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Abstract

The Holder continuity of a harmonic function is characterized by the
growth of its gradient. We generalize these results to solutions of certain
subelliptic equations in domains in Carnot groups.
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1 Introduction

Theorem 1.1 follows from results in [7]

Theorem 1.1 Let u be harmonic in the unit disk D C R? and 0 < o < 1.
If there exists a constant Ci such that

[Vu(2)] < Cr(1 = |2)* " (1)

for all z € D, then there exists a constant Ca, depending only on o and
C4, such that

sup{w cx1, 22 €Dy a1 £ 22} < Ch. (2)
w1 — @]

We give generalizations in Section 5. Theorem 5.1 characterizes lo-
cal Lipschitz conditions for A-harmonic functions in domains in Carnot
groups by the growth of a local average of the horizontal gradient. These
functions are solutions to certain subelliptic equations. Theorem 5.2 gives
global results in Lipschitz extension domains. In Section 2 we describe
Carnot groups. Section 3 presents subelliptic equations and integral in-
equalities for their solutions. In Section 4 appears Lipschitz conditions
and extension domains.



2 Carnot groups

A Carnot group is a connected, simply connected, nilpotent Lie group
G of topological dimG = N > 2 equipped with a graded Lie algebra
G=Vi® @V, sothat [Vi,Vi] = Viq1 fori=1,2,...r-1 and [V1,V,] = 0. As
usual, elements of G will be identified with left-invariant vectors fields on
G. We fix a left-invariant Riemannian metric g on G with g(X;, X;) = d;;.
We denote the inner product with respect to this metric, as well as all
other inner products, by (,). We assume that dimV; = m > 2 and fix an
orthonormal basis of V7 : X1, X, ..., X;. The horizontal tangent bundle of
G, HT , is the subbundle determined by V1 with horizontal tangent space
HT, the fiber span[Xi(z),..., Xm(z)]. We use a fixed global coordinate
system as exp : G — G is a diffeomorphism. We extend Xj,..., X, to
an orthonormal basis X1, ..., X, T4, ..., Tn—m of G. All integrals will be
with respect to the bi-invariant Harr measure on GG which arises as the
push-forward of the Lebesque measure in RY under the exponential map.
We denote by |E| the measure of a measurable set E. We normalize the
Harr measure so that the measure of the unit ball is one. We denote by Q
the homogeneous dimension of the Carnot group G defined by Q = >"7_,
idimV;. We write |v|> = (v, v), d for the distributional exterior derivative
and § for the codifferential adjoint. We use the following spaces where U
is an open set in G :

C§°(U): infinitely differentiable compactly supported functions in U,

HW?"'49(U) : horizontal Sobolev space of functions u € L(U) such
that the distributional derivatives X;u € LY(U) for ¢ = 1,...,m.

When u is in the local horizontal Sobolev space HW,L4(U) we write the
horizontal differential as dou = X1udz1 + ... + X;mudzy,. ( The horizontal
gradient Vou = XjuXi1 + ... + XnmuX,, appears in the literature. Notice
that |dou| = [Voul.)

The family of dilations on G, {§; : t > 0}, is the lift to G of the
automorphism §; of G which acts on each V; by multiplication by ¢*. A
path in G is called horizontal if its tangents lie in Vi. The (left-invariant)
Carnot-Carathéodory distance , dc(z,y) , between x and y is the infimum
of the lengths, measured in the Riemannian metric g, of all horizontal
paths which join z to y. A homogeneous norm is given by |z| = d.(0, z).
All homogeneous norms on G are equivalent as such | - | is equivalent to
the homogeneous norms used below. We have |d:(z)| = t|x|. We write
B(x,r) = {y € G : |z~ 'y| < r} for the ball centered at x of radius r. Since
the Jacobian determinant of the dilation &, is 7® and we have normalized
the measure, |B(z,7)| = r?. For o > 1 we write 0B for the ball with the
same center as B and o times the radius.

We write Q throughout for a connected open subset of G. We give
some examples of Carnot groups.

Example 2.1 Fuclidean space R™ with its usual Abelian group structure
is a Carnot group. Here Q = n and X; = 0/0z;.

