Unions of hyperplanes, unions of spheres, and some related estimates

Daniel M. Oberlin

Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510 oberlin@math.fsu.edu

March 1, 2006

By a hyperplane in \mathbb{R}^d we mean any translate of a (d-1)-plane. The collection \mathcal{H} of all hyperplanes P in \mathbb{R}^d can be parametrized by $\Sigma^{(d-1)} \times [0,\infty)$ if one identifies P with (σ,t) whenever $P = \sigma^{\perp} + t\sigma$. Following the capacitarian definition of Hausdorff dimension, we say that a compact set \mathcal{K} of hyperplanes has dimension $\alpha > 0$ if, for each small ϵ , \mathcal{K} carries a Borel probability measure μ such that

(1_H)
$$\int_{\mathcal{K}} \int_{\mathcal{K}} \frac{d\mu(P_1) \ d\mu(P_2)}{(|\sigma_1 - \sigma_2| + |t_1 - t_2|)^{\alpha - \epsilon}} < \infty.$$

Similarly, let S(x,r) stand for the sphere in \mathbb{R}^d with center x and radius r. Identifying the collection of all such spheres with $\mathcal{S} \doteq \mathbb{R}^d \times (0, \infty) \subseteq \mathbb{R}^{d+1}$, we will say that a compact set \mathcal{K} of spheres has dimension $\alpha > 0$ if, for each small ϵ , \mathcal{K} carries a Borel probability measure μ such that

(1_S)
$$\int_{\mathcal{K}} \int_{\mathcal{K}} \frac{d\mu(S_1)d\mu(S_2)}{(|x_1 - x_2| + |r_1 - r_2|)^{\alpha - \epsilon}} < \infty.$$

In both cases we are interested in what can be said about the size of

$$(2) \qquad \qquad \cup_{T \in \mathcal{K}} T$$

in terms of the Hausdorff dimension of \mathcal{K} . Since the dimension of a hyperplane or sphere is d-1, intuition suggests the conjectures that

(a) the union (2) should have positive *d*-dimensional Lebesgue measure whenever $\dim(\mathcal{K}) > 1$, and

(b) if $0 < \alpha < 1$ and $\dim(\mathcal{K}) = \alpha$, then (2) should have dimension at least $d - 1 + \alpha$.

In these situations (though not always in similar ones), such intuition appears to be correct. For example, considering hyperplanes and the case $\dim(\mathcal{K}) > 1$, one may define a truncated Radon transform R_0 by

$$R_0 f(\sigma, t) = \int_{\sigma^{\perp} \cap B(0, 1)} f(p + t\sigma) \ d\mathcal{L}^{d-1}(p).$$

The following theorem is from [1].

Theorem 1. Suppose μ is a nonnegative Borel measure on a compact set $\mathcal{K} \subseteq \mathcal{H}$ and suppose that μ satisfies (1) for $\alpha - \epsilon > 1$. Then

$$\|R_0\chi_E\|_{L^{\alpha-\epsilon,\infty}_u} \lesssim \mathcal{L}^d(E)^{1/2}$$

for Borel $E \subseteq \mathbb{R}^d$.

Now suppose that $\mathcal{K} \subseteq \mathcal{H}$ and $\dim(\mathcal{K}) = \alpha > 1$. Let μ be a Borel probability measure satisfying (1_H) . If E is the set (2) then $R_0\chi_E(\sigma,t) \ge c > 0$ for each $\sigma^{\perp} + t\sigma \in \mathcal{K}$, and so it follows from Theorem 1 that $\mathcal{L}^d(E) \ge c^2 > 0$. Thus (a) is true for hyperplanes. For $d \ge 3$ the paper [2] contains an analogue of Theorem 1 for the spherical average operator $Tf(x, r) = \int_{\Sigma^{(d-1)}} f(x - r\sigma) d\sigma$. It therefore follows that, when $d \ge 3$, (a) is also true for spheres. (When d = 2 the circle version of (a) is a significantly more difficult question, answered in the affirmative in Wolff's paper [3].) The papers [1] and [2] also contain results which imply the following theorem.

