3-Manifolds that are covered by two open Bundles
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Abstract

We obtain a list of all closed 3-manifolds that are covered by two open
submanifolds, each homeomorphic to an open disk bundle over S', or an
open I-bundle over the 2-sphere, the projective plane, the torus, or the
Klein bottle.! 2

0 Introduction

The F-category F (M) of a closed 3-manifold M is the minimum number of
critical points of smooth functions M — R. A lower bound for F (M) is the
Lusternik-Schnirelmann category cat (M) of M, which is a homotopy invariant
and is defined to be the smallest number of sets, open and contractibe in M,
needed to cover M. An invariant that turns out to be equivalent to F (M) is
the smallest number C (M) of open balls needed to cover M. Note that 2 <
C(M),F(M),cat (M) < 4 and denote by B a connected sum of any number
of S2-bundles over S'. Then the results about these three invariants can be
summarized as follows:

FM)=2&M=53 F(M)<3& M=B (proved in [12] ).

CM)=2&M=283 C(M)<3< M=DB (proved in [8]).

cat(M) =2 M ~ S3, cat (M) < 3 < M ~ B (proved in [3]).

(Here ~ denotes homotopy equivalence).

Generalization of these invariants were introduced by Clapp and Puppe [1]
and Khimshiashvili and Siersma [9]: Let A be a closed k-manifold, 0 < k < 2.
A subset G in the 3-manifold M is A - categorical if the inclusion map i :
G — M factors homotopically through A. An A-function on M is a smooth
function M — R whose critical set is a finite disjoint union of components
each diffeomorphic to A. The A-category cata (M) of M is the smallest number
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of sets, open and A-categorical needed to cover M. The A-complexity Fa (M) of
M is the minimum number of components of the critical set over all A-functions
on M.

Then catpoint (M) = cat (M), Fpoins (M) = F (M), catgs: (M) is the round
category of M, and Fs1 (M) is the round complexity of M, studied in [9].

It is now natural to ask about minimal covers of M by open sets, each
homotopy equivalent to A. In particular when A is a point, S', or a closed
2-manifold, consider covers of M by open disk bundles over A, i.e. open 3-

balls, D?-bundles over S', and I-bundles over surfaces. For such an open disk
bundle B (A) over A let Cg(a) (M) denote the minimal number of sets, each
homeomorphic to B (A), needed to cover M. In this paper we classify all closed
3-manifolds for which Cp4) (M) = 2, where A is S1, 82, the projective plane
P2, the torus T, or the Klein bottle K. (Note that CB(point) (M) = C (M)).
The results are summarized in a table at the end of the paper. Some results
are unexpected; for example the manifolds for which C’TX? (M) = 2 include all

lens spaces (including S?), which can be seen as follows. Let Ly = I3 Ul be the
Hopf link in S? and let I} be parallel to I; so that Ly = I} Ul is a Hopf link

disjoint to L;. Then S3 = (53 — L1) U (5’3 — Lg) is a union of two open T' x I’s.
A similar construction can be made for any lens space.

1 Preliminaries

Throughout this paper we work in the PL-category. Our goal is to obtain
information about closed 3-manifolds that are covered by open sets each of
which is homeomorphic to the interior of a compact 3-manifold. Our main
lemma shows that we can reduce the problem of a covering by two open sets to
a canonical covering by two compact manifolds, each pl embedded.

1.1 (Main Lemma) Suppose M is a closed 3-manifold covered by two
open sets Hy, Hy such that H; is homeomorphic to the interior of a compact
connected 3-manifold V; (i = 1,2). Then M admits a covering M = V; UV,
such that OV, N OV, = (0 and Vi, V5 are pl embedded.

(oo} .
Proof. Using collars on 0V; (i = 1,2) we can write H; = |J z'nth(Z), where
k=1
Vk,(z) =~ Vi, Vkm C mth(_?l, k = 1,2,... The complement H{ of H; in M is
a compact subspace of Hy and it follows that Hf C z’ntvﬁ for some n. Now

C (&
(intVém) is a compact subspace of H; and hence (intVéz)) - mtV,S) for
some m. Note that 9V;\*) (intVn@)) c V.V Hence if we let vV, = v and
Vo = VT§2) in M we obtain M = V; UV, as desired. m



By a knot space we mean a 3-manifold N homeomorphic to the complement
of the interior of a regular neighborhood of a non-trivial knot in S®. Note that
ON contains a meridian curve C so that attaching a 2-handle to N with core
along C yields B3. The next lemma is well-known.

1.2 Lemma Suppose M is a compact irreducible 3-manifold.

(i) If M contains a 2-sided compressible torus T' then either T' bounds a solid
torus or a knot space N in M with an essential curve of ON bounding
a disk in M — N. If T is a compressible boundary component of M then
M = D? x S*.