Example 2.2 Fach Heisenberg group H,, n >1, is homeomorphic to
R?" . They form a family of noncomutative Carnot groups which arise
as the nilpotent part of the Iwasawa decomposition of U(n, 1), the isome-
try group of the complex n-dimensional hyperbolic space. Denoting points



in Hy by (2,t) with z = (21, ...,2n) € C" and t € R we have the group law
given as
n
(z,t) o (¢/,t) = (z+z/,t+t/+2Z]m(zj2;)). 3)
j=1
With the notation z; = x; 4+ ty;, the horizontal space V1 is spanned by the
basts

0 0

Xj:aTjj‘FQyja (4)
1o} 0
Yj—aiyj—ija. (5)

The one dimensional center Va is spanned by the vector field T = 9/0t
with commutator relations [X;,Y;] = —4T. All other brackets are zero.
The homogeneous dimension of Hy, is Q = 2n + 2. A homogeneous norm
is given by

N(z,8) = (J2f* + )%, (©)

Example 2.3 A Generalized Heisenberg group, or H-ltype group, is a
Carnot group with a two-step Lie algebra G = V1 ®Va and an inner product
(,) in G such that the linear map J : Vo — EndVi defined by the condition

(J=(u),v) = (2 [u, v]), (7

satifies
J2 = —(z,2)Id (8)

for all z € Vo and all u,v € V1. For each g € G, let v(g) € Vi and
z(g) € Va be such that g = exp(v(g) + z(g)). Then

N(g) = (lo(9)[* + 16]z()|*) /" 9)

defines a homogeneous norm in G. For each |l € N there exist infinitely
many generalized Heisenberg groups with dimVa = l. These include the
nilpotent groups in the Iwasawa decomposition of the simple rank-one
groups SO(n, 1), SU(n, 1), Sp(n, 1) and F;2°.

See [1] [14] and [5] for material about these groups.

3 Subelliptic equations
We consider solutions to equations of the form
0A(x, u,dou) = B(z, u, dow) (10)

where v € HW™P(Q) and A: QxR xR™ - R™ | B: QxR xR™ =R
are measurable and for some p > 1 satisfy the structural equations :

Az, u,€)] < aol€|”™ " + (ar (@)[ul)” ",
§- Az, u, &) = [€]” = (az(@)ul)”,
Bz, u,€)| < ba()|€]"™" + (ba(2))"[ul”™



with (z,u,£) € QxR xRN, Here ag > 0 and a;(z), b;(x),i = 1,2, are mea-
surable and nonnegative and are assumed to belong to certain subspaces
of L*(Q), where t = max(p, Q). See [11]. We refer to these quantities as
the structure constants.

A weak solution to (10) means that
/Q{(A(L% dou), dod) — pB(x,u,dou)}dz = 0
for all ¢ € C5° ().
We use the exponent p > 1 for this purpose throughout. We assume
that u is a solution to (10) in Q throughout. We may assume that u is a

continuous representative [8]. We write up for the average of u over B.

We use the following results.

Theorem 3.1 Here C is a constant independent of u.
a) (Poincaré-Sobolev inequality) If 0 < s < co.

/ lu—upl|® SC\BP/Q/ |doul®. (11)
B B

for all balls B C €.
b) If s >p—1, then

fu(z) — ¢ < c(ﬁ / el (12)

for all x € B, cB C Q) and any constant c.
c) If 0 < s,t < oo, then

1 1 S S
(5 /B u—us])/* < Clry / =) (13)

for any o B C €.
d) (A Caccioppoli inequality)

[ tdour < 1B [ uep (1)
B oB
for any constant ¢ and o B C ).

See [8],2],]9], [6] and [11].

Theorem 3.2 There exists an exponent p' > p, depending only on Q,p, s
and the structure constants, and there exists a constant C, depending only
on Q,p,s,o and the structure constants, such that

1 Nt 1 1/
(7 [ 1ol < Cgr [ oul) (15)

for s > 0 and all balls B with B C Q.



Proof : We combine the Caccioppoli estimate (14), inequality (13) and
the Poincaré-Sobolev inequalty (11),

1 _ 1
(5 /B doul?) 17 < CYBI /fB fu — u ")

_ 1
<C|B| 1/@@ lu— uoB
oB

1
S Ci/ d0u|.
ERn

This is a reverse Holder inequlity. As such it improves to all positive ex-
ponents on the right hand side and to some exponent p’ > p on the left.
See [9],[2] and [8].

For E C G we write osc(u, F) = supgu — infgu.

Theorem 3.3 Let 0 < s < co. There is a constant C, depending only on
s,p,Q,0 and the structure constants such that

ose(u, B) < CIB D0 [ o) (16)
oB

for all balls B with cB C €.