Theorem 2. Suppose that \mathcal{K} is either a compact set of hyperplanes or, if $d \geq 3$, a compact set of spheres. Suppose that $\dim(\mathcal{K}) = \alpha \in (0, 1)$ and that \mathcal{K} either lies on a smooth curve or has a certain Cantor set structure. Then if $E = \bigcup_{T \in \mathcal{K}} T$ we have $\dim(E) \geq d - 1 + \alpha$.

Theorem 2 verifies (b) for hyperplanes in case d = 2 but applies only in special cases if d > 2. Another approach to results like (b) begins by recalling that $E \subseteq \mathbb{R}^d$ has Hausdorff dimension $\beta \in (0, d)$ if and only if, for each $\epsilon > 0$, E carries a Borel probability measure $\tilde{\mu}$ satisfying

$$\int_{\mathbb{R}^d} \frac{|\widehat{\widetilde{\mu}}(\xi)|^2}{|\xi|^{d-\beta+\epsilon}} d\xi < \infty.$$

That is, $\dim(E) = \beta$ if, for $\epsilon > 0$, E supports a nontrivial nonnegative distribution in the Sobolev space $W^{2,-(d-\beta+\epsilon)/2}$. Thus, for example, (b) is equivalent to the conjecture that, if $0 < \alpha < 1$, $\dim(K) = \alpha$, and $\epsilon > 0$, then $\bigcup_{T \in \mathcal{K}} T$ should support a nonnegative distribution in $W^{2,(\alpha-1)/2-\epsilon}$. On the other hand, the dimension of $\mathcal{H} = \Sigma^{(d-1)} \times [0, \infty)$ is $d \geq 2$ and the dimension of $\mathcal{S} = \mathbb{R}^d \times (0, \infty)$ is d + 1 but if \mathcal{K} has dimension as small as $1 + \epsilon$ then we

know already that $\cup_{T \in \mathcal{K}} T$ has positive measure. It is therefore natural to wonder if more than this (i.e., more than that $\cup_{T \in \mathcal{K}} T$ has positive measure) can be said when dim(\mathcal{K}) > 1. In particular, in view of the just-mentioned reformulation of (b), one might conjecture that, no matter the $\alpha \in (0, d)$, if dim(\mathcal{K}) = α , then, for any $\epsilon > 0$, $\cup_{T \in \mathcal{K}} T$ should support a nonnegative and nontrivial measure in $W^{2,(\alpha-1)/2-\epsilon}$. Our main result is that this is true in certain cases.

Theorem 3_H . If $\mathcal{K} \subseteq \mathcal{H}$ and $\dim(\mathcal{K}) = \alpha \in (0, d]$ then, for $\epsilon > 0$, $\bigcup_{P \in \mathcal{K}} P$ supports a nonnegative measure (function if $\alpha > 1$) in $W^{2,(\alpha-1)/2-\epsilon}$.

We note that, for hyperplanes, Theorem 3_H implies (a) as well as (b). For spheres our result is less satisfactory.

Theorem 3_S. If $\mathcal{K} \subseteq \mathcal{S}$ and dim $(\mathcal{K}) = \alpha \in (0, (d-1)/2)$ then, for $\epsilon > 0$, $\bigcup_{S \in \mathcal{K}} S$ supports a nonnegative measure in $W^{2,(\alpha-1)/2-\epsilon}$.

Theorem 3_S implies (a) only when $d \ge 4$ and (b) only when $d \ge 3$ (though, in its range of validity, the partial result for (b) in dimension 2 is a little more general than Wolff's observation in [3] that, for $0 < \alpha < 1$, the union of a set of circles in the plane has dimension at least $1 + \alpha$ if the set of centers of those circles has dimension α).

