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Abstract

The order of growth of a harmonic function is determined by the
growth of its gradient and conversely. We extend these results to
solutions of certain subelliptic equations in John domains in Carnot
groups. The modulus of the gradient is replaced by a local average
of the horizontal gradient. In the harmonic case these quantities are
equivalent. The proof uses recent integral inequalities associated with
work on potential theory in Carnot groups. We also obtain results on
the mutual growth of related A-harmonic functions which generalize
corresponding results for conjugate harmonic functions.

Primary 35J60, 30G30, Secondary 35J70 Keywords : Order of growth, A-
harmonic funtions, Carnot groups

1 Introduction

The following seminorm measures the rate of growth of a function f in the
unit disk D of the complex plane.

For α < 0 and f : D → Rn :

Oα,D(f) = inf{m : |f(z1)− f(z2)| ≤ m(min
j=1,2

(1− |zj|))α, z1, z2 ∈ D},
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Theorem 1.1 Suppose that u is harmonic in the unit disk D of the complex
plane. The following are equivalent :

a) Oα,D(u) < ∞.

b) |∇u(z)| ≤ C(1− |z|)α−1 for some constant C independent of u.

The implication a) implies b) follows from the Poisson integral formula
while b) implies a) can be obtained by integrating over hyperbolic geodesics.

The main results of this paper appear in Section 6. Theorem 6.1 is a
local version of Theorem 1.1 for A-harmonic functions in domains in Carnot
groups. We use a local average of the horizontal gradient in general. When
u is harmonic, this is equivalent to the modulus of the gradient at the same
point. We obtain a global result in John domains presented in Theorem 6.2.
We obtain results on the mutual growth of related A-harmonic functions on
Carnot groups in Theorems 6.3 and 6.4. These results apply also to con-
jugate harmonic functions in the plane. We give examples in the plane of
p,q-harmonic functions which show that, in these cases, our results are in
many ways best possible. In Section 2 we describe Carnot groups and in-
troduce notation. Section 3 is devoted to certain domains in general metric
spaces. The results here and the proofs are adapted from the Euclidean case
with assumptions on the geometry of metric balls. John domains and Ordα-
extension domains are the natural domains for the study of the growth of
A-harmonic functions.

We introduce subelliptic equations and corresponding integral inequalities
for their solutions in Sections 4 and 5.

2 Carnot Groups

A Carnot group is a connected, simply connected, nilpotent Lie group G
of topological dimG = N ≥ 2 equipped with a graded Lie algebra G =
V1 ⊕ · · · ⊕ Vr so that [V1, Vi] = Vi+1 for i=1,2,...,r-1 and [V1, Vr] = 0. This
defines an r-step Carnot group. As usual, elements of G will be identified
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with left-invariant vectors fields on G.

We fix a left-invariant Riemannian metric g on G with g(Xi, Xj) = δij.
We denote the inner product with respect to this metric, as well as all other
inner products, by 〈, 〉. We assume that dimV1 = m ≥ 2 and fix an ortho-
normal basis of V1 : X1, X2, ..., Xm. The horizontal tangent bundle of G,
HT , is the subbundle determined by V1 with horizontal tangent space HTx

the fiber span[X1(x), ..., Xm(x)]. We use a fixed global coordinate system as
exp : G → G is a diffeomorphism (since G is simply-connected and nilpo-
tent). We extend X1, ..., Xm to an orthonormal basis X1, ..., Xm, T1, ..., TN−m

of G. All integrals will be with respect to the bi-invariant Harr measure on G
which arises as the push-forward of the Lebesque measure in RN under the
exponential map. We denote by |E| the measure of a measurable set E. We
normalize the Harr measure so that the measure of the unit ball is one. We
denote by Q the homogeneous dimension of the Carnot group G defined by
Q =

∑r
i=1 i dimVi. The dual basis of G is denoted by dx1,...,dxm,τ1,...,τN−m

We write |v|2 = 〈v, v〉, d for the distributional exterior derivative and δ
for the codifferential adjoint. We use the following spaces where U is an open
set in G :

C∞
0 (U): infinitely differentiable compactly supported functions in U ,

HW 1,p(U) : horizontal Sobolev space of functions u ∈ Lp(U) such that
the distributional derivatives Xiu ∈ Lp(U) for i = 1,...,m.

