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Abstract. A conjecture of D. Peterson, proved by W. Graham [Gr], states

that the structure constants of the (T−)equivariant cohomology of a homoge-
neous space G/P satisfy a certain positivity property. In this paper we show

that this positivity property holds in the more general situation of equivariant
quantum cohomology.

1. Introduction

It is well known that the (integral) cohomology of the homogeneous space X =
G/P (for G a connected, semisimple, complex Lie group and P a parabolic sub-
group) satisfies a positivity property: its structure constants are nonnegative in-
tegers equal to the number of intersection points of three Schubert varieties, in
general position, whose codimensions add up to the dimension of X.

Recently, Graham ([Gr]) has proved a conjecture of Peterson ([P]), asserting that
H?

T (X), the T−equivariant cohomology of X, where T ' (C?)r is a maximal torus
in G, enjoys a more general positivity property.

Fix B ⊃ T a Borel subgroup of G and let W and WP be the Weyl groups of G
and P respectively. Let ∆ = {α1, ..., αr} be the (positive) simple roots associated
to W and ∆P = {α1, ..., αs} be those roots in ∆ canonically determined by P . The
equivariant cohomology of X, denoted H?

T (X), is a Λ = H?
T (pt)−algebra, with a

Λ−basis consisting of Schubert classes σ(w)T = [X(w)]T . These are determined by
the equivariant Schubert varieties X(w)T defined with respect to the Borel group
B, are indexed by the minimal length representatives w in W/WP and have degree
2c(w), where c(w) is the (complex) codimension of X(w) in X (see §2 below for more
details). Assume, for simplicity, that G is of adjoint type. Then the equivariant
cohomology of a point is equal to the polynomial ring Λ = Z[x1, ..., xr] where xi’s
are the negative simple roots in W (see §3 below). Graham’s Theorem asserts that
the coefficients cw

u,v in Λ appearing in the product

σ(u)T · σ(v)T =
∑

cw
u,vσ(w)T

are polynomials in x1, ..., xr with nonnegative coefficients.
The aim of this paper is to show that a similar positivity result holds in the

more general context of (T−)equivariant quantum cohomology. This object was
introduced by Givental and Kim ([GK]) for general groups G and it was initially
used to compute presentations of the small quantum cohomology of (partial) flag
manifolds ([GK, Kim1, Kim2, AS, Kim3]). Related ideas have played a fundamental
role in Mirror Symmetry ([G]).
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The equivariant quantum cohomology is a deformation of both the equivariant
and quantum cohomology. It is a graded Λ[q]-algebra, where q = (qi) is indexed by
the roots in ∆ r ∆P (or, equivalently, by a basis in H2(G/P )). The multidegree of
q will be given later (§4). The basis {σ(w)T } in equivariant cohomology determines
a basis denoted {σ(w)} in its quantum version. If we write ◦ for the equivariant
quantum multiplication, the product σ(u) ◦ σ(v) can be expanded as

σ(u) ◦ σ(v) =
∑

d

∑
w

qdcw,d
u,v σ(w)

where d = (di) is a multidegree and qd is the product
∏

qdi
i . The coefficients cw,d

u,v

are called equivariant Littlewood-Richardson coefficients (EQLR) and are polyno-
mials in Λ of degree c(u) + c(v) − c(w) −

∑
di · deg(qi). There is an effective

algorithm to compute these coefficients if X is a Grassmannian ([Mi1]), which is
a consequence of an equivariant quantum Pieri/Monk rule (i.e. a multiplication
with a divisor class). It is not clear from this algorithm that the EQLR coefficients
enjoy any positivity property. The main result of this paper is that they do, and,
as in the equivariant cohomology, this positivity holds in the more general context
of homogeneous spaces G/P :

Theorem. The equivariant quantum Littlewood-Richardson coefficient cw,d
u,v is a

polynomial in the variables x1, ..., xr with nonnegative integer coefficients.

The idea of proof is to use a projection formula to reduce the computation of the
EQLR coefficient to a situation where we can apply Graham’s positivity theorem
([Gr], Theorem 3.2).

Acknowledgments: I am grateful to my advisor, W. Fulton, whose suggestions
improved the presentation of this paper. I also thank the referee for valuable
comments.

2. Cohomology of G/P

In this section we recall the basic facts about the cohomology of the homogeneous
spaces G/P . References about this subject can be found in [Hi] §3.3, [FH] especially
Ch. 23, [LG], esp. Chapters 2 and 3 or [Bo], esp. Ch. 3 and 4. The reader can
also consult the papers [BGG] or [FW](§3).