Results like Theorems 3_H and 3_S are often connected with estimates for operators like R and T. That is the case here, and we begin with the Radon transform estimate which goes with Theorem 3_H . Suppose $\psi \in \mathcal{S}(\mathbb{R}^{d-1})$ is a nonnegative radial function with Fourier transform $\widehat{\psi}$ equal to 1 on B(0,1)and supported in B(0,2). For $\sigma \in S^{(d-1)}$ fix an orthogonal linear map O_{σ} from $\sigma^{\perp} \subseteq \mathbb{R}^d$ to \mathbb{R}^{d-1} . Define a Radon transform \widetilde{R} by

$$\widetilde{R}f(\sigma,t) = \int_{\sigma^{\perp}} f(p+t\sigma)\psi(O_{\sigma}(p)) \ d\mathcal{L}^{d-1}(p).$$

The estimate we have in mind is the following.

Theorem 4_H . Suppose μ is a nonnegative Borel measure on a compact set $\mathcal{K} \subseteq \mathcal{H}$ and suppose that μ satisfies the condition (slightly stronger than (1_H))

$$\mu(\{(\sigma,t): |\sigma-\sigma_0|+|t-t_0|<\tau\}) \lesssim \tau^{\alpha}$$

for some $\alpha \in (0, d]$ and for all $(\sigma_0, t_0) \in \mathcal{H}$ and $\tau > 0$. Then, for $\epsilon > 0$,

$$\|\widetilde{R}f\|_{L^{2,\infty}_{\mu}} \lesssim \|f\|_{W^{2,(1-\alpha)/2+\epsilon}}.$$

If also $\alpha > 1$, then, for small $\epsilon > 0$ and

$$\frac{1}{p} = \frac{1}{2} + \frac{\alpha - 1}{2d} - \epsilon$$

there is the estimate

$$\|\widetilde{R}f\|_{L^{2,\infty}_{\mu}} \lesssim \|f\|_{L^{p}(\mathbb{R}^{d})}.$$

Here is the corresponding result for spheres.

Theorem 4_S . Suppose μ is a nonnegative Borel measure on a compact set $\mathcal{K} \subseteq S$ and suppose that, for $\alpha \in (0, (d-1)/2)$, μ satisfies the condition

$$\mu(\{(x,r) : |x - x_0| + |r - r_0| < \tau\}) \lesssim \tau^{\alpha}$$

for all $(x_0, r_0) \in \mathcal{S}$ and $\tau > 0$. Then, for $\epsilon > 0$,

$$||Tf||_{L^{2,\infty}_{\mu}} \lesssim ||f||_{W^{2,(1-\alpha)/2+\epsilon}}.$$

If also $\alpha > 1$, then, for small $\epsilon > 0$ and

$$\frac{1}{p} = \frac{1}{2} + \frac{\alpha - 1}{2d} - \epsilon$$

there is the estimate

$$\|Tf\|_{L^{2,\infty}_{\mu}} \lesssim \|f\|_{L^{p}(\mathbb{R}^{d})}.$$

Proof of Theorem 3_H : Suppose that μ is a measure on \mathcal{K} satisfying

$$\int_{\mathcal{K}} \int_{\mathcal{K}} \frac{d\mu(P_1) \ d\mu(P_2)}{(|\sigma_1 - \sigma_2| + |t_1 - t_2|)^{\alpha}} < \infty.$$

With ψ as above, define a measure $\widetilde{\mu}$ on \mathbb{R}^d by

$$\langle f, \widetilde{\mu} \rangle = \int_{\mathcal{K}} \int_{\sigma^{\perp}} f(p + t\sigma) \psi(O_{\sigma}(p)) \, d\mathcal{L}_{d-1}(p) \, d\mu(\sigma, t) = \langle \widetilde{R}f, \mu \rangle.$$

We will show that, for $\epsilon > 0$,

(3)
$$\int_{\mathbb{R}^d} |\widehat{\widetilde{\mu}}(\xi)|^2 |\xi|^{\alpha - 1 - 2\epsilon} d\mathcal{L}_d(\xi) < \infty.$$

Replacing α by $\alpha - \epsilon$ then shows that Theorem 3_H is true. Suppose ρ is a nonnegative C^{∞} function supported in [1/2, 4] and equal to one on [1, 2]. We will establish (3) by showing that

