Lipschitz classes of A-harmonic functions in Carnot groups

Craig A. Nolder Department of Mathematics Florida State University Tallahassee, FL 32306-4510, USA nolder@math.fsu.edu

30 October 2005

Abstract

The Hölder continuity of a harmonic function is characterized by the growth of its gradient. We generalize these results to solutions of certain subelliptic equations in domains in Carnot groups.

Keywords : A-harmonic functions, Lipschitz classes, Carnot groups 1991 Mathematics Subject Classification : Primary 35J60, 30G30, Secondary 35J70

1 Introduction

Theorem 1.1 follows from results in [7]

Theorem 1.1 Let u be harmonic in the unit disk $\mathbb{D} \subset \mathbb{R}^2$ and $0 < \alpha \leq 1$. If there exists a constant C_1 such that

$$|\nabla u(z)| \le C_1 (1 - |z|)^{\alpha - 1} \tag{1}$$

for all $z \in \mathbb{D}$, then there exists a constant C_2 , depending only on α and C_1 , such that

$$\sup\{\frac{|u(x_1) - u(x_2)|}{|x_1 - x_2|^{\alpha}} : x_1, x_2 \in \mathbb{D}, x_1 \neq x_2\} \le C_2.$$
(2)

We give generalizations in Section 5. Theorem 5.1 characterizes local Lipschitz conditions for A-harmonic functions in domains in Carnot groups by the growth of a local average of the horizontal gradient. These functions are solutions to certain subelliptic equations. Theorem 5.2 gives global results in Lipschitz extension domains. In Section 2 we describe Carnot groups. Section 3 presents subelliptic equations and integral inequalities for their solutions. In Section 4 appears Lipschitz conditions and extension domains.

2 Carnot groups

A Carnot group is a connected, simply connected, nilpotent Lie group G of topological $\dim G = N \geq 2$ equipped with a graded Lie algebra $\mathcal{G} = V_1 \oplus \cdots \oplus V_r$ so that $[V_1, V_i] = V_{i+1}$ for i=1,2,...,r-1 and $[V_1, V_r] = 0$. As usual, elements of \mathcal{G} will be identified with left-invariant vectors fields on G. We fix a left-invariant Riemannian metric g on G with $g(X_i, X_j) = \delta_{ij}$. We denote the inner product with respect to this metric, as well as all other inner products, by \langle , \rangle . We assume that dim $V_1 = m \ge 2$ and fix an orthonormal basis of $V_1: X_1, X_2, ..., X_m$. The horizontal tangent bundle of G, HT, is the subbundle determined by V_1 with horizontal tangent space HT_x the fiber $span[X_1(x), ..., X_m(x)]$. We use a fixed global coordinate system as exp : $\mathcal{G} \to G$ is a diffeomorphism. We extend $X_1, ..., X_m$ to an orthonormal basis $X_1, ..., X_m, T_1, ..., T_{N-m}$ of \mathcal{G} . All integrals will be with respect to the bi-invariant Harr measure on G which arises as the push-forward of the Lebesque measure in \mathbb{R}^N under the exponential map. We denote by |E| the measure of a measurable set E. We normalize the Harr measure so that the measure of the unit ball is one. We denote by Qthe homogeneous dimension of the Carnot group G defined by $Q = \sum_{i=1}^{r}$ $i\dim V_i$. We write $|v|^2 = \langle v, v \rangle$, d for the distributional exterior derivative and δ for the codifferential adjoint. We use the following spaces where U is an open set in G:

 $C_0^{\infty}(U)$: infinitely differentiable compactly supported functions in U,

 $HW^{1,q}(U)$: horizontal Sobolev space of functions $u \in L^q(U)$ such that the distributional derivatives $X_i u \in L^q(U)$ for i = 1,...,m.

When u is in the local horizontal Sobolev space $HW_{loc}^{1,q}(U)$ we write the horizontal differential as $d_0u = X_1udx_1 + \ldots + X_mudx_m$. (The horizontal gradient $\nabla_0 u = X_1uX_1 + \ldots + X_muX_m$ appears in the literature. Notice that $|d_0u| = |\nabla_0u|$.)

