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By a hyperplane in R
d we mean any translate of a (d � 1)-plane. The

collection H of all hyperplanes P in R
d can be parametrized by �(d�1) �

[0;1) if one identi�es P with (�; t) whenever P = �? + t�. Following the

capacitarian de�nition of Hausdor� dimension, we say that a compact set

K of hyperplanes has dimension � > 0 if, for each small �, K carries a Borel

probability measure � such that

(1H)

Z
K

Z
K

d�(P1) d�(P2)

(j�1 � �2j+ jt1 � t2j)���
<1:

Similarly, let S(x; r) stand for the sphere in Rd with center x and radius r.

Identifying the collection of all such spheres with S _=Rd � (0;1) � R
d+1 ,

we will say that a compact set K of spheres has dimension � > 0 if, for each

small �, K carries a Borel probability measure � such that

(1S)

Z
K

Z
K

d�(S1)d�(S2)

(jx1 � x2j+ jr1 � r2j)���
<1:

In both cases we are interested in what can be said about the size of

(2) [T2KT

in terms of the Hausdor� dimension of K. Since the dimension of a hyper-

plane or sphere is d� 1, intuition suggests the conjectures that

(a) the union (2) should have positive d-dimensional Lebesgue measure

whenever dim(K) > 1, and

(b) if 0 < � < 1 and dim(K) = �, then (2) should have dimension at least

d� 1 + �.
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In these situations (though not always in similar ones), such intuition ap-

pears to be correct. For example, considering hyperplanes and the case

dim(K) > 1, one may de�ne a truncated Radon transform R0 by

R0f(�; t) =

Z
�?\B(0;1)

f(p+ t�) dLd�1(p):

The following theorem is from [1].

Theorem 1. Suppose � is a nonnegative Borel measure on a compact set

K � H and suppose that � satis�es (1) for �� � > 1. Then

kR0�EkL���;1�
. Ld(E)1=2

for Borel E � R
d .

Now suppose that K � H and dim(K) = � > 1. Let � be a Borel probability

measure satisfying (1H). If E is the set (2) then R0�E(�; t) � c > 0 for each

�? + t� 2 K, and so it follows from Theorem 1 that Ld(E) � c2 > 0. Thus

(a) is true for hyperplanes. For d � 3 the paper [2] contains an analogue of

Theorem 1 for the spherical average operator Tf(x; r) =
R
�(d�1) f(x�r�)d�.

It therefore follows that, when d � 3, (a) is also true for spheres. (When

d = 2 the circle version of (a) is a signi�cantly more diÆcult question,

answered in the aÆrmative in Wol�'s paper [3].) The papers [1] and [2] also

contain results which imply the following theorem.

Theorem 2. Suppose that K is either a compact set of hyperplanes or, if

d � 3, a compact set of spheres. Suppose that dim(K) = � 2 (0; 1) and that

K either lies on a smooth curve or has a certain Cantor set structure. Then

if E = [T2KT we have dim(E) � d� 1 + �.

Theorem 2 veri�es (b) for hyperplanes in case d = 2 but applies only in

special cases if d > 2. Another approach to results like (b) begins by recalling

that E � R
d has Hausdor� dimension � 2 (0; d) if and only if, for each � > 0,

E carries a Borel probability measure e� satisfying

Z
Rd

jbe�(�)j2
j�jd��+�

d� <1:

That is, dim(E) = � if, for � > 0, E supports a nontrivial nonnegative

distribution in the Sobolev space W 2;�(d��+�)=2. Thus, for example, (b) is

equivalent to the conjecture that, if 0 < � < 1, dim(K) = �, and � > 0, then

[T2KT should support a nonnegative distribution in W 2;(��1)=2��. On the

other hand, the dimension of H = �(d�1)� [0;1) is d � 2 and the dimension

of S = R
d � (0;1) is d+1 but if K has dimension as small as 1+ � then we

2



know already that [T2KT has positive measure. It is therefore natural to

wonder if more than this (i.e., more than that [T2KT has positive measure)

can be said when dim(K) > 1. In particular, in view of the just-mentioned

reformulation of (b), one might conjecture that, no matter the � 2 (0; d), if

dim(K) = �, then, for any � > 0, [T2KT should support a nonnegative and

nontrivial measure in W 2;(��1)=2��. Our main result is that this is true in

certain cases.

Theorem 3H : If K � H and dim(K) = � 2 (0; d] then, for � > 0, [P2KP

supports a nonnegative measure (function if � > 1) in W 2;(��1)=2��.

We note that, for hyperplanes, Theorem 3H implies (a) as well as (b). For

spheres our result is less satisfactory.

Theorem 3S: If K � S and dim(K) = � 2 (0; (d � 1)=2) then, for � > 0,

[S2KS supports a nonnegative measure in W 2;(��1)=2��.