(4)
$$\int_{\mathbb{R}^d} |\widehat{\widetilde{\mu}}(\xi)|^2 \rho^2 (2^{-j} |\xi|) d\mathcal{L}_d(\xi)$$

is $\leq 2^{-j(\alpha-1)}$. Thus we begin by fixing j. If, for $\sigma \in S^{(d-1)}$, π_{σ} denotes the projection of \mathbb{R}^d into σ^{\perp} and $\Pi_{\sigma} = O_{\sigma} \circ \pi_{\sigma}$, then (4) is equal to

$$\int_{\mathbb{R}^d} \int_{\mathcal{K}} \int_{\mathcal{K}} e^{-i\xi \cdot (t_1 \sigma_1 - t_2 \sigma_2)} \widehat{\psi} \big(\Pi_{\sigma_1}(\xi) \big) \widehat{\psi} \big(\Pi_{\sigma_2}(\xi) \big) d\mu(\sigma_1, t_1) \, d\mu(\sigma_2, t_2) \rho^2(2^{-j} |\xi|) d\mathcal{L}_d(\xi) =$$

(5)
$$\int_{\mathcal{K}} \int_{\mathcal{K}} b(\sigma_1, \sigma_2, t_1 \sigma_1 - t_2 \sigma_2) d\mu(\sigma_1, t_1) \ d\mu(\sigma_2, t_2)$$

where

$$b(\sigma_1, \sigma_2, x) = \int_{\mathbb{R}^d} e^{-i\xi \cdot x} \widehat{\psi}(\Pi_{\sigma_1}(\xi)) \widehat{\psi}(\Pi_{\sigma_2}(\xi)) \rho^2(2^{-j}|\xi|) d\mathcal{L}_d(\xi).$$

If $b(\sigma_1, \sigma_2, \cdot)$ is not identically 0, then the tubes of radius 2 through the origin in the directions of σ_1 and σ_2 must intersect at some ξ satisfying $|\xi| \sim 2^j$. This implies that $|\sigma_1 \pm \sigma_2| \leq 2^{-j}$. There is no loss of generality in assuming that if (σ_1, t_1) and (σ_2, t_2) are both in support of μ , then $|\sigma_1 + \sigma_2| \geq 1$ (for this can be achieved by decomposing μ into a finite sum of measures with small supports). Thus we may assume that, unless $b(\sigma_1, \sigma_2, \cdot) \equiv 0$, $|\sigma_1 - \sigma_2| \leq 2^{-j}$. Now, with

$$a(\sigma, x) = \int_{\mathbb{R}^d} e^{-i\xi \cdot x} \widehat{\psi}(\Pi_{\sigma}(\xi)) \rho(2^{-j}|\xi|) d\mathcal{L}_d(\xi),$$

we have $b(\sigma_1, \sigma_2, \cdot) = a(\sigma_1, \cdot) * a(\sigma_2, \cdot)$. Let P_{σ} be the plate

$$B(0,1) \cap \{ x \in \mathbb{R}^d : |x \cdot \sigma| \le 2^{-j} \}.$$

Assume for the moment the following standard result (which will be proved later):

Lemma 1. For $N \in \mathbb{N}$ we have

(6)
$$|a(\sigma,\cdot)| \le C_N 2^j \sum_{n=1}^{\infty} 2^{-nN} \chi_{2^n P_{\sigma}}.$$

Then it follows that

(7)
$$|b(\sigma_1, \sigma_2, \cdot)| \lesssim 2^{2j} \sum_{m,n=1}^{\infty} 2^{-(m+n)N} \chi_{2^n P_{\sigma_1}} * \chi_{2^m P_{\sigma_2}}$$

If $|\sigma_1 - \sigma_2| \lesssim 2^{-j}$ and $m \le n$, we have

$$\chi_{2^n P_{\sigma_1}} * \chi_{2^m P_{\sigma_2}} \lesssim 2^{dm-j} \chi_{2^{n+2} P_{\sigma_1}}$$

and so, if N > d,

$$2^{2j} \sum_{n=1}^{\infty} \sum_{m=1}^{n} 2^{-(m+n)N} \chi_{2^n P_{\sigma_1}} * \chi_{2^m P_{\sigma_2}} \lesssim 2^{2j} \sum_{n=1}^{\infty} \sum_{m=1}^{n} 2^{-(n+m)N} 2^{dm-j} \chi_{2^{n+2} P_{\sigma_1}} \lesssim 2^j \sum_{n=1}^{\infty} 2^{-nN} \chi_{2^{n+2} P_{\sigma_1}}.$$