The family of dilations on G, $\{\delta_t : t > 0\}$, is the lift to G of the automorphism δ_t of \mathcal{G} which acts on each V_i by multiplication by t^i . A path in G is called horizontal if its tangents lie in V_1 . The (left-invariant) Carnot-Carathéodory distance, $d_c(x, y)$, between x and y is the infimum of the lengths, measured in the Riemannian metric g, of all horizontal paths which join x to y. A homogeneous norm is given by $|x| = d_c(0, x)$. All homogeneous norms on G are equivalent as such $|\cdot|$ is equivalent to the homogeneous norms used below. We have $|\delta_t(x)| = t|x|$. We write $B(x,r) = \{y \in G : |x^{-1}y| < r\}$ for the ball centered at x of radius r. Since the Jacobian determinant of the dilation δ_r is r^Q and we have normalized the measure, $|B(x,r)| = r^Q$. For $\sigma \geq 1$ we write σB for the ball with the same center as B and σ times the radius.

We write Ω throughout for a connected open subset of G. We give some examples of Carnot groups.

Example 2.1 Euclidean space \mathbb{R}^n with its usual Abelian group structure is a Carnot group. Here Q = n and $X_i = \partial/\partial x_i$.

Example 2.2 Each Heisenberg group H_n , $n \ge 1$, is homeomorphic to \mathbb{R}^{2n+1} . They form a family of noncomutative Carnot groups which arise as the nilpotent part of the Iwasawa decomposition of U(n, 1), the isometry group of the complex n-dimensional hyperbolic space. Denoting points

in H_n by (z,t) with $z = (z_1, ..., z_n) \in \mathbb{C}^n$ and $t \in \mathbb{R}$ we have the group law given as

$$(z,t) \circ (z',t') = (z+z',t+t'+2\sum_{j=1}^{n} Im(z_j \bar{z}'_j)).$$
(3)

With the notation $z_j = x_j + iy_j$, the horizontal space V_1 is spanned by the basis

$$X_j = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial t} \tag{4}$$

$$Y_j = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}.$$
 (5)

The one dimensional center V_2 is spanned by the vector field $T = \partial/\partial t$ with commutator relations $[X_j, Y_j] = -4T$. All other brackets are zero. The homogeneous dimension of H_n is Q = 2n + 2. A homogeneous norm is given by

$$N(z,t) = (|z|^4 + t^2)^{1/4}.$$
(6)

Example 2.3 A Generalized Heisenberg group, or H-type group, is a Carnot group with a two-step Lie algebra $\mathcal{G} = V_1 \oplus V_2$ and an inner product \langle,\rangle in \mathcal{G} such that the linear map $J: V_2 \to EndV_1$ defined by the condition

$$\langle J_z(u), v \rangle = \langle z, [u, v] \rangle, \tag{7}$$

satifies

$$J_z^2 = -\langle z, z \rangle \mathbf{Id} \tag{8}$$

for all $z \in V_2$ and all $u, v \in V_1$. For each $g \in G$, let $v(g) \in V_1$ and $z(g) \in V_2$ be such that $g = \exp(v(g) + z(g))$. Then

$$N(g) = (|v(g)|^4 + 16|z(g)|^2)^{1/4}$$
(9)

defines a homogeneous norm in G. For each $l \in \mathbb{N}$ there exist infinitely many generalized Heisenberg groups with $\dim V_2 = l$. These include the nilpotent groups in the Iwasawa decomposition of the simple rank-one groups SO(n, 1), SU(n, 1), Sp(n, 1) and F_4^{-20} .

See [1] [14] and [5] for material about these groups.

3 Subelliptic equations

We consider solutions to equations of the form

$$\delta A(x, u, d_0 u) = B(x, u, d_0 u) \tag{10}$$

where $u \in HW^{1,p}(\Omega)$ and $A: \Omega \times \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m$, $B: \Omega \times \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}$ are measurable and for some p > 1 satisfy the structural equations :

$$|A(x, u, \xi)| \le a_0 |\xi|^{p-1} + (a_1(x)|u|)^{p-1},$$

$$\xi \cdot A(x, u, \xi) \ge |\xi|^p - (a_2(x)|u|)^p,$$

$$|B(x, u, \xi)| \le b_1(x) |\xi|^{p-1} + (b_2(x))^p |u|^{p-1}$$

with $(x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^N$. Here $a_0 > 0$ and $a_i(x), b_i(x), i = 1, 2$, are measurable and nonnegative and are assumed to belong to certain subspaces of $L^t(\Omega)$, where $t = \max(p, Q)$. See [11]. We refer to these quantities as the structure constants.

