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Abstract

The Hölder continuity of a harmonic function is characterized by the
growth of its gradient. We generalize these results to solutions of certain
subelliptic equations in domains in Carnot groups.
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1 Introduction

Theorem 1.1 follows from results in [7]

Theorem 1.1 Let u be harmonic in the unit disk D ⊂ R2 and 0 < α ≤ 1.
If there exists a constant C1 such that

|∇u(z)| ≤ C1(1− |z|)α−1 (1)

for all z ∈ D, then there exists a constant C2, depending only on α and
C1, such that

sup{ |u(x1)− u(x2)|
|x1 − x2|α

: x1, x2 ∈ D, x1 6= x2} ≤ C2. (2)

We give generalizations in Section 5. Theorem 5.1 characterizes lo-
cal Lipschitz conditions for A-harmonic functions in domains in Carnot
groups by the growth of a local average of the horizontal gradient. These
functions are solutions to certain subelliptic equations. Theorem 5.2 gives
global results in Lipschitz extension domains. In Section 2 we describe
Carnot groups. Section 3 presents subelliptic equations and integral in-
equalities for their solutions. In Section 4 appears Lipschitz conditions
and extension domains.
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2 Carnot groups

A Carnot group is a connected, simply connected, nilpotent Lie group
G of topological dimG = N ≥ 2 equipped with a graded Lie algebra
G = V1⊕···⊕Vr so that [V1, Vi] = Vi+1 for i=1,2,...,r-1 and [V1, Vr] = 0. As
usual, elements of G will be identified with left-invariant vectors fields on
G. We fix a left-invariant Riemannian metric g on G with g(Xi, Xj) = δij .
We denote the inner product with respect to this metric, as well as all
other inner products, by 〈, 〉. We assume that dimV1 = m ≥ 2 and fix an
orthonormal basis of V1 : X1, X2, ..., Xm. The horizontal tangent bundle of
G, HT , is the subbundle determined by V1 with horizontal tangent space
HTx the fiber span[X1(x), ..., Xm(x)]. We use a fixed global coordinate
system as exp : G → G is a diffeomorphism. We extend X1, ..., Xm to
an orthonormal basis X1, ..., Xm, T1, ..., TN−m of G. All integrals will be
with respect to the bi-invariant Harr measure on G which arises as the
push-forward of the Lebesque measure in RN under the exponential map.
We denote by |E| the measure of a measurable set E. We normalize the
Harr measure so that the measure of the unit ball is one. We denote by Q
the homogeneous dimension of the Carnot group G defined by Q =

Pr
i=1

idimVi. We write |v|2 = 〈v, v〉, d for the distributional exterior derivative
and δ for the codifferential adjoint. We use the following spaces where U
is an open set in G :

C∞0 (U): infinitely differentiable compactly supported functions in U ,
HW 1,q(U) : horizontal Sobolev space of functions u ∈ Lq(U) such

that the distributional derivatives Xiu ∈ Lq(U) for i = 1,...,m.
When u is in the local horizontal Sobolev space HW 1,q

loc (U) we write the
horizontal differential as d0u = X1udx1 + ...+Xmudxm. ( The horizontal
gradient ∇0u = X1uX1 + ... + XmuXm appears in the literature. Notice
that |d0u| = |∇0u|.)

The family of dilations on G, {δt : t > 0}, is the lift to G of the
automorphism δt of G which acts on each Vi by multiplication by ti. A
path in G is called horizontal if its tangents lie in V1. The (left-invariant)
Carnot-Carathéodory distance , dc(x, y) , between x and y is the infimum
of the lengths, measured in the Riemannian metric g, of all horizontal
paths which join x to y. A homogeneous norm is given by |x| = dc(0, x).
All homogeneous norms on G are equivalent as such | · | is equivalent to
the homogeneous norms used below. We have |δt(x)| = t|x|. We write
B(x, r) = {y ∈ G : |x−1y| < r} for the ball centered at x of radius r. Since
the Jacobian determinant of the dilation δr is rQ and we have normalized
the measure, |B(x, r)| = rQ. For σ ≥ 1 we write σB for the ball with the
same center as B and σ times the radius.

We write Ω throughout for a connected open subset of G. We give
some examples of Carnot groups.

Example 2.1 Euclidean space Rn with its usual Abelian group structure
is a Carnot group. Here Q = n and Xi = ∂/∂xi.