When u is in the local horizontal Sobolev space HW 1,p
loc (U) we write the

horizontal differential as d0u = X1udx1 + ... + Xmudxm. ( The horizontal
gradient ∇0u = X1uX1 + ...+XmuXm appears in the literature. Notice that
|d0u| = |∇0u|.) The family of dilations on G, {δt : t > 0}, is the lift to G of
the automorphism δt of G which acts on each Vi by multiplication by ti.

A path in G is called horizontal if its tangents lie in V1. The (left-
invariant) Carnot-Carathéodory distance , dc(x, y) , between x and y is the
infimum of the lengths, measured in the Riemannian metric g, of all horizon-
tal paths which join x to y. A homogeneous norm is given by |x| = dc(0, x).
We have |δt(x)| = t|x|.

3



We write B(x, r) = {y ∈ G : |x−1y| < r} for the ball centered at x of
radius r. Since the Jacobian determinant of the dilatation δr is rQ and we
have normalized the measure, |Br| = rQ. For σ > 0, we write σB for the ball
with the same center as B and radius σ times that of B. For information
about Carnot groups see [5],[6] and [15].

Example 2.1 Euclidean space Rn with its usual Abelian group structure is
a Carnot group. Here Q = n and Xi = ∂/∂xi.

Example 2.2 Each Heisenberg group Hn, n ≥1, is homeomorphic to R2n+1.
They form a family of noncomutative Carnot groups which arise as the bound-
aries of complex n-dimensional hyperbolic space. Denoting points in Hn by
(z, t) with z = (z1, ..., zn) ∈ Cn and t ∈ R we have the group law given as

(z, t) ◦ (z′, t′) = (z + z′, t + t′ + 2
n∑

j=1

Im(zj z̄
′
j)). (1)

With the notation zj = xj + iyj, the horizontal space V1 is spanned by the
basis

Xj =
∂

∂xj

+ 2yj
∂

∂t
(2)

Yj =
∂

∂yj

− 2xj
∂

∂t
. (3)

The one dimensional center V2 is spanned by the vector field T = ∂/∂t with
commutator relations [Xj, Yj] = −4T . All other brackets of {X1, Y1, ..., Xn, Yn}
are zero. The homogeneous dimension of Hn is Q = 2n + 2. A homogeneous
norm is given by

|(z, t)| = (|z|4 + t2)1/4. (4)

3 Domains in metric spaces

In this section (X, d) is a general metric space, Ω ⊂ X is an open bounded
proper subset and α < 0.
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Definition 3.1 The domain Ω is a δ-John domain if there exists a constant
δ > 0 such that each pair of points x1, x2 can be joined by a curve γ ⊂ Ω,
such that

min
j=1,2

l(γ(xj, y)) ≤ δd(y, Ωc)

for all y ∈ γ. Here γ(xj, y) is a subcurve of γ joining xj and y. The domain
Ω is a John domain if it is a δ-John domain for some δ.

A metric ball B = B(x0, r) = {x ∈ X : d(x0, x) < r} in Ω satisfies a weak
geodesic condition it for every x ∈ B there exists a curve γ : [0, l] → B of
length less than r for which γ(0) = x and γ(l) = x0. Balls with this property
are John domains [4]. In particular, metric balls in Carnot groups satisfy a
weak geodesic condition and as such are John domains [4].

We use the seminorms for f : Ω → R :

Oα,Ω(f) = inf{m : |f(x1)− f(x2)| ≤ m(min
j=1,2

d(xj, Ω
c))α, x1, x2 ∈ Ω},

Oloc
α,Ω(f) = inf{m : |f(x1)− f(x2)| ≤ m(min

j=1,2
d(xj, Ω

c))α, x1, x2 ∈ Ω,

d(x1, x2) ≤
1

2
d(x1, Ω

c)}

We write f ∈ Ordα(Ω) when Oα,Ω(f) is finite and f ∈ locOrdα(Ω) when
Oloc

α,Ω is finite.

Definition 3.2 A domain Ω is an Ordα-extention domain if there exists a
constant η > 0 such that

Oα,Ω(f) ≤ ηOloc
α,Ω(f)

for all f : Ω → R.

The following results are generalizations of theorems given in [9] for Rn.
The proofs in [9] generalize in a straight forward manner to the metric setting
given the assumptions on metric balls indicated below.