It therefore follows from (7) that (5), and so (4), is controlled by

(8)
$$2^{j} \sum_{n=1}^{\infty} 2^{-nN} \int \int_{\{|\sigma_{1}-\sigma_{2}| \leq 2^{-j}\}} \chi_{2^{n+2}P_{\sigma_{1}}}(t_{1}\sigma_{1}-t_{2}\sigma_{2}) d\mu(\sigma_{1},t_{1}) d\mu(\sigma_{2},t_{2}).$$

Now if $t_1\sigma_1 - t_2\sigma_2 \in 2^{n+2}P_{\sigma_1}$, then

$$|t_1 - t_2 + t_2(\sigma_1 - \sigma_2) \cdot \sigma_1| = |(t_1 \sigma_1 - t_2 \sigma_1) \cdot \sigma_1 + t_2(\sigma_1 - \sigma_2) \cdot \sigma_1| = |(t_1 \sigma_1 - t_2 \sigma_2) \cdot \sigma_1| \lesssim 2^{n-j}.$$

If also $|\sigma_1 - \sigma_2| \lesssim 2^{-j}$, then $|t_2| \lesssim 1$ gives $|t_1 - t_2| \lesssim 2^{n-j}$ and so

$$|\sigma_1 - \sigma_2| + |t_1 - t_2| \lesssim 2^{n-j}.$$

Thus (8) is bounded by

(9)
$$\sum_{n=1}^{\infty} 2^{-nN} 2^j \int \int_{\{|\sigma_1 - \sigma_2| + |t_1 - t_2| \lesssim 2^{n-j}\}} d\mu(\sigma_1, t_1) d\mu(\sigma_2, t_2).$$

Since

$$\int \int_{\{|\sigma_1 - \sigma_2| + |t_1 - t_2| \le \tau\}} d\mu(\sigma_1, t_1) d\mu(\sigma_2, t_2) \le \tau^{\alpha} \int_{\mathcal{K}} \int_{\mathcal{K}} \frac{d\mu(\sigma_1, t_1) d\mu(\sigma_2, t_2)}{(|\sigma_1 - \sigma_2| + |t_1 - t_2|)^{\alpha}} \lesssim \tau^{\alpha},$$

we may bound (9), and so (4), by

$$\sum_{n=1}^{\infty} 2^{-nN} 2^j 2^{(n-j)\alpha} \lesssim 2^{-j(\alpha-1)}.$$

This completes the proof of Theorem 3_H .

Proof of Lemma 1: Without loss of generality let $\sigma = (1, 0, ..., 0)$. Writing $\xi = (\xi_1, \xi')$ and identifying σ^{\perp} with \mathbb{R}^{d-1} , we have

(10)
$$a(\sigma, x) = \int \int e^{-i\xi \cdot x} \widehat{\psi}(\xi') \rho(2^{-j}|\xi|) d\mathcal{L}_{d-1}(\xi') d\mathcal{L}_1(\xi_1).$$

Suppose $x \in 2^{n+1}P_{\sigma} \sim 2^n P_{\sigma}$. Writing $x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{d-1}$, assume first that $|x| \geq 2^n$ so that, if j > 1, $|x'| \geq 2^{n-1}$. Then, considering the support of $\hat{\psi}$,

$$\left| \int e^{-i\xi' \cdot x'} \widehat{\psi}(\xi') \rho(2^{-j}|\xi|) d\mathcal{L}_{d-1}(\xi') \right| = \left| \int_{B(0,2)} e^{-i\xi' \cdot x'} \widehat{\psi}(\xi') \rho(2^{-j}|\xi|) d\mathcal{L}_{d-1}(\xi') \right|$$