Unless otherwise specified, throughout the paper we use the following notation
(recall from the introduction): X is the homogeneous space G/P , with G a complex,
connected, semisimple Lie group and P a parabolic subgroup. B ⊂ P is a (fixed)
Borel subgroup, T ' (C?)r the maximal torus in B and U the unipotent radical
of B. Recall the Levi decomposition of B as the semidirect product T · U . The
set of positive simple roots {α1, ..., αr} is denoted by ∆; ∆P = {α1, ..., αs} denotes
the subset of ∆ canonically determined by the parabolic subgroup P . We write
W = N(T )/T for the Weyl group of G, where N(T ) is the normalizer of T in G.
The Weyl group is generated by the simple reflections sα indexed by the elements in
∆. The parabolic subgroup P determines the subgroup WP of W generated by all
the simple reflections in ∆P . The length l(w) of an element w in W is the smallest
number of reflections whose product is w; w0 denotes the longest element in W .
We write B− for w0Bw0, the opposite Borel subgroup, and U− for its unipotent
radical.
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It is a well-known fact that each coset in W/WP has a unique representative
w ∈ W of minimal length (see e.g. [LG], §3.5.1); the dual of such w, denoted w∨,
is defined to be the minimal length coset representative of w0wWP . Denote by
WP ⊂ W the set of minimal length coset representatives for W/WP . With this
notation, X is a smooth variety of dimension equal to the length of the longest
element in WP .

Each w ∈WP determines an element wP in X (in fact, one should replace w by
a representative in N(T ), and then consider the associated coset in X. However,
since this process is independent of choices, we denote the result by wP ). The set
{wP}w∈W P is precisely the set of the T−fixed points of X via the left-multiplication
action ([LG], §3.6). For each w in WP let X(w)o be the U−orbit U ·wP of wP in
X. This is the Schubert cell, isomorphic (over C) to the affine space Al(w). By the
Bruhat decomposition, the Schubert cells cover X with disjoint affine spaces, so
their closures X(w) = cl(X(w)o) (the Schubert varieties) determine a basis {σ(w)}
for the cohomology of G/P , where σ(w) = [X(w)] is of degree 2c(w) = 2(dim X −
l(w)). Here [X(w)] denotes the cohomology class in H2c(w)(X) determined by the
fundamental class of X(w) via Poincaré duality.

Similarly, one can define the opposite Schubert cell Y (w)o ' Ac(w) to be the
U−−orbit of wP in X. (In the notation from [Mi1], the Schubert variety Ωλ(F opp

• )
corresponding to the partition λ and the opposite of the standard flag F opp

• corre-
sponds to Y (w∨), where w is the permutation correspoding to λ.) As before, the
opposite Schubert varieties Y (w) = cl(Y (w)o) determine a basis {σ̃(w)} for the
cohomology of X, where σ̃(w) = [Y (w)] is in H2l(w)(X). Note that w0Y (w) =
X(w∨), and, since the translations yield the same cohomology class, one has that
σ̃(w) = σ(w∨) in H2l(w)(X).

The bases {σ(w)} and {σ̃(w)} are dual to each other in the following sense:
if π : X −→ pt denotes the structure morphism of X, the cohomology push-
forward π?(σ(u) · σ̃(v)) is equal to 1 ∈ H0(pt) if u = v and 0 otherwise. (See
Appendix (§8 below) for more about this push forward.) This follows from the
fact that the Schubert varieties X(u) and Y (v) intersect properly in X, and, if
c(u) + l(v) = dim X, the intersection X(u) ∩ Y (v) is empty unless u = v, when
consists of the T−fixed point uP , with multiplicity 1.

Consider the expansion of the product σ(u) · σ(v) in the cohomology of X:

σ(u) · σ(v) =
∑
w

cw
u,vσ(w).

The coefficients cw
u,v are the Littlewood-Richardson coefficients (LR). They are non-

negative integers, equal to the number of points in the intersection of 3 general
translates of the Schubert varieties X(u), X(v) and X(w∨) if c(u) + c(v) = c(w),
and 0 otherwise. The duality of the bases {σ(w)} and {σ̃(w)} implies that the LR
coefficients can also be computed as the coefficient of the fundamental class of a
point in H0(pt):

cw
u,v = π?(σ(u) · σ(v) · σ̃(w)).

3. Equivariant cohomology

3.1. General facts. Let X be a complex algebraic variety with a T ' (C?)r−action.
Denote by p : ET −→ BT the universal T−bundle. T acts on the product
ET ×X by t · (e, x) = (et−1, tx). Denote by XT the quotient (ET ×X)/T . The
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T−equivariant cohomology of X, denoted H?
T (X), is by definition the ordinary co-

homology H?(XT ) of the mixed space XT . The X−bundle π : XT −→ BT gives
the equivariant cohomology of X a structure of H?(BT ) = H?