Theorem 3.3 If there exists a constant M such that each x1, x2 ∈ Ω can be
joined by a rectifiable curve γ ⊂ Ω with∫

γ

ds

d(x, Ωc)1−α
≤ M(min

j=1,2
d(xj, Ω

c))α, (5)

then Ω is an Ordα-extension domain. If in addition metric balls are John
domains, then the converse holds.
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Theorem 3.4 If there exist constants M and α < 0 such that each x1, x2 ∈
Ω can be joined by a rectifiable curve γ ⊂ Ω with∫

γ

ds

d(x, Ωc)1−α
≤ M(min

j=1,2
d(xj, Ω

c))α,

then Ω is a John domain. If metric balls satisfy a weak geodesic condition,
then the converse holds.

Notice that it follows that if Ω is a John domain and balls satisfy a weak
geodesic condition, then Ω is an Ordα-extension domain for all α < 0. Hence
John domains in Carnot groups have these extension properties.

Theorem 3.5 If balls satisfy a weak geodesic condition in Ω and if there
exists c > 0 such that

inf{m : |f(x1)−f(x2)| ≤ m(min
j=1,2

d(xj, Ω
c))α, x1, x2 ∈ Ω, d(x1, x2) ≤ cd(x1, Ω

c)}

is finite, then f ∈ Ordα(B) for all balls B ⊂ Ω.

Proof: Theorem 3.4 shows that balls in Ω satisfy (5). The theorem then
follows by adapting the proof of Theorem 3.3 from [9].

4 Subelliptic A-Harmonic equations

We consider weak solutions to equations of the form

δA(x, u, d0u) = B(x, u, d0u) (6)

where u ∈ HW 1,p(Ω) and A : Ω×R×Rm → Rm , B : Ω×R×Rm → R are
measurable and for some p > 1 satisfy the structural equations :

|A(x, u, ξ)| ≤ a0|ξ|p−1 + (a1(x)|u|)p−1,

ξ · A(x, u, ξ) ≥ |ξ|p − (a2(x)|u|)p,

|B(x, u, ξ)| ≤ b1(x)|ξ|p−1 + (b2(x))p|u|p−1

with (x, u, ξ) ∈ Ω× R× RN . Here a0 > 0 and ai(x), bi(x), i = 1, 2, are mea-
surable and nonnegative and are assumed to belong to certain subspaces of
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Lt(Ω), where t = max(p, Q). See [10]. We refer to these quantities as the
structure constants.

A weak solution to (6) means that∫
Ω

{〈A(x, u, d0u), d0φ〉 − φB(x, u, d0u)}dx = 0

for all φ ∈ C∞
0 (Ω).

We use the exponent p > 1 for this purpose throughout the rest of this
paper. We refer to a solution of (6) as A-harmonic. Moreover, we also as-
sume from here on that u is A-harmonic in Ω ⊂ G with exponent p. We may
assume that u is a continuous representative.

For example when A(x, ξ) = ξ and B(x, ξ) = 0 the A-harmonic equation
is the subLaplacian

δd0u = 0.

When A(x, ξ) = |ξ|q−2ξ, q > 1, we have the q-subLaplacian

δ|d0u|q−2d0u = 0.

5 A-harmonic Inequalities

Inequality (7) is called the Caccioppoli inequality.

Theorem 5.1 There exists a constant C , depending only on Q, σ and the
structure constants, such that∫

B

|d0u|p ≤ C|B|−p/Q

∫
σB

|u− c|p (7)

for all balls B with σB ⊂ Ω and any constant c.

See [6]

Theorem 5.2 is a Poincaré-Sobolev inequality, [3], [7] and [6].
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Theorem 5.2 Let 0 < s < ∞. There exists a constant C, depending only
on Q, s and the structure constants, such that∫

B

|u− uB|s ≤ C|B|s/Q

∫
B

|d0u|s (8)

for all balls B ⊂ Ω.

Next is a quasi-sub-mean-value property.

Theorem 5.3 Let s > p − 1, σ > 1. There exists a constant C, depending
only on s, Q, σ and the structure constants, such that

|u(x)− c| ≤ C(
1

|B|

∫
σB

|u− c|s)1/s (9)

for all balls B with σB ⊂ Ω, all x ∈ B and any constant c.