Proof : Fix B with B C Q and z,y € B. Using (12) with s = p, the
Poincaré inequality (11) and (15),

lu(z) —u(y)| < [w(@) —uympl + |u(y) — v /zpl

1
1Bl J /55

< C|B|(p—Q)/pQ(/ |d0u|p)1/p

VB

< C( )1/p

[u— u\/EB|p

< C|B|(5*Q>/SQ(/ |d0u|s)1/s.

oB

When p > Q Theorem 3.3 holds for all u € HW'?(aB), see [8].

The last result follows from Harnack’s inequality and also appears in
[8].

Theorem 3.4 There exists constants 3,0 < B < 1 and C, depending
only on p,Q and the structure constants, such that

osc(u, B) < Co Posc(u, o B) (17)

for all balls B with o B C ) with o > 1.



4 Lipschitz classes and domains
We use the following notations for f: Q2 - R™ and 0 < a < 1,

AN = sup{[f(z1) = f(z2)l/de(z1,22)" : 21,22 € Q1 # 22},

1115 = sup{|f(z1)—f(22)|/(dec(w1, x2)+dc(21,00))" : 21,72 € Q, 21 # w2},
[[fllioe = sup{|f(z1) — f(z2)|/dec(@1,22)" : @1, 72 € Q, 71 # T2,
de(z1,22) < de(21,09)},
[ f1lioe,0 = sup{|f(z1)—f(z2)|/(de(21, 22)+de (21, 00)) t 21,22 € Q21 # 22,
de(z1,m2) < de(1,00)}.
Notice

£ llioe,o < min([|f|[Zoc, [ £115) < max([|fllioe, [1f115) < [1F11%-

Definition 4.1 A domain Q@ C G is uniform if there erists constants
a,b > 0 such that each pair of points x1,x2 € € can be joined by a hori-
zontal curve v C Q satisfying :

a. I(y) < ade(z1,22),
b. min; jl(y(zj,x)) < bde(z,00) for all z € ~.

Here l(7y) is the length of v in the d.-metric and l(xj,x) is this length
between x; and x.

We give some known examples.
1. Metric balls in the Heisenberg groups are uniform.

2. The Euclidean cube {(z1,y1, ...,t) € H"| max(|zs|, |ysl, [t]) < 1} is a
uniform domain in the Heisenberg groups H" [4].

3. The hyperspace {(z1,¥1,...,t) € H"|t > 0} is a uniform domain in
the Heisenberg groups H" [4].

4. The hyperspace {z € G|z; > 0,7 =1,...,m} is a uniform domain in
a Carnot group G [4].

For domains in R", the following definition appears in [10] and with
a=d in [3].
Definition 4.2 A domain Q is a Lips,q -estension domain, 0 < o/ <

a < 1, if there exists a constant M, independent of f : Q@ — R"™, such that

IS < M| f]|5e (18)

When o = o’ we write Lip,-extension domain.



Theorem 4.3 For 0 < o' < a <1, Q is a Lip,,q -extension domain if
there exists a constant N such that each pair of points x1,x2 € ) can be
joined by a horizontal path v C Q for which

/dc(’y(s),aﬁ)aflds < Ndc(xl,a:z)a/. (19)

If metric balls are uniform domains, then the converse holds.

The proof is the same as the corresponding result in Euclidean space given
in [3] with minor modification.

It follows that if € is a Lip,,q/-extension domain, then

Ale < Ml fllioc.o- (20)

Theorem 4.4 If Q) is a uniform domain, then it is a Lips-extension do-
main.

The proof is similar to that in [3] in R™. We give the simple proof here
to show the connection with uniform domains.
Proof : Let v join 1 to x2 in Q satisfy Definition 5.1. We have,

/ de(z,00)* 'ds
-

L[ L
< b / min(s,l(y) —s)* "ds
0

U(v)/2
< 2b°‘71/ s lds
0

=< 2170‘0471b0‘7lao‘dc(av17 x2)%.

We also require the following results which characterize the local Lip-
schitz classes. We assume from here on that metric balls are uniform
domains.

Theorem 4.5 Assume that f: Q — R and 0 <n < 1.
The following are equivalent:

1. There exists a constant C1, independent of f, such that
|f(z1) = f(z2)| < Culzr — 22"
for all x1,z2 € Q with |z1 — x2| < nde(z1,00).
2. There exists a constant Ca, independent of f, such that
[[fllioe < Ca.

Theorem 4.6 Assume that f: Q — R and 0 <n < 1.

The following are equivalent.



1. There exists a constant C1, independent of f, such that
|f(@1) = fla2)] < for — 22|
for all x1,z2 € Q with |z1 — z2| = ndc(z1,00Q).
2. There exists a constant Ca, independent of f, such that

[ fllioc,0 < Ca

Again the proofs are similar to those given in [3] and [10].