T (pt)-algebra.
We restrict ourselves to the situation from the previous section, where T ⊂

B ⊂ G is the maximal torus of a complex, semisimple Lie group G, with a Borel
subgroup B. Assume, for simplicity, that the group G is of adjoint type, so that
its root lattice is the same as the weight lattice of T (see e.g. [Hum], §31.1). Then
one can describe the equivariant cohomology of a point as follows (cf. [Br1], §1):
let T̂ = Hom(T, C?) be the set of characters of T . It is a free abelian group of
rank r, and the set of positive simple roots ∆ = {α1, ..., αr} form a basis. Each
character χ ∈ T̂ corresponds canonically to a 1−dimensional T−module Cχ which
determines a line bundle

L(χ) = ET ×T Cχ −→ BT

over BT , with Chern class c(χ) (T acts on the right on ET , and on the left on Cχ).
Let Sym(T̂ ) be the symmetric algebra of the character group. This is isomorphic
to the polynomial ring Z[α1, ..., αr] where the complex degree of αi is equal to 1.
Then the characteristic homomorphism

c : Sym(T̂ ) −→ H?
T (pt)

sending χ to c(χ) is a ring isomorphism, doubling the degrees. Recall the notation
Λ = H?

T (pt). In this paper however, for positivity reasons, we use the negative sim-
ple roots −αi, which we denote by xi, as the generators of Λ; thus Λ = Z[x1, ..., xr].

There are certain properties of the equivariant cohomology that carry on from
the non-equivariant case. If X is a nonsingular variety (now with a T−action), any
T−stable subvariety V determines a cohomology class [V ]T in H

2(dim X−dim V )
T (X);

if f : X −→ Y is a T−equivariant map of topological spaces, it induces a pull-back
map in cohomology f? : Hi

T (Y ) −→ Hi
T (X) for any integer i. In certain situations,

for such a T−equivariant map, there is also a Gysin map in cohomology:

fT
? : Hi

T (X) −→ Hi−2d
T (Y )

where d = dim(X) − dim(Y ). For the purpose of this paper, we consider only
the situation when X and Y are projective algebraic varieties and Y is smooth.
(For more general situations, such as X or Y noncompact, or being able to find
an “orientation” for the map f , one can consult e.g. [FM], or [F2], Ch. 19.) The
definition of this Gysin map can be found in the Appendix. In what follows we
state some of its properties, in the form we use them, then we sketch the main steps
of their proof.

1. Projection formula: Let X1, X2 be projective T−varieties, with X2 smooth,
and f : X1 → X2 a T−equivariant map. Let a, b be equivariant cohomology classes
in Hi

T (X2) and Hj
T (X1) respectively. Then

(1) fT
? (f?

T (a) · b) = a · fT
? (b)

in Hi+j−2d
T (X2), where d = dim X1 − dim X2.
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2. Push-forward formula: Consider the following diagram of projective T−varieties
and T−equivariant maps:

X1
g−−−−→ X3

f

y
X2

where X2 and X3 are smooth. Let V be a T−invariant subvariety of X3 of (complex)
codimension c. Assume that the irreducible components V1, ..., Vk of g−1(V ) have
all codimension c in X1 and are T−invariant. Let mi be the (algebraic) multiplicity
of Vi in g−1(V ). Then

(2) f?(g?[V ]T ) =
∑

i

mi · ai[f(Vi)]T

in H2c−2d
T (X2), where ai is a positive integer equal to the degree of f|Vi

: Vi −→
f(Vi) or 0 if dim Vi > dim f(Vi); d denotes again the difference dim X1 − dim X2.

Both formulae follow from their non-equivariant counterparts, using the defini-
tion of the equivariant Gysin morphisms, via the finite dimensional approximations
(see §8). In the non-equivariant case, (1) is a consequence of the usual projection
formula, while (2) follows from the following fact:

Fact: Let f : X → Y be a morphism of projective algebraic varieties, and let V
(resp. W ) be a subvariety of X (resp. Y ) of (complex) codimension c (resp. k).
Then:

(2’) f?[V ] = a[f(V )] in H2 dim X−2c(Y ) for [V ] ∈ H2 dim X−2c(X), where a is the
degree of the map f|V : V → f(V ) or it is equal to zero if dim V it is not equal to
dim f(V ) (see e.g. [F1], Appendix B). Here [V ] is the homology class determined
by the fundamental class of V in X ([f(V )] is defined similarly).

(2”) Assume Y is smooth and let [W ] be the cohomology class in H2k(Y ) de-
termined by W . Assume also that f−1(W ) has irreducible components Vi of (the
same) codimension k and algebraic multiplicity mi. Then

f?[W ] ∩ [X] =
∑

i

mi[Vi]

in H2 dim X−2k(X). (The codimension assumption and smoothness of Y ensure that
f∗[W ]∩ [X] is equal to the cycle [f−1(W )] determined by the scheme f−1(W ) (see
e.g. [F2], Prop. 19.2). More details about this will be given in my thesis [Mi].)

A particular case of an equivariant Gysin map, which will play an important role
in what follows, is the “integration along the fibres” πT

? : Hi
T (X) −→ H

i−2 dim(X)
T (pt)

induced by the T−equivariant map π : X −→ pt. It determines a Λ−pairing

〈·, ·〉T : H?
T (X)⊗Λ H?