See [3].
We also have weak reverse Hölder inequalities for solutions and their hor-

izontal gradients.

Theorem 5.4 Let 0 < s, t < ∞. There exists a constant C, depending only
on s, t, Q, σ and the structure constants, such that,

(
1

|B|

∫
B

|u− uB|t)1/t ≤ C(
1

|B|

∫
σB

|u− uB|s)1/s. (10)

for all balls B with σB ⊂ Ω.

Proof : Integrating (9) we obtain

(
1

|B|

∫
B

|u− uB|t)1/t ≤ C(
1

|B|

∫
√

σB

|u− uB|s)1/s (11)

for s > p − 1 and all t > 0. When t > s this is a weak reverse Hölder
inequality which can be improved to the result [8], [3]. Hölder’s inequality
gives all 0 < s, t < ∞.
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Theorem 5.5 There exists an exponent p′ > p, depending only on Q and the
structure constants, and there exists a constant C, depending only on Q, s, σ
and the structure constants, such that

(
1

|B|

∫
B

|d0u|p
′
)1/p′ ≤ C(

1

|B|

∫
σB

|d0u|s)1/s (12)

for s > 0 and all balls B with σB ⊂ Ω.

Proof : We combine the Caccioppoli estimate (7), equation (10) and the
Poincaré-Sobolev inequality (8),

(
1

|B|

∫
B

|d0u|p)1/p ≤ C|B|−1/Q(
1

|B|

∫
√

σB

|u− u√σB|p)1/p

≤ C|B|−1/Q 1

|B|

∫
σB

|u− uσB|

≤ C
1

|B|

∫
σB

|d0u|.

This is a reverse Hölder inequlity. As such it improves to all positive expo-
nents on the right hand side and to some exponent p′ > p on the left. See
[8] and [6].

Theorem 5.6 Let 0 ≤ s < ∞. There is a constant C, depending only on
s, Q, σ and the structure constants, such that

osc(u, B) ≤ C|B|(s−Q)/sQ(

∫
σB

|d0u|s)1/s (13)

for all balls B with σB ⊂ Ω.

Proof : Fix B with σB ⊂ Ω and x, y ∈ B. Using (9) with s = p, the
Poincaré-Sobolev inequality (8) and (12),

|u(x)− u(y)| ≤ |u(x)− u√σB|+ |u(y)− u√σB|

≤ C(
1

|B|

∫
√

σB

|u− u√σB|p)1/p

≤ C|B|(p−Q)/pQ(

∫
B

|d0u|p)1/p

≤ C|B|(s−Q)/sQ(

∫
σB

|d0u|s)1/s.
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6 Growth of A-harmonic functions

We assume that u is A-harmonic in a domain Ω in a Carnot group G.

We use the notation, for x ∈ Ω and u : Ω → R,

Du(x) = (
1

|B|

∫
B

|d0u|p)1/p

where B = B(x, 1
2
dc(x, Ωc)).

Theorem 6.1 The following are equivalent :

a) There exists a constant C, independent of u, such that

Du(x) ≤ Cdc(x, Ωc)α−1,

for all x ∈ Ω.

b) u ∈ locOrdα(Ω).

Proof : Assume a). Let B = B(x1,
1
4
dc(x1, Ω

c)) and x2 ∈ B. Using (13),

|u(x1)− u(x2)| ≤ C|B|(p−Q)/pQ(

∫
2B

|d0u|p)1/p

= C|B|1/QDu(x1)

≤ C|B|1/Qdc(x1, Ω
c)α−1

= Cdc(x1, Ω
c)α.

Since 1
2
dc(x1, Ω

c) ≤ dc(x2, Ω
c) ≤ 3

2
dc(x1, Ω

c) we have u ∈ locOrdα(Ω) using
Theorem 3.5.

Conversely, assume b). Using the Caccioppoli estimate (7),

Du(x1) = |B|−1/p(

∫
2B

|d0u|p)1/p

≤ C|B|−(p+Q)/pQ(

∫
4B

|u− u(x1)|p)1/p
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≤ Cdc(x1, Ω
c)α−1.

Theorem 6.2 Suppose that Ω ⊂ G is a John domain. For α < 0 the fol-
lowing are equivalent :

a) There exists a constant C, independent of u, such that

Du(x) ≤ Cdc(x, Ωc)α−1

for all x ∈ Ω

b) u ∈ Ordα(Ω).