(ii) If M contains a 2-sided compressible Klein bottle K then either K bounds
a solid Klein bottle in M or M contains a 2-sided projective plane P2. If
K is a compressible boundary component then M is a solid Klein bottle.

Proof.

(i) Let D x [—1,1] be a neighborhood of a compressing disk D = D x {0}
with D x [-1,1]NT = 8D x [-1,1]NT. The sphere S = (T'— D x [-1,1]NT)U
D x{=1}UD x {1} bounds a ball Bin M.If DNB = () then BUD x [—1,1] is
a solid torus in M bounded by T. If D C B then T' C B such that 9B NT is an
essential annulus of 7. Hence B — D x [—1,1] is a knot space (or a solid torus)
in M bounded by T.

(ii) If we surger K as above along a compressing disk D we obtain a 2-
sphere S if dD does not separate K. Then B U D x [—1,1] is a solid Klein
bottle bounded by K. (The case D C B can not happen since a Klein bottle
does not imbed in a ball). If 0D separates K into two moebius bands then
(K—-Dx[-1,1]]NK)UD x {—1} U D x {1} gives two 2-sided P?’sin M. m

Notation.

By BxF we denote a twisted F-bundle over B, not homeomorphic to B x F.
In particular, S*xD? is the solid Klein bottle, S'xS? is the non-orientable S2
-bundle over S', and P2?XI is the once-punctured projective space P3. The
twisted I-bundles over a torus T" and a Klein bottle K are described in the next
section.

The union of two 3-manifolds N7, Ny glued together along boundary com-
ponents is denoted by Ny Uy Na.

L denotes any lens space (including S and S x S2).

S(2,2,n) denotes a Seifert fiber space over the 2-sphere with three excep-
tional fibers of orders 2,2, n (n > 0).

The symbol ~ means homologous to.

The symbol ~ means homeomorphic.



2 [-bundles and (semi)-bundles over the torus
and Klein bottle

Recall that an I-bundle over a surface F' is twisted if it is not the product I-
bundle F x I. The twisted I-bundle a®XI over the annulus a? is homeomorphic
to the product I-bundle m? x I over the moebius band m?. The twisted I-bundle
m?x1 over m? is homeomorphic to the solid torus D? x I (with m? embedded
in D? x I so that Om? is a (1,2)-curve on 9D? x S*).

(2.1) There is only one twisted I-bundle TxI = m? x S* over the torus T =
St x St

To see this, note that in such an I-bundle N there is a simple closed curve ¢
on T such that the restriction of the I-bundle over c is a moebius band. Now ¢
cuts T into an annulus a? and the restriction of the I-bundle over a? is twisted.
Hence N is the quotient m? x I/ (z,0) ~ (¢ (z),1) for a homeomorphism ¢ of
m?2. If ¢ is isotopic to the identity then N = m? x S'. The case that ¢ is not
isotopic to the identity can not happen since then ¢ would reverse on orientation
of Om? which would cause ON to be a Klein bottle; but N is a torus since it
is 2-sheeted cover of T.

(2.2) There are exactly two twisted I-bundles over the Klein bottle K = S*xS?.

These can be described as follows. The restriction of such an I-bundle N over
a separating simple closed curve on K splits N into two I-bundles over moebius
bands m?2, m3, at least one of which is twisted. There are two possibilities.

(i) N =m3xIUm3xI is a union of two solid tori along an annulus in their
boundary and N can be described as a Seifert fiber space with orbit a disk
and two exceptional fibers of order 2. In this case IV is orientable and is
denoted by (KQI)O .

(i) N =m? x TUm3xI, where dm? x I is identified with an annular neigh-
borhood of dm3 in dD? x S* = 0 (m3xI). In this case IN is a Klein
bottle and we denote this I-bundle over K by (K xI ) No

Another description of (K xI) N, 18 obtained by cutting K along a 2-sided
non-separating curve into an annulus. As for T'xI we obtain (K xI ) N, B8 the
quotient m? x I/ (z,0) ~ (¢ (z),1), where 1 is not isotopic to the identity.
Viewing m? as a rectangle with a pair of opposite edges identified, 1 is induced
by a reflection about a line mid-way betwen the two edges (cf [10]). Thus
(K'xI) N B S1xm?2, the twisted m2-bundle over S*.

Following Hatcher [4] we call a union of two twisted I-bundles over a torus T’
(resp. Klein bottle K) glued together along their boundary component a torus



(resp. Klein bottle) semi-bundle. These semi-bundles are essentially classified
by the isotopy classes of the gluing maps (see e.g. [4, Thm 5.1]).

