressible in M ′

1. Hence T0,
T1 are isotopic in M1 to T ′0, T

′
1 and it follows that M ≈ M1 ∪∂ M2 is a

T -bundle over S1.

6



N
0 T

0

D

N
1

T
1

M
1

T
0
’

T
1
’

Figure 1:

Now suppose that T0, T1 are both compressible in M1, hence, by Lemma
1.2(i), Ti bounds a solid torus or knot space Ni in M1 (i=0,1). Now T1

is not contained in N0. Otherwise an arc in M2 from a point of T0 to a
point of T1 would be in N0 (since T0 separates in M1), and it would follow
that M2 ⊂ N0 ⊂M1, a contradiction. Similarly T0 is not contained in N1;
hence N0 and N1 are disjoint. If N0 is a solid torus then M ′

2 = M2 ∪∂ N0

is a solid torus and M = M ′
2 ∪∂ N1. Thus if N1 is also a solid torus, M is

a lens space. If N1 is a knot space then a meridian curve on ∂N1 bounds
a compressing disk D for M ′

2 in M1 −N1 (see Figure 1).

For a regular neighborhood U (D) inM1 −N1 we obtainM = M ′
2 − U (D)

∪∂N1 ∪ U (D) a union of two balls, hence M = S3.

The case that both N0 and N1 are knot spaces in M1 can not happen. For
in this case a compressing disk D for T1 in M1 −N1 must intersect N0,
since otherwise D would be a compressing disk for T1 in M2. But then an
essential innermost curve of T0 ∩D bounds a disk D′ on D which would
be a compressing disk for T0 in N0 or in M2, a contradiction.

(b) If Mi = K × I then M = S1×̃S2 or a K-bundle over S1.

Proof. Let ∂M2 = K0 ∪K1 ⊂ intM1.

If K0 is compressible in M1 it bounds a solid Klein bottle V0 in M1 (by
Lemma 1.2(ii), since M1 does not contain P 2’s). The same argument as in
case (a) shows that K1 is also compressible and bounds a solid Klein bottle
V1 in M1 such that V0 and V1 are disjoint. Then M = (M2 ∪∂ V0) ∪∂ V1

is a union of two solid Klein bottles, hence M = S1×̃S2.

If both K0,K1 are incompressible in M1 then they are boundary parallel
and M = M1 ∪M2 is a K–bundle over S1.

We next consider the cases of twisted I-bundles over T and K.

3.3.1 Lemma Let Mi be a twisted I-bundle over T or K (i = 1, 2).

(i) If ∂M1 is incompressible in M2 then M ≈M1 ∪∂ M2 is a semi-bundle.
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(ii) If ∂M1 is compressible in M2 then M = M2 ∪∂

(
S1 ×D2

)
(for Mi = T ×̃I

or
(
K×̃I

)
0
), resp. M = M2 ∪∂

(
S1×̃D2

)
, (for Mi =

(
K×̃I

)
N0

).

Proof. If ∂M1 is incompressible M2 then it is parallel to ∂M2 in M2 and
M ≈M1 ∪∂ M2.

If ∂M1 compresses in M2 then it bounds a solid torus, a knot space, or
a solid Klein bottle in M2 (by Lemma 1.2). It can not bound a knot space
N since otherwise a meridian of ∂N would bound a compressing disk D in
M2 −N ⊂ Q and hence D would be a compressing disk for ∂M1 in M1. It
follows that M = M2 ∪∂

(
S1 ×D2

)
or M2 ∪∂

(
S1×̃D2

)
.

(c) If Mi = T ×̃I then M is a torus semi-bundle or M = P 2 × S1 or M =
S1×̃S2.

Proof. By the previous lemma it suffices to consider the case that M =
M2 ∪∂

(
S1 ×D2

)
.

In the 2-sheeted orientable cover M̃ of M, M2 = m2×S1 lifts to a2×S1 =
T × I and the attaching solid torus S1 × D2 lifts to two attaching solid
tori. Hence M̃ is a lens space; its fundamental group is infinite, since
it covers the closed non-orientable manifold M. By the classification of
(orientation-reversing) fixed point free involutions on S1 × S2 ([13], [14,
Corollary]) M is as claimed.

(d) If Mi =
(
K×̃I

)
0

then M is a Klein bottle semi-bundle or M = P 3#P 3 or
M = S (2, 2, n) (for any n ≥ 0).

Proof. Again we need to consider only the case that M = M2 ∪∂(
S1 ×D2

)
. Writing M2 as a Seifert fiber space over a disk with two ex-

ceptional fibers each of order 2 we obtain M = S (2, 2, n) if the meridian
∂D2 of the attaching solid torus is not homotopic to a fiber on ∂M2 and
M = P 3#P 3 otherwise (see e.g. [5]).

(e) If Mi =
(
K×̃I

)
N0

then M is a Klein bottle semi-bundle or M = P 2×S1.

Proof. Considering only the case that M = M2∪∂

(
S1×̃D2

)
we represent

M2 = S1×̃m2 (as in section 2) and note that ∂m2 cuts ∂M2 = S1×̃∂m2

into an annulus. Up to isotopy there is only one simple closed curve on K
that cuts K into an annulus ([10]). Thus there is only one way to attach
S1×̃D2 to M2 : the meridian ∂D2 of S1×̃D2 must be glued to ∂m2 and
it follows that M =

(
S1×̃m2

)
∪∂

(
S1×̃D2

)
= S1×̃P 2 = S1 × P 2.

Figure 2 shows that P 2×S1 admits indeed a decomposition of type
(
K×̃I

)
N0
∪∂(

S1×̃D2
)
.
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S1 D2

S1 D2

(K    I)
N0

Figure 2:

The following table summarizes the results.

M = intM1 ∪ intM2

Mi B3 S1 ×D2 S1×̃D2 S2 × I P 2 × I P 2×̃I

M S3 L S1×̃S2 S3 P 2 × S1 P 3

S1 × S2 P 3#P 3

S1×̃S2

Mi T × I T ×̃I K × I
(
K×̃I

)
0

(
K×̃I

)
N0

M L S1×̃S2 S1×̃S2 P 3#P 3 P 2 × S1

T -bundles
over S1 P 2 × S1 K-bundles

over S1 S (2, 2, n)
K-semi bun-
dles (non ori-
entable)

T -semi
bundles

K-semi
bundles
(orientable)

Conversely it is easy to see that each manifold in the table is a union of two
open covers as indicated.
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