Integrating by parts N times, this is bounded by $C_N 2^{-nN}$. Thus (10) is bounded by $C_N 2^j 2^{-nN}$ since $|\xi_1| \leq 2^j$. Suppose now that $x \in 2^{n+1} P_\sigma \setminus 2^n P_\sigma$ and $|x| < 2^n$. Then $|x_1| > 2^{n-j}$. Now

(11)
$$\int e^{-i\xi_1 x_1} \rho(2^{-j}|\xi|) d\xi_1 = 2^j \int e^{-i\widetilde{\xi}_1 2^j x_1} \rho\left(\sqrt{\widetilde{\xi}_1^2 + |2^{-j}\xi'|^2}\right) d\widetilde{\xi}_1.$$

Since $|2^j x_1| \sim 2^n$, integrating by parts N times bounds (11) by $C_N 2^{j-nN}$. Since $\widehat{\psi}$ is supported in B(0, 2), the same bound applies to (10).

Proof of Theorem 4_H : Theorem 4_H will follow from the estimate

$$\|\widetilde{R}^*\chi_{\mathcal{E}}\|_{W^{2,(\alpha-1)/2-\epsilon}} \lesssim (\mu(\mathcal{E}))^{1/2}, \ \mathcal{E} \subseteq \mathcal{H},$$

dual to

$$\|\widetilde{R}f\|_{L^{2,\infty}_{\mu}} \lesssim \|f\|_{W^{2,(1-\alpha)/2+\epsilon}}$$

and, if $\alpha > 1$, the Sobolev embedding theorem. Thus, for Borel $\mathcal{E} \subseteq \mathcal{H}$ and for suitable f, we note that

$$\langle f, \widetilde{R}^* \chi_{\mathcal{E}} \rangle = \langle \widetilde{R}f, \chi_{\mathcal{E}}\mu \rangle = \int_{\mathcal{E}} \int_{\sigma^{\perp}} f(p + t\sigma)\psi(O_{\sigma}(p)) \ d\mathcal{L}_{d-1}(p) \ d\mu(\sigma, t).$$

Following the proof of Theorem 3 with μ replaced by $\chi_{\mathcal{E}}\mu$ (see (9)) shows that

$$\|\widetilde{R}^*\chi_{\mathcal{E}}\|^2_{W^{2,(\alpha-1)/2-\epsilon}}$$

is controlled by the sum on j of the terms

$$2^{j(\alpha-1-2\epsilon)} \sum_{n=1}^{\infty} 2^{-nN} 2^{j} \int_{\mathcal{E}} \int_{\{|\sigma_{1}-\sigma_{2}|+|t_{1}-t_{2}| \leq 2^{n-j}\}} d\mu(\sigma_{1},t_{1}) d\mu(\sigma_{2},t_{2}) \leq 2^{j(\alpha-1-2\epsilon)} \sum_{n=1}^{\infty} 2^{-nN} 2^{j} \mu(\mathcal{E}) 2^{\alpha(n-j)} \leq 2^{-2j\epsilon} \mu(\mathcal{E}).$$

This yields the desired result.

Proof of Theorem 3_S : Here we write σ for Lebesgue measure on $S^{(d-1)}$. The proof is generally parallel to that of Theorem 3_H . Thus suppose that μ is a measure on \mathcal{K} satisfying

$$\int_{\mathcal{K}} \int_{\mathcal{K}} \frac{d\mu(S_1) \ d\mu(S_2)}{(|x_1 - x_2| + |r_1 - r_2|)^{\alpha}} < \infty$$

and define $\widetilde{\mu}$ on \mathbb{R}^d by

$$\langle f, \widetilde{\mu} \rangle = \int_{\mathcal{K}} \int_{S^{(d-1)}} f(x + r\zeta) \, d\sigma(\zeta) \, d\mu(x, r) = \langle \widetilde{T}f, \mu \rangle.$$

With ρ as in the proof of Theorem 3, we would like to show that

(12)
$$\int_{\mathbb{R}^d} |\widehat{\widetilde{\mu}}(\xi)|^2 \rho(2^{-j}|\xi|) d\mathcal{L}_d(\xi) \lesssim 2^{-j(\alpha-1)}.$$