Example 2.2 Each Heisenberg group Hn, n ≥1, is homeomorphic to
R2n+1. They form a family of noncomutative Carnot groups which arise
as the nilpotent part of the Iwasawa decomposition of U(n, 1), the isome-
try group of the complex n-dimensional hyperbolic space. Denoting points
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in Hn by (z, t) with z = (z1, ..., zn) ∈ Cn and t ∈ R we have the group law
given as

(z, t) ◦ (z′, t′) = (z + z′, t + t′ + 2

nX
j=1

Im(zj z̄
′
j)). (3)

With the notation zj = xj + iyj, the horizontal space V1 is spanned by the
basis

Xj =
∂

∂xj
+ 2yj

∂

∂t
(4)

Yj =
∂

∂yj
− 2xj

∂

∂t
. (5)

The one dimensional center V2 is spanned by the vector field T = ∂/∂t
with commutator relations [Xj , Yj ] = −4T . All other brackets are zero.
The homogeneous dimension of Hn is Q = 2n + 2. A homogeneous norm
is given by

N(z, t) = (|z|4 + t2)1/4. (6)

Example 2.3 A Generalized Heisenberg group, or H-type group, is a
Carnot group with a two-step Lie algebra G = V1⊕V2 and an inner product
〈, 〉 in G such that the linear map J : V2 → EndV1 defined by the condition

〈Jz(u), v〉 = 〈z, [u, v]〉, (7)

satifies
J2

z = −〈z, z〉Id (8)

for all z ∈ V2 and all u, v ∈ V1. For each g ∈ G, let v(g) ∈ V1 and
z(g) ∈ V2 be such that g = exp(v(g) + z(g)). Then

N(g) = (|v(g)|4 + 16|z(g)|2)1/4 (9)

defines a homogeneous norm in G. For each l ∈ N there exist infinitely
many generalized Heisenberg groups with dimV2 = l. These include the
nilpotent groups in the Iwasawa decomposition of the simple rank-one
groups SO(n, 1), SU(n, 1), Sp(n, 1) and F−20

4 .

See [1] [14] and [5] for material about these groups.

3 Subelliptic equations

We consider solutions to equations of the form

δA(x, u, d0u) = B(x, u, d0u) (10)

where u ∈ HW 1,p(Ω) and A : Ω× R× Rm → Rm , B : Ω× R× Rm → R
are measurable and for some p > 1 satisfy the structural equations :

|A(x, u, ξ)| ≤ a0|ξ|p−1 + (a1(x)|u|)p−1,

ξ ·A(x, u, ξ) ≥ |ξ|p − (a2(x)|u|)p,

|B(x, u, ξ)| ≤ b1(x)|ξ|p−1 + (b2(x))p|u|p−1
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with (x, u, ξ) ∈ Ω×R×RN . Here a0 > 0 and ai(x), bi(x), i = 1, 2, are mea-
surable and nonnegative and are assumed to belong to certain subspaces
of Lt(Ω), where t = max(p, Q). See [11]. We refer to these quantities as
the structure constants.

A weak solution to (10) means that

Z
Ω

{〈A(x, u, d0u), d0φ〉 − φB(x, u, d0u)}dx = 0

for all φ ∈ C∞0 (Ω).

We use the exponent p > 1 for this purpose throughout. We assume
that u is a solution to (10) in Ω throughout. We may assume that u is a
continuous representative [8]. We write uB for the average of u over B.

We use the following results.

Theorem 3.1 Here C is a constant independent of u.
a) (Poincaré-Sobolev inequality) If 0 < s < ∞.

Z
B

|u− uB |s ≤ C|B|s/Q

Z
B

|d0u|s. (11)

for all balls B ⊂ Ω.
b) If s > p− 1, then

|u(x)− c| ≤ C(
1

|B|

Z
σB

|u− c|s)1/s (12)

for all x ∈ B, σB ⊂ Ω and any constant c.
c) If 0 < s, t < ∞, then

(
1

|B|

Z
B

|u− uB |t)1/t ≤ C(
1

|B|

Z
σB

|u− uB |s)1/s. (13)

for any σB ⊂ Ω.
d) (A Caccioppoli inequality)

Z
B

|d0u|p ≤ C|B|−p/Q

Z
σB

|u− c|p (14)

for any constant c and σB ⊂ Ω.

See [8],[2],[9], [6] and [11].

Theorem 3.2 There exists an exponent p′ > p, depending only on Q, p, s
and the structure constants, and there exists a constant C, depending only
on Q, p, s, σ and the structure constants, such that

(
1

|B|

Z
B

|d0u|p
′
)1/p′

≤ C(
1

|B|

Z
σB

|d0u|s)1/s (15)

for s > 0 and all balls B with σB ⊂ Ω.
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Proof : We combine the Caccioppoli estimate (14), inequality (13) and
the Poincaré-Sobolev inequalty (11),

(
1

|B|

Z
B

|d0u|p)1/p ≤ C|B|−1/Q(
1

|B|

Z
√

σB

|u− u√σB |
p)1/p

≤ C|B|−1/Q 1

|B|

Z
σB

|u− uσB |

≤ C
1

|B|

Z
σB

|d0u|.