Theorem 3S implies (a) only when d � 4 and (b) only when d � 3 (though,

in its range of validity, the partial result for (b) in dimension 2 is a little

more general than Wol�'s observation in [3] that, for 0 < � < 1, the union

of a set of circles in the plane has dimension at least 1+� if the set of centers

of those circles has dimension �).

Results like Theorems 3H and 3S are often connected with estimates for

operators like R and T . That is the case here, and we begin with the Radon

transform estimate which goes with Theorem 3H . Suppose  2 S(Rd�1) is a

nonnegative radial function with Fourier transform b equal to 1 on B(0; 1)

and supported in B(0; 2). For � 2 S(d�1) �x an orthogonal linear map O�

from �? � R
d to Rd�1 . De�ne a Radon transform eR by

eRf(�; t) =
Z
�?

f(p+ t�) (O�(p)) dL
d�1(p):

The estimate we have in mind is the following.

Theorem 4H : Suppose � is a nonnegative Borel measure on a compact set

K � H and suppose that � satis�es the condition (slightly stronger than

(1H))

�(f(�; t) : j� � �0j+ jt� t0j < �g) . ��

for some � 2 (0; d] and for all (�0; t0) 2 H and � > 0. Then, for � > 0,

k eRfk
L
2;1
�
. kfkW 2;(1��)=2+�:

If also � > 1, then, for small � > 0 and

1

p
=

1

2
+
�� 1

2d
� �
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there is the estimate

k eRfk
L
2;1
�
. kfkLp(Rd):

Here is the corresponding result for spheres.

Theorem 4S . Suppose � is a nonnegative Borel measure on a compact set

K � S and suppose that, for � 2 (0; (d� 1)=2), � satis�es the condition

�(f(x; r) : jx� x0j+ jr � r0j < �g) . ��

for all (x0; r0) 2 S and � > 0. Then, for � > 0,

kTfk
L
2;1
�
. kfkW 2;(1��)=2+�:

If also � > 1, then, for small � > 0 and

1

p
=

1

2
+
�� 1

2d
� �

there is the estimate

kTfk
L
2;1
�
. kfkLp(Rd):

Proof of Theorem 3H : Suppose that � is a measure on K satisfying

Z
K

Z
K

d�(P1) d�(P2)

(j�1 � �2j+ jt1 � t2j)�
<1:

With  as above, de�ne a measure e� on Rd by

hf; e�i =
Z
K

Z
�?

f(p+ t�) (O�(p)) dLd�1(p) d�(�; t) = h eRf; �i:
We will show that, for � > 0,

(3)

Z
Rd

jbe�(�)j2j�j��1�2�dLd(�) <1:

Replacing � by � � � then shows that Theorem 3H is true. Suppose � is

a nonnegative C1 function supported in [1=2; 4] and equal to one on [1; 2].

We will establish (3) by showing that

(4)

Z
Rd

jbe�(�)j2�2(2�jj�j)dLd(�)
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is . 2�j(��1). Thus we begin by �xing j. If, for � 2 S(d�1), �� denotes the

projection of Rd into �? and �� = O� Æ ��, then (4) is equal to

Z
Rd

Z
K

Z
K

e�i��(t1�1�t2�2) b ���1(�)
� b ���2(�)

�
d�(�1; t1) d�(�2; t2)�

2(2�jj�j)dLd(�) =

(5)

Z
K

Z
K

b(�1; �2; t1�1 � t2�2)d�(�1; t1) d�(�2; t2)

where

b(�1; �2; x) =

Z
Rd

e�i��x b (��1(�))
b (��2(�))�

2(2�jj�j)dLd(�):

If b(�1; �2; �) is not identically 0, then the tubes of radius 2 through the origin
in the directions of �1 and �2 must intersect at some � satisfying j�j � 2j.

This implies that j�1� �2j . 2�j. There is no loss of generality in assuming

that if (�1; t1) and (�2; t2) are both in support of �, then j�1 + �2j � 1

(for this can be achieved by decomposing � into a �nite sum of measures

with small supports). Thus we may assume that, unless b(�1; �2; �) � 0,

j�1 � �2j . 2�j. Now, with

a(�; x) =

Z
Rd

e�i��x b (��(�))�(2
�jj�j)dLd(�);

we have b(�1; �2; �) = a(�1; �) � a(�2; �). Let P� be the plate

B(0; 1) \ fx 2 R
d : jx � �j � 2�jg:

Assume for the moment the following standard result (which will be proved

later):

Lemma 1. For N 2 N we have

(6) ja(�; �)j � CN2
j

1X
n=1

2�nN�2nP� :

Then it follows that

(7) jb(�1; �2; �)j . 22j
1X

m;n=1

2�(m+n)N�2nP�1 � �2mP�2
:

If j�1 � �2j . 2�j and m � n, we have

�2nP�1 � �2mP�2
. 2dm�j�2n+2P�1

5



and so, if N > d,

22j
1X
n=1

nX
m=1

2�(m+n)N�2nP�1 � �2mP�2
. 22j

1X
n=1

nX
m=1

2�(n+m)N2dm�j�2n+2P�1
.