T (X) −→ Λ

defined by

〈a, b〉T = πT
? (a ∪ b)

More about this pairing will be given in Prop. 3.1 below.
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3.2. Equivariant Schubert calculus on G/P . In this section X denotes the ho-
mogeneous space G/P . Note that the Schubert varieties X(w) and Y (w) defined
in §2 are T−invariant. Since X is smooth, these varieties determine equivari-
ant cohomology classes σ(w)T = [X(w)]T in H

2c(w)
T (X) and σ̃(w)T = [Y (w)]T in

H
2l(w)
T (X). Contrary to the non-equivariant case, σ(w∨)T is not equal to σ̃(w)T .

(In fact, there is an isomorphism ϕ : H?
T (X) → H?

T (X) sending [X(w∨)]T to
[Y (w)]T , induced by the involution ϕ : X → X given by ϕ(x) = w0 · x. This map
is not T−equivariant, but it is equivariant with respect to the map T → T defined
by t → w0tw

−1
0 = w0tw0, hence over H?

T (pt) the isomorphism ϕ sends c(χ) to
c(w0χ), where (w0χ)(t) = χ(w0tw0).) Since {σ(w)}w∈W P (resp. {σ̃(w)}w∈W P ) is a
basis for the classical cohomology of X, the Leray-Hirsch Theorem ([Hus] Ch.16),
applied to the X−bundle XT → BT , implies that the set {σ(w)T }w∈W P (resp.
{σ̃(w)T }w∈W P ) is a basis for the T−equivariant cohomology of X. There is an
equivariant version of the duality theorem, described using the H?

T (pt)−bilinear
pairing

〈·, ·〉T : H?
T (X)⊗H?

T (pt) H?
T (X) −→ H?

T (pt)

given by x⊗y → πT
? (x ·y), where πT

? : Hi
T (X) −→ Hi−2 dim X

T (pt) is the integration
along the fibers. One has the following result:

Proposition 3.1 (Equivariant Poincaré Duality). The bases {σ(w)T } and {σ̃(w)T }
are dual to each other i.e. 〈σ(u)T , σ̃(v)T 〉T is equal to 1 if u = v and 0 otherwise.

Proof. See Lemma 1 in [K2], for an approach coming from symplectic geometry
or Lemma 4.2 in [Gr] (attributed to D. Peterson [P]) for an algebro-geometric
approach. In [Gr], X is equal to G/B; the G/P case is similar. �

As in the non-equivariant case, this duality implies a formula for the equivariant
Littlewood-Richardson (ELR) coefficients cw

u,v obtained from the expansion

σ(u)T · σ(v)T =
∑
w

cw
u,vσ(w)T .

They can be computed as follows:

cw
u,v = πT

? (σ(u)T · σ(v)T · σ̃(w)T ).

From either of these descriptions it follows that the ELR coefficient cw
u,v is a polyno-

mial in H?
T (pt) = Z[x1, ..., xr] of degree c(u) + c(v)− c(w). Proving a conjecture of

D. Peterson ([P]), Graham showed that the ELR coefficients cw
u,v are polynomials in

variables x1, ..., xr with nonnegative coefficients (cf. [Gr]). (Graham’s result deals
with the case X = G/B. The more general situation when X = G/P follows from
the fact that the T−invariant projection p : G/B −→ G/P induces an injective map
p?

T : H?
T (G/P ) −→ H?

T (G/B) in equivariant cohomology.) A positive combinatorial
formula for these coefficients was obtained in [KT] when X is a Grassmannian. The
key to that was a certain recursive formula for the ELR coefficients, which holds in
that case (cf. [MS, O, KT]). Another recursive formula for any G/B was obtained
in [K].

4. Quantum Cohomology of G/P

The (small) quantum cohomology of X = G/P is a graded Z[q]−algebra, having
a Z[q]−basis consisting of Schubert classes σ(w), for w in WP . Here q stands for
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the indeterminates sequence (qi), indexed by a basis of H2(X), hence (recall) by
the simple roots in ∆ r ∆P . The complex degree of qi is

deg qi =
∫

X(sαi
)

c1(TX) = π?(σ(αi) · c1(TX))

where π : X −→ pt is the structure morphism and TX is the tangent bundle of
X (for an explicit computation of this degree, see e.g. [FW] §3). The quantum
multiplication, denoted ?, is given by

σ(u) ? σ(v) =
∑

d

∑
w

cw,d
u,v qdσ(w)

where the first sum is over all sequences of nonnegative integers d = (di) (same
number of components as q). Recall from the introduction that qd stands for the
product

∏
qdi
i . The coefficients cw,d

u,v are the (3−pointed, genus 0) Gromov-Witten
invariants, equal to the number of rational curves f : (P1, p1, p2, p3) −→ X of
multidegree d = (di) from P1 with three marked points p1, p2, p3 to X having the
property that f(p1) is in g1X(u), f(p2) is in g2X(v) and f(p3) is in g3Y (w) for
g1, g2, g3 general in G. This number is set to be equal to 0 if c(u)+c(v) is not equal
to c(w)+

∑
deg qi ·di. We call the coefficient cw,d

u,v a quantum Littlewood-Richardson
coefficient.