This is a reverse Hölder inequlity. As such it improves to all positive ex-
ponents on the right hand side and to some exponent p′ > p on the left.
See [9],[2] and [8].

For E ⊂ G we write osc(u, E) = supEu− infEu.

Theorem 3.3 Let 0 < s < ∞. There is a constant C, depending only on
s,p,Q,σ and the structure constants such that

osc(u, B) ≤ C|B|(s−Q)/sQ(

Z
σB

|d0u|s)1/s (16)

for all balls B with σB ⊂ Ω.

Proof : Fix B with σB ⊂ Ω and x, y ∈ B. Using (12) with s = p, the
Poincaré inequality (11) and (15),

|u(x)− u(y)| ≤ |u(x)− u√σB |+ |u(y)− u√σB |

≤ C(
1

|B|

Z
√

σB

|u− u√σB |
p)1/p

≤ C|B|(p−Q)/pQ(

Z
√

σB

|d0u|p)1/p

≤ C|B|(s−Q)/sQ(

Z
σB

|d0u|s)1/s.

When p > Q Theorem 3.3 holds for all u ∈ HW 1,p(σB), see [8].

The last result follows from Harnack’s inequality and also appears in
[8].

Theorem 3.4 There exists constants β, 0 < β ≤ 1 and C, depending
only on p,Q and the structure constants, such that

osc(u, B) ≤ Cσ−βosc(u, σB) (17)

for all balls B with σB ⊂ Ω with σ ≥ 1.
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4 Lipschitz classes and domains

We use the following notations for f : Ω → Rm and 0 < α ≤ 1,

||f ||α = sup{|f(x1)− f(x2)|/dc(x1, x2)
α : x1, x2 ∈ Ω, x1 6= x2},

||f ||α∂ = sup{|f(x1)−f(x2)|/(dc(x1, x2)+dc(x1, ∂Ω))α : x1, x2 ∈ Ω, x1 6= x2},
||f ||αloc = sup{|f(x1)− f(x2)|/dc(x1, x2)

α : x1, x2 ∈ Ω, x1 6= x2,

dc(x1, x2) < dc(x1, ∂Ω)},
||f ||αloc,∂ = sup{|f(x1)−f(x2)|/(dc(x1, x2)+dc(x1, ∂Ω))α : x1, x2 ∈ Ω, x1 6= x2,

dc(x1, x2) < dc(x1, ∂Ω)}.
Notice

||f ||αloc,∂ ≤ min(||f ||αloc, ||f ||α∂ ) ≤ max(||f ||αloc, ||f ||α∂ ) ≤ ||f ||α.

Definition 4.1 A domain Ω ⊂ G is uniform if there exists constants
a, b > 0 such that each pair of points x1, x2 ∈ Ω can be joined by a hori-
zontal curve γ ⊂ Ω satisfying :

a. l(γ) ≤ adc(x1, x2),

b. mini,j l(γ(xj , x)) ≤ bdc(x, ∂Ω) for all x ∈ γ.

Here l(γ) is the length of γ in the dc-metric and l(xj , x) is this length
between xj and x.

We give some known examples.

1. Metric balls in the Heisenberg groups are uniform.

2. The Euclidean cube {(x1, y1, ..., t) ∈ Hn|max(|xi|, |yi|, |t|) < 1} is a
uniform domain in the Heisenberg groups Hn [4].

3. The hyperspace {(x1, y1, ..., t) ∈ Hn|t > 0} is a uniform domain in
the Heisenberg groups Hn [4].

4. The hyperspace {x ∈ G|xi > 0, i = 1, ..., m} is a uniform domain in
a Carnot group G [4].

For domains in Rn, the following definition appears in [10] and with
α = α′ in [3].

Definition 4.2 A domain Ω is a Lipα,α′ -extension domain, 0 < α′ ≤
α ≤ 1, if there exists a constant M , independent of f : Ω → Rn, such that

||f ||α
′
≤ M ||f ||αloc (18)

When α = α′ we write Lipα-extension domain.
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Theorem 4.3 For 0 < α′ ≤ α ≤ 1, Ω is a Lipα,α′ -extension domain if
there exists a constant N such that each pair of points x1, x2 ∈ Ω can be
joined by a horizontal path γ ⊂ Ω for which

Z
γ

dc(γ(s), ∂Ω)α−1ds ≤ Ndc(x1, x2)
α′

. (19)

If metric balls are uniform domains, then the converse holds.