5 Lipschitz classes of solutions

Recall we are assuming that u is a solution to (10). In the Euclidean case
Theorems 5.1 and 5.2 appear in [13].

Theorem 5.1 The following are equivalent :
1. There exists a constant C1, independent of u, such that
Du(z) < Crde(z,00) "
for all x € Q.
2. There exists a constant Ca, independent of u, such that
|[ullive,0 < Co.

Proof : Assume 1. Fix z1,z2 € Q with |21 — z2| = de(21,09)/4 and
let B = B(x1,2|x1 — x2]). we have, using (16)

ju(er) = u(en)| < CIBI 2 [ Jdouf?)”
B
= C|B|"?Dy(z1)

S C‘l‘l — $2|Q.

Statement 2 then follows from Theorem 4.6.

Conversely, using the Caccioppoli inequality (14)

Do) = |B|~V/7( /B dou?) 7

< C|B|*(p+Q)/pQ(/ lu — u(x1)|p)1/p
2B

< de(x1,00)* "



Theorem 5.2 Suppose that Q is a Lip,, o -estension domain, 0 < o <
a < 1. If there exists a constant C1, independent of u, such that

Dy (z) < Chd(z, 0Q)*", (21)
then there is a constant Ca, independent of u, such that
|ul|5 < Ca. (22)

Moreover there are constants 3 and Cs, independent of u, such that if
in addition o < (3, then

lull*" < Cs. (23)
Otherwise, (21) only implies that

lull® < C(diam)® ~". (24)

The first implication follows from (20) and Theorem 5.1. The second
part is a consequence of the next result.

Theorem 5.3 Assume along with u being a solution in  that it is also
continuous in Q. There exists a constant 3, depending only on Q,p and
the structure constants, such that if o < 8 and if there exists a constant
C1 such that

u(z1) — u(z2)] < Cifwr — 22| (25)

for all x1 € Q and x2 € 0N, then
[Jul|* < C2 (26)

where C2 depends only on Q,p,C1 and the structure constants. If 8 < «,
(25) only implies that

||u||[3 < Co(diam€Q)* 7. (27)

The proof is similar to the Euclidean case, see [12]. It requires here in-
equality (17) in the Carnot case with an appropriate choice of o.

References

[1] J. Berndt, F. Tricerri and L. Vanhecke, Generalized Heisenberg
groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathe-
matics 1598, Springer-Verlag, 1995.

[2] S.M. Buckley, P. Koskela and G. Lu, Subelliptic Poincaré inequalities:
the case p < 1, Publ. Mat., 39(1995), 313-334.

[3] F.W. Gehring and O. Martio, Lipschitz classes and quasiconformal
mappings, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10 (1985), 203—
277.

[4] A.V. Greshnov, Unifrom domains and NTA-domains in Carnot
groups, Siberian Math. Jour., (5) 42 (2001), 851-864



[5]

[6]

[10]
[11]

[12]

[13]

[14]

M. Gromov , Carnot-Carathéodory spaces seen from within, Institut
des Hautes Etudes Scientifiques, 6, 1994.

P. Hajlasz and P. Koskela, Sobolev met Poincaré, Maz- Plank-Institut
fir math,Leipzig, preprint 41, 1998.

G.H. Hardy and J.E. Littlewood, Some properties of conjugate func-
tions, J. Reine Agnew. Math.,167(1932),405-432.

J. Heinonen and I. Holopainen, Quasiregular maps on Carnot groups,

J. Geom. Anal.,71(1997),109-148.

T. Iwaniec and C.A. Nolder, Hardy-Littlewood inequality for quasi-
regular mappings in certain domains in R, Ann. Acad. Sci. Fenn.
Series A.1. Math., 10(1985), 267—282.

V. Lappapainen, Lipp-extension domains, Ann. Acad. Sci. Fenn. Ser.
A.I. Math. Dissertationes, 71 (1988).

G. Lu, Embedding theorems into the Orlicz and Lipschitz classes and
applications to quasilinear subelliptic equations, preprint (1994).

C.A. Nolder, Hardy-Littlewood theorems for solutions of elliptic
equations in divergence form, Indiana Univ. Math. Jour., 40(1991),
no. 1, 149-160.

C.A. Nolder, Lipschitz classes of solutions to certain elliptic equa-
tions, Ann. Acad. Sci. Fenn. Series A.I. Math., 17 (1992), 211-219.

P. Pansu, Metriqués de Carnot-Carathéodory et quasiisometries des
espaces symetriqués de rang un, Ann. of Math., (2)129 (1989), 1-60.

10