The fact that such a multiplication gives an associative operation was proved,
using algebro-geometric methods, in [KM] (also see [FP] and references therein).
Computations and properties of the (small) quantum cohomology algebra were done
e.g. in [W, Be, BCF, Po] for Grassmanians, [C, Ch, FGP, FW, Wo] for (partial) flag
manifolds and in [KTa] for the Lagrangian and orthogonal Grassmannian. Recently,
a simplification of the methods used to prove results about the quantum cohomology
of the Grassmannian was achieved by Buch ([Bu1]). Similar ideas were since used
in [Bu2, Bu3, BKT] for more general situations.

We recall an equivalent definition of the coefficient cw,d
u,v , which will be generalized

in the next section. Let M0,3(X, d) be Kontsevich’ moduli space of stable maps.
This is a projective algebraic variety of dimension dim X +

∑
di · (deg qi), whose

(closed) points consist of rational maps f : (C, p1, p2, p3) −→ X of multidegree
d, where C is a tree of P1’s. There are evaluation maps evi : M0,3(X, d) −→ X
which send a point (C, p1, p2, p3; f) to f(pi) (i = 1, 2, 3), and a contraction map
π : M0,3(X, d) −→ M0,3 ' pt (for details see e.g. [FP]). Then the quantum LR
coefficient is given by

cw,d
u,v = π?

(
ev?

1(σ(u)) · ev?
2(σ(v)) · ev?

3(σ̃(w))
)

in H0(pt).

5. Equivariant quantum cohomology

The definition of the equivariant quantum cohomology is analogous to the defi-
nition of the quantum cohomology, using now the T−equivariant classes and equi-
variant Poincaré duality (Prop. 3.1). We keep the notation from the previous
section.

The moduli space of stable maps M0,3(X, d) has a T−action given by:

t · (C, p1, p2, p3; f) := (C, p1, p2, p3; f̃)
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where f̃(x) := t · f(x), for x in C and t in T . Let M0,3(X, d)T be its homotopic
quotient, as in §3.1. Note that the evaluation maps evi : M0,3(X, d) −→ X and
the contraction map π : M0,3(X, d) −→ pt are T−equivariant. Fix u, v, w three
elements in WP , and d = (di) a multidegree. Following [Kim2] §3.1 define the
equivariant Gromov-Witten invariant

cw,d
u,v = πT

?

(
(evT

1 )?(σ(u)T ) · (evT
2 )?(σ(v)T ) · (evT

3 )?(σ̃(w)T )
)
.

By definition, cw,d
u,v is a homogeneous polynomial of (complex) degree c(u) + c(v)−

c(w)−
∑

di · deg qi. Recall that Λ denotes H?
T (pt) = Z[x1, ..., xr] (see §3.1).

Let (A, ◦) be the graded Λ[q]-module, where q = (qi) and the grading is as before,
with a Λ[q]-basis {σ(u)} indexed by elements in WP . Define a multiplication,
denoted ◦, among the basis elements of A as follows:

σ(u) ◦ σ(v) =
∑

d

∑
w

cw,d
u,v qd · σ(w).

The next result was proved by Kim:

Proposition 5.1 ([Kim2]). (A, ◦) is a commutative, associative Λ[q]-algebra with
unit. There are canonical isomorphisms

(1) A/〈Λ+ ·A〉 ' QH?(X) as Z[q]-algebras.
(2) A/〈q ·A〉 ' H?

T (X) as Λ-algebras.
sending a basis element σ(u) to the corresponding σ(u) in QH?(X), respectively to
σ(u)T in H?

T (X), where Λ+ denotes the ideal of elements in Λ of (strictly) positive
degree.

Proof. The main thing to prove is the associativity. This was proved in [Kim2] §3.3,
using a slightly different (but equivalent) definition of the equivariant Gromov-
Witten invariants. A proof of the equivalence, as well as proofs for the other
statements can be found in [Mi1], Prop. 3.1, when X is a Grassmannian. The
general case will be given in my thesis. �

It is useful, however, to note that the canonical isomorphisms in the proposition
follow from the the fact that the equivariant Gromov-Witten invariants specialize
to both equivariant and quantum Littlewood-Richardson coefficients: if d = 0, cw,d

u,v

is the equivariant LR coefficient cw
u,v, while if c(u) + c(v) = c(w) +

∑
di · deg qi (i.e.

if cw,d
u,v has polynomial degree 0), it is equal to the quantum LR coefficient cw,d

u,v .
The algebra (A, ◦) from the previous proposition is the equivariant quantum

cohomology of X and it is denoted by QH∗
T (X). We call its structure constants,

cw,d
u,v , the equivariant quantum Littlewood-Richardson coefficients (EQLR).