A weak solution to (10) means that

$$\int_{\Omega} \{ \langle A(x, u, d_0 u), d_0 \phi \rangle - \phi B(x, u, d_0 u) \} dx = 0$$

for all $\phi \in C_0^{\infty}(\Omega)$.

We use the exponent p > 1 for this purpose throughout. We assume that u is a solution to (10) in Ω throughout. We may assume that u is a continuous representative [8]. We write u_B for the average of u over B.

We use the following results.

Theorem 3.1 Here C is a constant independent of u. a) (Poincaré-Sobolev inequality) If $0 < s < \infty$.

$$\int_{B} |u - u_{B}|^{s} \le C|B|^{s/Q} \int_{B} |d_{0}u|^{s}.$$
(11)

for all balls $B \subset \Omega$. b) If s > p - 1, then

$$|u(x) - c| \le C \left(\frac{1}{|B|} \int_{\sigma B} |u - c|^s\right)^{1/s}$$
(12)

for all $x \in B$, $\sigma B \subset \Omega$ and any constant c. c) If $0 < s, t < \infty$, then

$$\left(\frac{1}{|B|}\int_{B}|u-u_{B}|^{t}\right)^{1/t} \leq C\left(\frac{1}{|B|}\int_{\sigma B}|u-u_{B}|^{s}\right)^{1/s}.$$
(13)

for any $\sigma B \subset \Omega$.

d) (A Caccioppoli inequality)

$$\int_{B} |d_0 u|^p \le C|B|^{-p/Q} \int_{\sigma B} |u - c|^p \tag{14}$$

for any constant c and $\sigma B \subset \Omega$.

See [8], [2], [9], [6] and [11].

Theorem 3.2 There exists an exponent p' > p, depending only on Q, p, sand the structure constants, and there exists a constant C, depending only on Q, p, s, σ and the structure constants, such that

$$\left(\frac{1}{|B|} \int_{B} |d_{0}u|^{p'}\right)^{1/p'} \le C \left(\frac{1}{|B|} \int_{\sigma B} |d_{0}u|^{s}\right)^{1/s}$$
(15)

for s > 0 and all balls B with $\sigma B \subset \Omega$.

Proof : We combine the Caccioppoli estimate (14), inequality (13) and the Poincaré-Sobolev inequality (11),

$$\left(\frac{1}{|B|}\int_{B}|d_{0}u|^{p}\right)^{1/p} \leq C|B|^{-1/Q}\left(\frac{1}{|B|}\int_{\sqrt{\sigma}B}|u-u_{\sqrt{\sigma}B}|^{p}\right)^{1/p}$$
$$\leq C|B|^{-1/Q}\frac{1}{|B|}\int_{\sigma B}|u-u_{\sigma B}|$$
$$\leq C\frac{1}{|B|}\int_{\sigma B}|d_{0}u|.$$

This is a reverse Hölder inequlity. As such it improves to all positive exponents on the right hand side and to some exponent p' > p on the left. See [9],[2] and [8].

For
$$E \subset G$$
 we write $osc(u, E) = sup_E u - inf_E u$.

Theorem 3.3 Let $0 < s < \infty$. There is a constant C, depending only on s, p, Q, σ and the structure constants such that

$$osc(u, B) \le C|B|^{(s-Q)/sQ} (\int_{\sigma B} |d_0 u|^s)^{1/s}$$
 (16)

for all balls B with $\sigma B \subset \Omega$.

Proof : Fix B with $\sigma B \subset \Omega$ and $x, y \in B$. Using (12) with s = p, the Poincaré inequality (11) and (15),

$$\begin{aligned} |u(x) - u(y)| &\leq |u(x) - u_{\sqrt{\sigma}B}| + |u(y) - u_{\sqrt{\sigma}B}| \\ &\leq C \left(\frac{1}{|B|} \int_{\sqrt{\sigma}B} |u - u_{\sqrt{\sigma}B}|^p\right)^{1/p} \\ &\leq C |B|^{(p-Q)/pQ} \left(\int_{\sqrt{\sigma}B} |d_0u|^p\right)^{1/p} \\ &\leq C |B|^{(s-Q)/sQ} \left(\int_{\sigma B} |d_0u|^s\right)^{1/s}. \end{aligned}$$

When p > Q Theorem 3.3 holds for all $u \in HW^{1,p}(\sigma B)$, see [8].