The proof is the same as the corresponding result in Euclidean space given
in [3] with minor modification.

It follows that if Ω is a Lipα,α′ -extension domain, then

||f ||α
′

∂ ≤ M ||f ||αloc,∂ . (20)

Theorem 4.4 If Ω is a uniform domain, then it is a Lipα-extension do-
main.

The proof is similar to that in [3] in Rn. We give the simple proof here
to show the connection with uniform domains.

Proof : Let γ join x1 to x2 in Ω satisfy Definition 5.1. We have,

Z
γ

dc(x, ∂Ω)α−1ds

≤ bα−1

Z l(γ)

0

min(s, l(γ)− s)α−1ds

≤ 2bα−1

Z l(γ)/2

0

sα−1ds

=≤ 21−αα−1bα−1aαdc(x1, x2)
α.

We also require the following results which characterize the local Lip-
schitz classes. We assume from here on that metric balls are uniform
domains.

Theorem 4.5 Assume that f : Ω → R and 0 < η < 1.
The following are equivalent:

1. There exists a constant C1, independent of f , such that

|f(x1)− f(x2)| ≤ C1|x1 − x2|α

for all x1, x2 ∈ Ω with |x1 − x2| ≤ ηdc(x1, ∂Ω).

2. There exists a constant C2, independent of f , such that

||f ||αloc ≤ C2.

Theorem 4.6 Assume that f : Ω → R and 0 < η < 1.

The following are equivalent.
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1. There exists a constant C1, independent of f , such that

|f(x1)− f(x2)| ≤ |x1 − x2|α

for all x1, x2 ∈ Ω with |x1 − x2| = ηdc(x1, ∂Ω).

2. There exists a constant C2, independent of f , such that

||f ||αloc,∂ ≤ C2

Again the proofs are similar to those given in [3] and [10].

5 Lipschitz classes of solutions

Recall we are assuming that u is a solution to (10). In the Euclidean case
Theorems 5.1 and 5.2 appear in [13].

Theorem 5.1 The following are equivalent :

1. There exists a constant C1, independent of u, such that

Du(x) ≤ C1dc(x, ∂Ω)α−1

for all x ∈ Ω.

2. There exists a constant C2, independent of u, such that

||u||αloc,∂ ≤ C2.

Proof : Assume 1. Fix x1, x2 ∈ Ω with |x1 − x2| = dc(x1, ∂Ω)/4 and
let B = B(x1, 2|x1 − x2|). we have, using (16)

|u(x1)− u(x2)| ≤ C|B|(p−Q)/pQ(

Z
B

|d0u|p)1/p

= C|B|1/QDu(x1)

≤ C|x1 − x2|α.

Statement 2 then follows from Theorem 4.6.

Conversely, using the Caccioppoli inequality (14)

Du(x1) = |B|−1/p(

Z
B

|d0u|p)1/p

≤ C|B|−(p+Q)/pQ(

Z
2B

|u− u(x1)|p)1/p

≤ dc(x1, ∂Ω)α−1.
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Theorem 5.2 Suppose that Ω is a Lipα,α′ -extension domain, 0 < α′ ≤
α ≤ 1. If there exists a constant C1, independent of u, such that

Du(x) ≤ C1d(x, ∂Ω)α−1, (21)

then there is a constant C2, independent of u, such that

||u||α
′

∂ ≤ C2. (22)

Moreover there are constants β and C3, independent of u, such that if
in addition α′ ≤ β, then

||u||α
′
≤ C3. (23)

Otherwise, (21) only implies that

||u||β ≤ C(diamΩ)α′−β . (24)

The first implication follows from (20) and Theorem 5.1. The second
part is a consequence of the next result.

Theorem 5.3 Assume along with u being a solution in Ω that it is also
continuous in Ω̄. There exists a constant β, depending only on Q, p and
the structure constants, such that if α ≤ β and if there exists a constant
C1 such that

|u(x1)− u(x2)| ≤ C1|x1 − x2|α (25)

for all x1 ∈ Ω and x2 ∈ ∂Ω, then

||u||α ≤ C2 (26)

where C2 depends only on Q, p, C1 and the structure constants. If β < α,
(25) only implies that

||u||β ≤ C2(diamΩ)α−β . (27)

The proof is similar to the Euclidean case, see [12]. It requires here in-
equality (17) in the Carnot case with an appropriate choice of σ.
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