There are exactly four isotopy classes of homeomorphisms of the Klein bottle
([10]) that lead to exactly four Klein bottle-bundles over S*, described in [6].

3 Covers by intM; and intM,

In this and the following sections we consider a closed 3-manifold M that is
covered by two open sets int My, intMs where My, My are compact connected
3-manifolds. By the Main Lemma we assume throughout that

M = My U My, My ~ M, compact, OM; NOM, = (. (*)

We let Q = M7 N M; C M. Note that the boundary of each component of
@ contains a component of both dM; and OMs. We observe

(i) If My, My are irreducible then M; — @ is irreducible (i = 1, 2).

For a 2-sphere in int (M; — Q) bounds a ball B in int (M) . If B does not

lie in M; — @ then B contains a component of ), hence a component of dMj,
a contradiction.

(ii) If My, My are irreducible and M # S3 then @ is irreducible.

For a 2-sphere S in Q bounds balls By C My, By C Ms. Either By = By C )
or Bl ﬂBQ:SandM:BluaBQ:Sg‘.

3.1 Covers by open balls and open disk bundles over S*
(a) If M; =~ B? then M = S3.

Proof. OM; bounds a ball Bin M; and M = M; Uy B=5°. m
(b) If M; = S* x D? then M = L.

Proof. Since M; does not contain a closed incompressible surface there
is a compressing disk D for M, in M. If D C M; — @ then M; — Q is a

solid torus (by Lemma 1.2(i) and 3(i)) and M = M; — Q Uy My is a lens
space.

If D C @ then viewing a regular neighborhood of D in ) as a 2-handle
U (D) we get M; —Q U U (D) C M; bounded by a 2-sphere. Hence

M = (M;—QUU (D)) Ug (Mg . U(D)) is a union of two balls, i.e.
M=5 m




(c) If M; = S'xD? then M = S*xS2.

Proof. dM, is compressible in M; and M; does not contain a projective
plane. By Lemma 1.2(~ii), OM> bounds a solid Klein bottle M{| C M; and
M = M{ Uy My = S?x St (see e.g. [7,2.14]). m

3.2 Covers by open I-bundles over S? or P?
(a) If M; =~ S? x I then M = S3, S* x 2 or S*xS2.

Proof. Let OMy = So U S; C intM;.

If Sy bounds a ball By in M7 then By C M; — @ since M is closed. Now
M} = Ms Ug By is a ball and M = M; U M}. The boundary S; of M}
is not isotopic to a boundary sphere of M; (since M is closed) and hence
bounds a ball By in My, different from M} and M = M} Uy By = S3.

If both Sy and S; are parallel to the boundary spheres of M; then Sy
and S; bound a submanifold M} ~ S? x I in My and we obtain M =
My — M} Ug M5, hence M = S x S% or S1xS%. =

(b) If M; = P2 x I then M = P2 x §',

Proof. This follows from the fact that any projective plane in M is
isotopic to a boundary component, hence M ~ M; Uy M. (Note that
there is no twisted P2-bundle over S'). m

(c) If M; = P2XI then M = P3 or P34#P3.

Proof. If 9M; bounds a ball B in M; then M = MsUgB = P3. Otherwise
OM, is parallel in M; to OM; and M ~ M; Uy My = P3#P3. m

3.3 Covers by open I-bundles over S! x S' and S'xS.
Let T = S x S and K = S1x St

(a) If M; =T x I then M = L or a T-bundle over S*.
Proof. Let 8M2 = TQ U Tl, 8M1 = Té U Tll

If Ty is incompressible in M; then it is isotopic to a component of dM;
and splits M; into two copies M7, M{ . Assume T) C M{,T] C Mj.
Then Ty C M7 , say. Then (since T§, To C 9Q and T} C intMys) it follows
that M7 is a component of @ C M;j. The other component(s) of @ are in
M and are bounded by T} and Tj. Since 7] ~ 0 in M7 there is exactly
one component P of @ in M bounded by 7] and T;. Hence T; ~ 0 in
M and Lemma 1.2(7) implies that 7} is incompressible in M;. Hence T,
T, are isotopic in My to T}, T} and it follows that M ~ M; Uy M is a
T-bundle over S?.



(b)

Figure 1:

Now suppose that Ty, T1 are both compressible in M;, hence, by Lemma
1.2(3), T; bounds a solid torus or knot space N; in M; (i=0,1). Now T}
is not contained in Ny. Otherwise an arc in My from a point of Ty to a
point of T would be in Ny (since Ty separates in M), and it would follow
that My C Ny C M, a contradiction. Similarly Ty is not contained in Ny;
hence Ny and Nj are disjoint. If Ny is a solid torus then M} = My Uy Ny
is a solid torus and M = M} Uy Ny. Thus if N; is also a solid torus, M is
a lens space. If V; is a knot space then a meridian curve on dN; bounds
a compressing disk D for M) in M; — Ny (see Figure 1).