6. The positivity Theorem

6.1. Preliminaries. As usual X denotes the homogeneous space G/P and B =
T ·U a (fixed) Borel subgroup together with its Levi decomposition (see §2). There
are two main ingredients in the proof of the positivity theorem. The first is to
consider the space X ×X with the semidirect product B′ = T · (U− × U−) acting
by

t · (u1, u2)(ḡ1, ḡ2) = (tu1ḡ1, tu2ḡ2)
((ḡ1, ḡ2) ∈ X × X), then to prove that any subvariety V of X × X satisfies a
positivity property. This is where we use Graham’s results. The second ingredient
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is to reduce the computation of an EQLR coefficient to a computation taking place
on X ×X, and then use the positivity property there. This is done in §6.2 , using
a projection formula. We begin by stating a special case of the key result in [Gr]:

Proposition 6.1 (see [Gr] Thm. 3.2). Let X×X with the B′ action defined above.
Let β1, ..., βd in the character group of T denote the weights of the adjoint action
of T on the Lie algebra Lie(U− × U−) of the unipotent radical of B′. Let V be a
T−stable subvariety of X ×X. Then there exist B′−stable subvarieties D1, ..., Dt

of X ×X such that in H?
T (X ×X),

[V ]T =
∑

fi[Di]T

where each fi ∈ H?
T (pt) can be written as a linear combination of monomials in

β1, ..., βd with nonnegative integer coefficients.

Remark: Graham’s result deals with the more general situation of a variety Y ,
possibly singular, a connected, solvable group B′ = T ′U ′ acting on it and a
T ′−stable subvariety V of Y . V determines only an equivariant homology class
[V ]T ′ ∈ HT ′

2 dim V (Y ), therefore his positivity result takes place in HT ′

? (Y ). If Y
is smooth the equivariant homology and cohomology are identified via equivariant
Poincaré duality ([Br2] §1), and one recovers Prop. 6.1 (for Y = X ×X).

Corollary 6.2. Let X × X be endowed with the previous B′−action, and V a
T−stable subvariety. Then [V ]T can be written uniquely as

[V ]T =
∑

fi[Y (u)× Y (v)]T

in H?
T (X ×X) where each fi is a polynomial in x1, ..., xr with nonnegative coeffi-

cients.

Proof. Note first that the weights of T acting on Lie(U ′) (= Lie(U−)× Lie(U−))
are the same as the weights of T acting on Lie(U−), which are the negative roots
of G. To finish the proof, it is enough to show that the B′−stable subvarieties of
X ×X are precisely the products of Schubert varieties Y (u)× Y (v), and that they
determine a basis for the equivariant cohomology of X ×X.

To do that, recall that X has finitely many U−−orbits, the Schubert cells Y (w)o.
These orbits are B−−stable (they are B−−orbits of the T−fixed points), and they
cover X with disjoint affine spaces. (The fact that X has finitely many orbits
implies that any U−−orbit is B−−stable holds in a more general context, see [Gr],
Lemma 3.3.) Then the unipotent radical U ′ = U− ×U− of B′ acts on X ×X with
finitely many orbits Y (u)o×Y (v)o (u, v ∈WP ), and these orbits cover X×X with
disjoint affine spaces. Their closures are products of Schubert varieties Y (u)×Y (v),
and determine a basis [Y (u)× Y (v)]T for the equivariant cohomology H?

T (X ×X).
Moreover, since any U ′−orbit is B′−stable, it follows that any irreducible B′−stable
variety must be one of Y (u)× Y (v). �

We state next a result which is based on Kleiman’s transversality theorem and
on a lemma about translates of Schubert varieties (cf. [FW] §7):

Lemma 6.3 ([FW], Lemma 7.2). Let Z be an irreducible G−variety and let F :
Z −→ X ×X be a G−equivariant morphism, where G acts diagonally on X ×X.
Then, for any u and v in WP , the subscheme F−1(X(u)×Y (v)) is reduced, locally
irreducible, of codimension c(u) + l(v).
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Given v ∈ WP , we apply Lemma 6.3 to Z = M0,3(X, d) (with the G−action
induced from X, as in §5), F = (ev3, ev3) (recall that ev3 is the evaluation map, cf.
§4) and u = w0 (the longest element in WP ). M0,3(X, d) is irreducible by [KP, T]
and F is clearly G−equivariant. Then ev−1

3 (Y (v)) = F−1(X × Y (v)) is reduced,
locally irreducible, of codimension l(v). Next result shows slightly more:

Lemma 6.4. The inverse image ev−1
3 (Y (v)) of Y (v) is a disjoint union of T−stable,

reduced, irreducible components, each of them with codimension equal to l(v), the
codimension of Y (v) in X.