The last result follows from Harnack's inequality and also appears in [8].

Theorem 3.4 There exists constants β , $0 < \beta \leq 1$ and C, depending only on p, Q and the structure constants, such that

$$osc(u, B) \le C\sigma^{-\beta}osc(u, \sigma B)$$
 (17)

for all balls B with $\sigma B \subset \Omega$ with $\sigma \geq 1$.

4 Lipschitz classes and domains

We use the following notations for $f: \Omega \to \mathbb{R}^m$ and $0 < \alpha \leq 1$,

$$\begin{split} ||f||^{\alpha} &= \sup\{|f(x_{1}) - f(x_{2})|/d_{c}(x_{1}, x_{2})^{\alpha} : x_{1}, x_{2} \in \Omega, x_{1} \neq x_{2}\}, \\ ||f||^{\alpha}_{\partial} &= \sup\{|f(x_{1}) - f(x_{2})|/(d_{c}(x_{1}, x_{2}) + d_{c}(x_{1}, \partial\Omega))^{\alpha} : x_{1}, x_{2} \in \Omega, x_{1} \neq x_{2}\}, \\ ||f||^{\alpha}_{loc} &= \sup\{|f(x_{1}) - f(x_{2})|/d_{c}(x_{1}, x_{2})^{\alpha} : x_{1}, x_{2} \in \Omega, x_{1} \neq x_{2}, \\ d_{c}(x_{1}, x_{2}) < d_{c}(x_{1}, \partial\Omega)\}, \\ ||f||^{\alpha}_{loc,\partial} &= \sup\{|f(x_{1}) - f(x_{2})|/(d_{c}(x_{1}, x_{2}) + d_{c}(x_{1}, \partial\Omega))^{\alpha} : x_{1}, x_{2} \in \Omega, x_{1} \neq x_{2}, \\ d_{c}(x_{1}, x_{2}) < d_{c}(x_{1}, \partial\Omega)\}. \end{split}$$

Notice

$$||f||_{loc,\partial}^{\alpha} \leq \min(||f||_{loc}^{\alpha}, ||f||_{\partial}^{\alpha}) \leq \max(||f||_{loc}^{\alpha}, ||f||_{\partial}^{\alpha}) \leq ||f||^{\alpha}.$$

Definition 4.1 A domain $\Omega \subset G$ is uniform if there exists constants a, b > 0 such that each pair of points $x_1, x_2 \in \Omega$ can be joined by a horizontal curve $\gamma \subset \Omega$ satisfying :

a.
$$l(\gamma) \leq ad_c(x_1, x_2)$$

b. $\min_{i,j} l(\gamma(x_j, x)) \leq bd_c(x, \partial \Omega)$ for all $x \in \gamma$.

Here $l(\gamma)$ is the length of γ in the d_c -metric and $l(x_j, x)$ is this length between x_j and x.

We give some known examples.

1. Metric balls in the Heisenberg groups are uniform.

2. The Euclidean cube $\{(x_1, y_1, ..., t) \in \mathbb{H}^n | \max(|x_i|, |y_i|, |t|) < 1\}$ is a uniform domain in the Heisenberg groups \mathbb{H}^n [4].

3. The hyperspace $\{(x_1, y_1, ..., t) \in \mathbb{H}^n | t > 0\}$ is a uniform domain in the Heisenberg groups \mathbb{H}^n [4].

4. The hyperspace $\{x \in G | x_i > 0, i = 1, ..., m\}$ is a uniform domain in a Carnot group G [4].

For domains in \mathbb{R}^n , the following definition appears in [10] and with $\alpha = \alpha'$ in [3].