For a regular neighborhood U (D) in My — N; we obtain M = M} — U (D)
UsN1 UU (D) a union of two balls, hence M = S3.

The case that both Ny and N; are knot spaces in M; can not happen. For
in this case a compressing disk D for 717 in M7 — N; must intersect No,
since otherwise D would be a compressing disk for 77 in Ms. But then an
essential innermost curve of Ty N D bounds a disk D’ on D which would
be a compressing disk for Tj in Ny or in Ms, a contradiction. m

If M; = K x I then M = S'xS? or a K-bundle over S*.

Proof. Let OMy = Ko U K1 C intMj.

If Ky is compressible in M; it bounds a solid Klein bottle V; in M; (by
Lemma 1.2(i4), since My does not contain P?’s). The same argument as in
case (a) shows that K is also compressible and bounds a solid Klein bottle
Vi in M; such that Vj and V; are disjoint. Then M = (My Uy Vi) Us V1
is a union of two solid Klein bottles, hence M = S'x S2.

If both Ky, K1 are incompressible in M; then they are boundary parallel
and M = M; U M, is a K-bundle over S'. m

We next consider the cases of twisted I-bundles over T and K.

3.3.1 Lemma Let M; be a twisted I-bundle over T or K (i = 1,2).

(i)

If OM; is incompressible in My then M ~ M; Ug Ms is a semi-bundle.



(ii) If OM; is compressible in My then M = M3 Uy (51 X D2) (for M; = TxI
or (KQI)O), resp. M = M, Up (S'xD?), (for M; = (KQI)NO).

Proof. If OM; is incompressible M, then it is parallel to M5 in M, and
M =~ M1 Us MQ.

If OM; compresses in My then it bounds a solid torus, a knot space, or
a solid Klein bottle in My (by Lemma 1.2). It can not bound a knot space
N since otherwise a meridian of N would bound a compressing disk D in
My — N C @ and hence D would be a compressing disk for OM; in M. It
follows that M = My Uy (S* x D?) or My Up (S*xD?). m

(c) If M; = TXI then M is a torus semi-bundle or M = P2 x S' or M =
S1x 2.

Proof. By the previous lemma it suffices to consider the case that M =
Ms Uyg (51 X D2) .

In the 2-sheeted orientable cover M of M, My = m? x St lifts to a®> x S1 =
T x I and the attaching solid torus S' x D? lifts to two attaching solid
tori. Hence M is a lens space; its fundamental group is infinite, since
it covers the closed non-orientable manifold M. By the classification of
(orientation-reversing) fixed point free involutions on S* x S? ([13], [14,
Corollary]) M is as claimed. m

(d) If M; = (KQI)O then M is a Klein bottle semi-bundle or M = P3#P3 or
M = 5(2,2,n) (for any n > 0).

Proof. Again we need to consider only the case that M = My Uy
(S* x D?) . Writing M, as a Seifert fiber space over a disk with two ex-
ceptional fibers each of order 2 we obtain M = S (2,2, n) if the meridian
0D? of the attaching solid torus is not homotopic to a fiber on M, and
M = P34P3 otherwise (see e.g. [5]). m

(e) If M; = (KQI) n, then M is a Klein bottle semi-bundle or M = P? x St

Proof. Considering only the case that M = MsUjy (S’l §D2) we represent
My = S'xm? (as in section 2) and note that dm? cuts My = S* xOm?
into an annulus. Up to isotopy there is only one simple closed curve on K
that cuts K into an annulus ([10]). Thus there is only one way to attach
S1xD? to M, : the meridian 9D? of S'XD? must be glued to dm? and
it follows that M = (S'xm?) Uy (S'xD?) = S'xP? =51 x P?. =

Figure 2 shows that P2 xS! admits indeed a decomposition of type (K xI ) N, U0
(5*xD?).



Figure 2:

The following table summarizes the results.

M = intMy UintMy

M; | B® | S' xD? | S'xD? | $*x1 | P>x1 | P?xI |
M | S3 L S1x 52 S3 P? x S1 p3
St x 82 P34p3
1% 52
M; | TxI TxI K x1I (KxI), (KXI) .
M L S1%.52 S1% 52 P34 p3 P?x st
] K-semi bun-
T—bun(lileb P2 x St K—bunld les S(2,2,n) dles (non ori-
over S over S entable)
. K-semi
T-semi bundles
bundles (orientable)

Conversely it is easy to see that each manifold in the table is a union of two

open covers as indicated.
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