Proof. It remains to show that each component Vi of ev−1
3 (Y (v)) (which is also

a connected component) is T−stable. Since the whole preimage is T−stable, it
follows that the T−action sends one connected component to another. But the
identity id in T fixes all the Vi’s so each component must be T−stable. �

6.2. Proof of the Theorem. The idea of proof is to use the projection formula
(1) and the push-forward formula (2) from §3.1 to reduce the computation of the
EQLR coefficients from an (equivariant) intersection problem on a moduli space
to an (equivariant) intersection problem on the product X × X, where we apply
Corollary 6.2. If Y is a variety, denote by πY the structure morphism π : Y −→ pt.
Denote by M the moduli space M0,3(X, d) and by πM the morphism πM0,3(X,d).

Theorem 1. Let u, v, w in WP and d a multidegree. Then the equivariant quantum
Littlewood-Richardson coefficient cw,d

u,v is a polynomial in the (negative) simple roots
x1, ..., xr with nonnegative coefficients.

Proof. Let F :M−→ X×X be (ev1, ev2). Clearly, F is T−equivariant and proper.
The main point of the proof is the following Claim:

Claim: The EQLR coefficient cw,d
u,v is equal to∑

ai(πX×X)T
?

(
[X(u)×X(v)]T · [F (Vi)]T

)
in H?

T (pt), where the sum is over the components Vi of ev−1
3 (Y (w)) and ai is the

degree of the map F|Vi
: Vi → F (Vi) or 0 if dim Vi > dim F (Vi).

We postpone the proof of the Claim until later, and we show first how the Claim
implies the theorem. Clearly, it is enough to show that each

(πX×X)T
?

(
[X(u)×X(v)]T · [F (Vi)]T

)
(3)

is nonnegative in the sense of the theorem. By Corollary 6.2, each [F (Vi)]T can be
written as a combination

∑
f i

j [Y (uj)× Y (vj)]T , with uj , vj in WP , where each f i
j

is a nonnegative polynomial in variables x1, ..., xr. Projection formula (1) implies
that the expression (3) can be written as a combination∑

P i
j (πX×X)T

?

(
[X(u)×X(v)]T · [Y (uj)× Y (vj)]T

)
with each of P i

j a nonnegative sum of f i
j ’s, hence also nonnegative. Write pri :

X ×X −→ X for the projection to the i−th component of X (i = 1, 2). Then

(πX×X)T
?

(
[X(u)×X(v)]T · [Y (uj)× Y (vj)]T

)
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can be written as

(πX×X)T
?

(
[X(u)×X(v)]T · [Y (uj)× Y (vj)]T

)
=

(πX×X)T
?

(
(prT

1 )?(σ(u)T ) · (prT
2 )?(σ(v)T ) · [Y (uj)× Y (vj)]T

)
=

(πX)T
?

(
σ(u)T · [Y (uj)]T

)
· (πX)T

?

(
σ(v)T · [Y (vj)]T

)
= δu,uj

· δv,vj

The first equality follows from the fact that [X(u) ×X(v)]T = (prT
1 )?(σ(u)T ) ·

(prT
2 )?(σ(v)T ), the second equality is Lemma 2.3 from [Gr] and the third equality

follows from equivariant Poincaré duality (Prop. 3.1). This proves the positivity
theorem. �

Proof of the Claim. Recall (§5) that cw,d
u,v is defined by

cw,d
u,v = (πM)T

?

(
(evT

1 )?(σ(u)T ) · (evT
2 )?(σ(v)T ) · (evT

3 )?(σ(w)T )
)

Consider the composite

MT
(F T ,evT

3 )−−−−−−→ (X ×X)T ×XT ' (XT ×BT XT )×XT

Then

(evT
1 )?(σ(u)T ) · (evT

2 )?(σ(v)T ) · (evT
3 )?(σ̃(w)T ) =

(FT )?
(
[X(u)×X(v)]T

)
· (evT

3 )?(σ̃(w)T )

But the composite

M F−−−−→ X ×X
πX×X−−−−→ pt

is equal to πM , therefore cw,d
u,v is equal to

cw,d
u,v = (πX×X)T

? FT
?

(
(FT )?([X(u)×X(v)]T ) · (evT

3 )?(σ̃(w)T )
)

By projection formula (1)

FT
?

(
(FT )?([X(u)×X(v)]T )·(evT

3 )?(σ̃(w)T )
)

= [X(u)×X(v)]T ·FT
?

(
(evT

3 )?(σ̃(w)T )
)

By Lemma 6.4, ev−1
3 (Y (w)) is a disjoint union of T−stable, reduced, irreducible

components Vi. Then, by the push-forward formula (2),

FT
? ((evT

3 )?[Y (w)]T ) =
∑

ai[F (Vi)]T

where ai are as in the Claim. To conclude, we have obtained that

cw,d
u,v =

∑
ai(πX×X)T

?

(
[X(u)×X(v)]T · [F (Vi)]T

)
which proves the Claim. �

7. Positivity for a different torus action

Let X be the variety of partial flags Fm1 ⊂ ... ⊂ Fmk
in Cm (dim Fmi

= mi),
seen as the quotient PGL(m)/P (P parabolic). There is a T ′ = (C?)m-action on
X induced by the one of the maximal torus T = (C?)m/C? in PGL(m), via the
quotient morphism ϕ : (C?)m → (C?)m/C?. Hence for t′ ∈ T ′ and x ∈ X

t′ · x = ϕ(t′)x.