We begin by rewriting (12) as

$$\int_{\mathbb{R}^d} \int_{\mathcal{K}} \int_{\mathcal{K}} \widehat{\sigma}(r_1\xi) \, \widehat{\sigma}(r_2\xi) \, e^{-i(x_1-x_2)\cdot\xi} d\mu(x_1,r_1) \, d\mu(x_2,r_2)\rho(2^{-j}|\xi|) d\mathcal{L}_d(\xi)$$

Changing to polar coordinates on \mathbb{R}^d and abusing notation by writing $\widehat{\sigma}(|\xi|)$ to stand for $\widehat{\sigma}(\xi)$, this is

$$\int_{\mathcal{K}} \int_{\mathcal{K}} \int_{0}^{\infty} \widehat{\sigma}(r_{1}r) \ \widehat{\sigma}(r_{2}r) \ \widehat{\sigma}(|x_{1} - x_{2}|r)\rho(2^{-j}r)r^{d-1}dr \ d\mu(x_{1}, r_{1}) \ d\mu(x_{2}, r_{2}) =$$

(13)
$$\int_{\mathcal{K}} \int_{\mathcal{K}} b(r_1, r_2, |x_1 - x_2|) \ d\mu(x_1, r_1) \ d\mu(x_2, r_2)$$

if

$$b(r_1, r_2, s) = \int_0^\infty \widehat{\sigma}(r_1 r) \ \widehat{\sigma}(r_2 r) \ \widehat{\sigma}(sr) \rho(2^{-j} r) r^{d-1} dr.$$

We will use the following notation: if $S_1 = S(x_1, r_1)$ and $S_2 = S(x_2, r_2)$ are spheres, then $\delta = \delta(S_1, S_2)$ will stand for the distance $|x_1 - x_2| + |r_1 - r_2|$ between S_1 and S_2 while $\Delta = \Delta(S_1, S_2)$ while stand for $||x_1 - x_2| - |r_1 - r_2||$. We also observe that on the compact subset \mathcal{K} of \mathcal{S} , r is bounded away from 0. We will estimate (13), and therefore establish (12), by considering the different cases which result from splitting the integral in a certain way.

Case I:
$$\int \int_{\{\Delta < \delta/2\}} b(r_1, r_2, |x_1 - x_2|) d\mu(x_1, r_1) d\mu(x_2, r_2)$$

If $\Delta < \delta/2$ then $\delta \sim |x_1 - x_2|$. Now $|b(r_1, r_2, |x_1 - x_2|)| \lesssim 2^j$ follows from
(14) $|\widehat{\sigma}(s)| \lesssim s^{(1-d)/2}$

(recall that the r_j are bounded away from 0 and that $|\hat{\sigma}|$ is bounded). Thus the portion of the Case I integral where $|x_1 - x_2| \leq 2^{-j}$ is controlled by

$$2^{j} \int \int_{\{\delta \leq 2^{-j}\}} d\mu(x_{1}, r_{1}) \ d\mu(x_{2}, r_{2}) \leq 2^{-j(\alpha-1)},$$

where the last inequality follows (as in the proof of Theorem 3_H) from the capacitarian assumption on μ . If $|x_1 - x_2| \gtrsim 2^{-j}$ then (14) and $\delta \sim |x_1 - x_2|$ imply that the relevant integral is controlled by

$$\frac{2^{j}}{(2^{j}|x_{1}-x_{2}|)^{(d-1)/2}} \lesssim \frac{1}{\delta^{(d-1)/2} 2^{j(d-3)/2}} \lesssim \frac{1}{\delta^{\alpha} 2^{-j[(d-1)/2-\alpha]}} \frac{1}{2^{j(d-3)/2}} = \frac{1}{\delta^{\alpha} 2^{j(-1+\alpha)}}.$$

Here the second inequality follows from $\delta \gtrsim 2^{-j}$ and $\alpha \leq (d-1)/2$. Thus the Case I integral is controlled by $2^{-j(\alpha-1)}$.