Definition 4.2 A domain Ω is a $Lip_{\alpha,\alpha'}$ -extension domain, $0 < \alpha' \leq \alpha \leq 1$, if there exists a constant M, independent of $f : \Omega \to \mathbb{R}^n$, such that

$$||f||^{\alpha'} \le M||f||^{\alpha}_{loc} \tag{18}$$

When $\alpha = \alpha'$ we write Lip_{α} -extension domain.

Theorem 4.3 For $0 < \alpha' \leq \alpha \leq 1$, Ω is a $Lip_{\alpha,\alpha'}$ -extension domain if there exists a constant N such that each pair of points $x_1, x_2 \in \Omega$ can be joined by a horizontal path $\gamma \subset \Omega$ for which

$$\int_{\gamma} d_c(\gamma(s), \partial \Omega)^{\alpha - 1} ds \le N d_c(x_1, x_2)^{\alpha'}.$$
(19)

If metric balls are uniform domains, then the converse holds.

The proof is the same as the corresponding result in Euclidean space given in [3] with minor modification.

It follows that if Ω is a $Lip_{\alpha,\alpha'}$ -extension domain, then

$$||f||_{\partial}^{\alpha'} \le M ||f||_{loc,\partial}^{\alpha}.$$
(20)

Theorem 4.4 If Ω is a uniform domain, then it is a Lip_{α} -extension domain.

The proof is similar to that in [3] in \mathbb{R}^n . We give the simple proof here to show the connection with uniform domains.

Proof : Let γ join x_1 to x_2 in Ω satisfy Definition 5.1. We have,

$$\int_{\gamma} d_c(x,\partial\Omega)^{\alpha-1} ds$$

$$\leq b^{\alpha-1} \int_0^{l(\gamma)} \min(s,l(\gamma)-s)^{\alpha-1} ds$$

$$\leq 2b^{\alpha-1} \int_0^{l(\gamma)/2} s^{\alpha-1} ds$$

$$=\leq 2^{1-\alpha} \alpha^{-1} b^{\alpha-1} a^{\alpha} d_c(x_1,x_2)^{\alpha}.$$

We also require the following results which characterize the local Lipschitz classes. We assume from here on that metric balls are uniform domains.

Theorem 4.5 Assume that $f : \Omega \to \mathbb{R}$ and $0 < \eta < 1$. The following are equivalent:

1. There exists a constant C_1 , independent of f, such that

$$|f(x_1) - f(x_2)| \le C_1 |x_1 - x_2|^{\alpha}$$

for all $x_1, x_2 \in \Omega$ with $|x_1 - x_2| \leq \eta d_c(x_1, \partial \Omega)$.

2. There exists a constant C_2 , independent of f, such that

$$||f||_{loc}^{\alpha} \le C_2.$$

Theorem 4.6 Assume that $f: \Omega \to \mathbb{R}$ and $0 < \eta < 1$.

The following are equivalent.

1. There exists a constant C_1 , independent of f, such that

$$|f(x_1) - f(x_2)| \le |x_1 - x_2|^{\circ}$$

for all $x_1, x_2 \in \Omega$ with $|x_1 - x_2| = \eta d_c(x_1, \partial \Omega)$.

2. There exists a constant C_2 , independent of f, such that

 $||f||_{loc,\partial}^{\alpha} \le C_2$

Again the proofs are similar to those given in [3] and [10].

5 Lipschitz classes of solutions

Recall we are assuming that u is a solution to (10). In the Euclidean case Theorems 5.1 and 5.2 appear in [13].

Theorem 5.1 The following are equivalent :

1. There exists a constant C_1 , independent of u, such that

$$D_u(x) \le C_1 d_c(x, \partial \Omega)^{\alpha - 1}$$

for all $x \in \Omega$.

2. There exists a constant C_2 , independent of u, such that

$$||u||_{loc,\partial}^{\alpha} \le C_2.$$

Proof : Assume 1. Fix $x_1, x_2 \in \Omega$ with $|x_1 - x_2| = d_c(x_1, \partial \Omega)/4$ and let $B = B(x_1, 2|x_1 - x_2|)$. we have, using (16)

$$|u(x_1) - u(x_2)| \le C|B|^{(p-Q)/pQ} \left(\int_B |d_0 u|^p\right)^{1/p}$$
$$= C|B|^{1/Q} D_u(x_1)$$
$$\le C|x_1 - x_2|^{\alpha}.$$

Statement 2 then follows from Theorem 4.6.