The goal of this section is to interpret the positivity result using this action,
which is the one used in [Mi1] when X was a Grassmannian. Besides using a
different action in loc. cit., we have also used different (but standard) generators
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for H?
T ′(pt). We recall their definition. Let p : ET ′n −→ BT ′n be the family of

finite-dimensional T ′−bundles

p : (Cn+1 r 0)m −→
m∏

i=1

Pn

approximating the universal T ′−bundle ET ′ → BT ′ ([Hus] §4.11 or Ch. 7, [Br1,
Br2],[EG] §3.1). If Y is a T ′−space, the equivariant cohomology H?

T ′(Y ) can be
computed as a limit of the ordinary cohomology of the finite dimensional approx-
imations: Hi

T ′(Y ) = limn→∞Hi(YT ′,n), where YT ′,n = ET ′n ×T ′ Y . Then the
equivariant cohomology of a point is H?

T ′(pt) = limn→∞H?(BT ′n) = Z[T1, ..., Tm],
where Tj is the first Chern class of the bundle O(1) on the j−th factor of

∏m
i=1 Pn.

The EQLR coefficients in T ′−equivariant quantum cohomology are obtained as
the images of those in T−equivariant quantum cohomology via the morphism

ϕ : Hi
T (pt)→ Hi

T ′(pt)

induced by ϕ. Using the identification of the H?
T (pt) (resp. H?

T ′(pt)) with the
character group T̂ = Hom(T, C?) (resp. with T̂ ′ = Hom(T ′, C?)) (cf. §3.1), one
sees that ϕ sends the first Chern class of the line bundle L(xj) associated to the
negative simple root xj in H2

T (pt) (so xj is the character xj

(
(z1, ..., zm)C?

)
= zj+1

zj
)

to the first Chern class of the line bundle corresponding to the canonical lift of
this character to T̂ ′. It turns out that the latter Chern class is equal to Tj − Tj+1,
defined in the previous paragraph. Then the positivity theorem implies:

Corollary 7.1. The EQLR coefficient cw,d
u,v in the T ′−equivariant quantum coho-

mology of X is a polynomial in the variables T1−T2, ..., Tm−1−Tm with nonnegative
coefficients.

8. Appendix - Equivariant Gysin morphisms

The aim of this Appendix is to define the equivariant Gysin maps used in §3.
Let f : X −→ Y be a morphism of projective varieties, with Y smooth. Let
d = dim(X)− dim(Y ) (complex dimensions). Define a Gysin map f? : Hi(X) −→
Hi−2d(Y ) by the composite

Hi(X)
∩[X]−−−−→ H2 dim(X)−i(X)

f?−−−−→ H2 dim(X)−i(Y ) ' Hi−2d(Y )

where [X] is the fundamental class of X in the singular homology group H2 dim X(X),
and the middle f? is the singular homology push-forward (if X or Y were not com-
pact, one should use Borel-Moore homology). The last isomorphism is given by
Poincaré duality. We need the following property of the Gysin map:

Lemma 8.1. Consider the following fiber square of projective varieties:

X ′ i−−−−→ X

f ′
y f

y
Y ′ j−−−−→ Y

where Y, Y ′ are smooth and i, j are regular embeddings of the same (complex) codi-
mension c. Then f ′?i

? = j?f? as maps Hi(X)→ Hi−2d(Y ′).

Proof. The proof is given in my thesis [Mi] (one could also see [FM]). �
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Assume the map f : X → Y (with Y smooth) is T−equivariant. Then it
determines a Gysin map of the cohomology of the finite-dimensional approximations
(see §7) f?,n : Hi(XT,n) −→ Hi−2d(YT,n). Define the equivariant Gysin map
fT

? : Hi
T (X) −→ Hi−2d

T (Y ) as the unique map that makes the following diagram
commute:

Hi(XT,n) res←−−−− Hi
T (X)

f?,n

y fT
?

y
Hi−2d(YT,n) res←−−−− Hi−2d

T (Y )
for every integer n. The horizontal maps res are the cohomology pull-backs induced
by the inclusions XT,n → XT (resp. YT,n → YT ). The existence and uniqueness of
fT

? follow from the fact that the equivariant cohomology can be computed by passing
to the limit on the ordinary cohomology of the finite dimensional approximations.
The only thing one has to check is that the the ordinary Gysin maps are compatible
to each other, in the sense that the diagram

Hi(XT,n1)
res←−−−− Hi(XT,n2)

f?,n1

y f?,n2

y
Hi−2d(YT,n1)

res←−−−− Hi−2d(YT,n2)

is commutative for any integers n1 < n2. This follows by applying Lemma 8.1 to
the fiber square

XT,n1

i−−−−→ XT,n2

fn1

y fn2

y
YT,n1

j−−−−→ YT,n2
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