Along with assuming that u is an A-harmonic function in Ω ⊂ G with
exponent p we now also assume that v is A-harmonic in Ω with exponent q.
We also assume that

(

∫
B

|d0u|p) = (

∫
B

|d0v|q) (14)

for all balls B ⊂ Ω.

We list some examples.

1. If f = u + iv is analytic in a domain Ω in the complex plane C, then
u and v are harmonic, p = q = 2 and |du| = |dv|.

2. If f = (f1, ..., fm, ..., fN) is quasiregular in Ω ⊂ G, then the first m
components are A-harmonic, p = Q and |d0fi| = |d0fj| a.e. for i, j = 1, ...,m.
See [6] and [13].

3. We call u p-harmonic in a domain Ω ⊂ C if it is a solution to the
p-harmonic equation

div|∇u|p−2∇u = 0

in Ω. Its conjugate in the plane is a q-harmonic function v which satisfies

|∇u|p−2|∇u| = (
∂v

∂y
,−∂v

∂x
)
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with 1
p

+ 1
q

= 1. We call such a pair conjugate p, q-harmonic. In this case

|du|p = |dv|q See [1],[2].

Theorem 6.3 Suppose that u ∈ locOrdα(Ω), α < 0 and p(α−1) = q(β−1).
If α < 1− q/p, then

v ∈ locOrdβ(Ω).

If α = 1− q/p, then v is of bounded mean oscillation order of growth.

Proof : Using (14) and Theorem 6.1,

(
1

|B|

∫
B

|d0v|q)1/q = (
1

|B|

∫
B

|d0u|p)1/q

≤ Cdc(x, Ωc)(α−1)p/q

= Cdc(x, Ωc)β−1.

If α < 1 − q/p, then it follows from Theorem 6.1 that v ∈ locOrdβ(Ω). If
α = 1− q/p, then β = 0. In this case with the use of (8) and (12), for a ball
B = B(x, 1

2
dc(x, Ωc))

1

|B|

∫
B

|v − vB| ≤ C|B|(1−Q)/Q

∫
B

|d0v|

≤ C|B|1/Q(
1

B

∫
B

|d0v|q)1/q

≤ C|B|1/Qdc(x, Ωc)(α−1)p/q ≤ C.

Metric balls in homogeneous groups are John domains and satisfy a Boman
chain condition. This condition allows the patching together of local Lp-
inequalities into global Lp-inequalities. See [3],[4],[8] and [13]. Hence v is of
bounded mean oscillation in Ω.

Theorem 6.4 If Ω ⊂ G is a John domain, α < 1 − q/p and u ∈ Ordα(Ω),
then v ∈ Ordβ(Ω) where p(α− 1) = q(β − 1).
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We list some examples in the plane which illustrate these theorems.

The polar angle θ is p-harmonic for all 1 < p < ∞ in the domain
Ω0 = {reiθ|r > 0,−π < θ < π}.

The quasi-radial conjugate p, q-harmonic functions are described in [1]
and [2]. These functions have the form

u = rkf(θ), v = rlg(θ),

where k, l ∈ R, r and θ are the usual polar coordinates in R and

p(k − 1) = q(l − 1).

1. If p = q = 2, then u and v are conjugate harmonic functions. Quasi-
radial conjugate harmonic functions in Ω0 are given by u = rk coskθ and
v = rk sinkθ. When k < 0 we have u, v ∈ Ordk(Ω0). Conjugate harmonic
functions are also simultaneously in BMO or a local Lipschitz class. See [11]
and [12].

2. For p 6= 2, u = (p − 1)r(p−2)/(p−1)/(p − 2) and v = θ are conju-
gate p, q -harmonic functions in Ω0. When p < 2, u ∈ Ordk(Ω0) where
k = (p− 2)/(p− 1) while v is of bounded mean oscillation in Ω0.

3. For p 6= 2 there exist conjugate p, q-harmonic functions in Ω0 of the
form

u = rkf(θ), v = rlg(θ)

where f(θ) and g(θ) are bounded. For k, l < 0, u ∈ Ordk(Ω0) while
v ∈ Ordl(Ω0).

Other ranges of values for α and β involve Lipschitz classes. See [11] and
[14].
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