Conversely, using the Caccioppoli inequality (14)

$$D_u(x_1) = |B|^{-1/p} \left(\int_B |d_0 u|^p \right)^{1/p}$$

$$\leq C|B|^{-(p+Q)/pQ} \left(\int_{2B} |u - u(x_1)|^p \right)^{1/p}$$

$$\leq d_c(x_1, \partial \Omega)^{\alpha - 1}.$$

Theorem 5.2 Suppose that Ω is a $Lip_{\alpha,\alpha'}$ -extension domain, $0 < \alpha' \le \alpha \le 1$. If there exists a constant C_1 , independent of u, such that

$$D_u(x) \le C_1 d(x, \partial \Omega)^{\alpha - 1},\tag{21}$$

then there is a constant C_2 , independent of u, such that

$$||u||_{\partial}^{\alpha'} \le C_2. \tag{22}$$

Moreover there are constants β and C_3 , independent of u, such that if in addition $\alpha' \leq \beta$, then

$$||u||^{\alpha'} \le C_3. \tag{23}$$

Otherwise, (21) only implies that

$$||u||^{\beta} \le C(diam\Omega)^{\alpha'-\beta}.$$
(24)

The first implication follows from (20) and Theorem 5.1. The second part is a consequence of the next result.

Theorem 5.3 Assume along with u being a solution in Ω that it is also continuous in $\overline{\Omega}$. There exists a constant β , depending only on Q, p and the structure constants, such that if $\alpha \leq \beta$ and if there exists a constant C_1 such that

$$|u(x_1) - u(x_2)| \le C_1 |x_1 - x_2|^{\alpha}$$
(25)

for all $x_1 \in \Omega$ and $x_2 \in \partial \Omega$, then

$$||u||^{\alpha} \le C_2 \tag{26}$$

where C_2 depends only on Q, p, C_1 and the structure constants. If $\beta < \alpha$, (25) only implies that

$$||u||^{\beta} \le C_2 (diam\Omega)^{\alpha-\beta}.$$
(27)

The proof is similar to the Euclidean case, see [12]. It requires here inequality (17) in the Carnot case with an appropriate choice of σ .

References

- J. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathematics 1598, Springer-Verlag, 1995.
- [2] S.M. Buckley, P. Koskela and G. Lu, Subelliptic Poincaré inequalities: the case p < 1, *Publ. Mat.*, **39**(1995), 313–334.
- [3] F.W. Gehring and O. Martio, Lipschitz classes and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10 (1985), 203– 277.
- [4] A.V. Greshnov, Unifrom domains and NTA-domains in Carnot groups, Siberian Math. Jour., (5) 42 (2001), 851–864

- [5] M. Gromov, Carnot-Carathéodory spaces seen from within, Institut des Hautes Etudes Scientifiques, 6, 1994.
- [6] P. Hajlasz and P. Koskela, Sobolev met Poincaré, Max-Plank-Institut für math, Leipzig, preprint 41, 1998.
- [7] G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. Reine Agnew. Math., 167(1932), 405–432.
- [8] J. Heinonen and I. Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal., 71(1997), 109–148.
- [9] T. Iwaniec and C.A. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in ℝⁿ, Ann. Acad. Sci. Fenn. Series A.I. Math., 10(1985), 267–282.
- [10] V. Lappapainen, Lip_h-extension domains, Ann. Acad. Sci. Fenn. Ser. A.I. Math. Dissertationes, **71** (1988).
- [11] G. Lu, Embedding theorems into the Orlicz and Lipschitz classes and applications to quasilinear subelliptic equations, preprint (1994).
- [12] C.A. Nolder, Hardy-Littlewood theorems for solutions of elliptic equations in divergence form, *Indiana Univ. Math. Jour.*, 40(1991), no. 1, 149–160.
- [13] C.A. Nolder, Lipschitz classes of solutions to certain elliptic equations, Ann. Acad. Sci. Fenn. Series A.I. Math., 17 (1992), 211–219.
- [14] P. Pansu, Metriqués de Carnot-Carathéodory et quasiisometries des espaces symetriqués de rang un, Ann. of Math., (2)129 (1989), 1–60.