Case II: $\int \int_{\{\delta < 4 \cdot 2^{-j}\}} b(r_1, r_2, |x_1 - x_2|) d\mu(x_1, r_1) d\mu(x_2, r_2)$

Since

$$\int \int_{\{\delta < 4 \cdot 2^{-j}\}} d\mu(x_1, r_1) \ d\mu(x_2, r_2) \lesssim 2^{-j\alpha}$$

and $|b(r_1, r_2, |x_1 - x_2|)| \leq 2^j$, the desired bound of $2^{-j(1-\alpha)}$ is immediate.

Case III: $\int \int_{\{4\cdot 2^{-j} \le \delta \le 2\Delta\}} b(r_1, r_2, |x_1 - x_2|) d\mu(x_1, r_1) d\mu(x_2, r_2)$

Recall that

$$b(r_1, r_2, |x_1 - x_2|) = \int_a^b \widehat{\sigma}(r_1 r) \, \widehat{\sigma}(r_2 r) \, \widehat{\sigma}(|x_1 - x_2| r) \rho(2^{-j} r) r^{d-1} dr$$

where $a \gtrsim 2^{j}$. Utilizing the asymptotic expansion of $\hat{\sigma}$ and recalling that r_1 and r_2 are bounded away from 0, the principal term in this integral is controlled by the largest of

(15)
$$\Big| \int_{a}^{b} \frac{e^{i(\pm r_{1} \pm r_{2} \pm |x_{1} - x_{2}|)r}}{(r|x_{1} - x_{2}|)^{(d-1)/2}} dr \Big|.$$

After rescaling and then multiplying μ by a cutoff function of x, we may assume that $r_1, r_2 \ge 1/2$ and $|x_1 - x_2| \le 1/2$. One can check that then $\Delta = ||r_1 - r_2| - |x_1 - x_2||$ minimizes $|\pm r_1 \pm r_2 \pm |x_1 - x_2||$. An integration by parts bounds (15) by some multiple of

$$|x_1 - x_2|^{-(d-1)/2} \left(\left| \int_a^b \int_a^r e^{i\Delta s} ds \ r^{-(d+1)/2} dr \right| + 2^{-j(d-1)/2} \left| \int_a^b e^{i\Delta s} ds \right| \right).$$

Since $a \ge 2^j$, it follows that

$$|(15)| \lesssim \frac{2^{-j(d-1)/2}}{\Delta \cdot |x_1 - x_2|^{(d-1)/2}} \lesssim \frac{2^{-j(d-1)/2}}{\Delta^{(d+1)/2}} \lesssim \frac{2^{-j(d-1)/2}}{\Delta^{\alpha} 2^{-j[(d+1)/2-\alpha]}}$$

where the last inequality follows from $\Delta \gtrsim 2^{-j}$ and $\alpha \leq (d-1)/2 < (d+1)/2$. Thus

$$\int \int_{\{4\cdot 2^{-j} \le \delta \le 2\Delta\}} |(15)| \ d\mu(x_1, r_1) \ d\mu(x_2, r_2) \lesssim 2^{-j(1-\alpha)}$$

by the capacitarian assumption on μ . The nonprincipal terms are controlled similarly. For example, the term coming from the principal terms of $\hat{\sigma}(r_i r)$ and the second order term from $\hat{\sigma}(|x_1 - x_2|r)$ is controlled by

$$\int_{1}^{b} \frac{dr}{(r|x_{1} - x_{2}|)^{(d+1)/2}} \lesssim \frac{1}{\Delta^{(d+1)/2} 2^{j(d-1)/2}}$$

and so may be treated as was |(15)|. This completes the proof of Theorem 3_S .

The changes to the proof of Theorem 3_S which are required in order to prove Theorem 4_S are analogous to the changes in the proof of Theorem 3_H which yield the proof of Theorem 4_H .

References

- [1] D. Oberlin *Restricted Radon transforms and unions of hyperplanes* Rev. Mat. Iberoamericana, to appear.
- [2] D. Oberlin Packing spheres and fractal Strichartz estimates in \mathbb{R}^d for $d \geq 3$ Proc. Amer. Math. Soc., to appear.
- [3] T. Wolff Local smoothing estimates on L^p for large p, Geometric and Functional Analysis **10** (2000), 1237–1288.