2j
1X
n=1

2�nN�2n+2P�1
:

It therefore follows from (7) that (5), and so (4), is controlled by

(8) 2j
1X
n=1

2�nN
Z Z

fj�1��2j.2�jg
�2n+2P�1

(t1�1 � t2�2)d�(�1; t1)d�(�2; t2):

Now if t1�1 � t2�2 2 2n+2P�1 , then

jt1�t2+t2(�1��2)��1j = j(t1�1�t2�1)��1+t2(�1��2)��1j = j(t1�1�t2�2)��1j . 2n�j:

If also j�1 � �2j . 2�j, then jt2j . 1 gives jt1 � t2j . 2n�j and so

j�1 � �2j+ jt1 � t2j . 2n�j:

Thus (8) is bounded by

(9)

1X
n=1

2�nN2j
Z Z

fj�1��2j+jt1�t2j.2n�jg
d�(�1; t1)d�(�2; t2):

Since
Z Z

fj�1��2j+jt1�t2j��g

d�(�1; t1)d�(�2; t2) � ��
Z
K

Z
K

d�(�1; t1)d�(�2; t2)

(j�1 � �2j+ jt1 � t2j)�
. ��;

we may bound (9), and so (4), by

1X
n=1

2�nN2j2(n�j)� . 2�j(��1):

This completes the proof of Theorem 3H .

Proof of Lemma 1: Without loss of generality let � = (1; 0; : : : ; 0). Writing

� = (�1; �
0) and identifying �? with Rd�1 , we have

(10) a(�; x) =

Z Z
e�i��x b (�0)�(2�jj�j)dLd�1(�

0)dL1(�1):
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Suppose x 2 2n+1P� � 2nP�. Writing x = (x1; x
0) 2 R � R

d�1 , assume �rst

that jxj � 2n so that, if j > 1, jx0j � 2n�1. Then, considering the support

of b ,
���
Z
e�i�

0�x0 b (�0)�(2�jj�j)dLd�1(�
0)
��� =

���
Z
B(0;2)

e�i�
0�x0 b (�0)�(2�jj�j)dLd�1(�

0)
���:

Integrating by parts N times, this is bounded by CN2
�nN . Thus (10) is

bounded by CN2
j2�nN since j�1j . 2j. Suppose now that x 2 2n+1P�n2

nP�
and jxj < 2n. Then jx1j > 2n�j. Now

(11)

Z
e�i�1x1�(2�jj�j)d�1 = 2j

Z
e�i

e�12
jx1�

�qe�21 + j2�j�0j2
�
de�1:

Since j2jx1j � 2n, integrating by parts N times bounds (11) by CN2
j�nN .

Since b is supported in B(0; 2), the same bound applies to (10).

Proof of Theorem 4H : Theorem 4H will follow from the estimate

k eR��EkW 2;(��1)=2�� . (�(E))1=2; E � H;

dual to

k eRfk
L
2;1
�
. kfkW 2;(1��)=2+�

and, if � > 1, the Sobolev embedding theorem. Thus, for Borel E � H and

for suitable f , we note that

hf; eR��Ei = h eRf; �E�i =
Z
E

Z
�?

f(p+ t�) (O�(p)) dLd�1(p) d�(�; t):

Following the proof of Theorem 3 with � replaced by �E� (see (9) ) shows

that

k eR��Ek
2
W 2;(��1)=2��

is controlled by the sum on j of the terms

2j(��1�2�)
1X
n=1

2�nN2j
Z
E

Z
fj�1��2j+jt1�t2j.2n�jg

d�(�1; t1)d�(�2; t2) .

2j(��1�2�)
1X
n=1

2�nN2j�(E)2�(n�j) . 2�2j��(E):

This yields the desired result.
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Proof of Theorem 3S: Here we write � for Lebesgue measure on S(d�1). The

proof is generally parallel to that of Theorem 3H . Thus suppose that � is a

measure on K satisfying

Z
K

Z
K

d�(S1) d�(S2)

(jx1 � x2j+ jr1 � r2j)�
<1

and de�ne e� on Rd by

hf; e�i =
Z
K

Z
S(d�1)

f(x+ r�) d�(�) d�(x; r) = heTf; �i:
With � as in the proof of Theorem 3, we would like to show that

(12)

Z
Rd

jbe�(�)j2�(2�jj�j)dLd(�) . 2�j(��1):

We begin by rewriting (12) as

Z
Rd

Z
K

Z
K

b�(r1�) b�(r2�) e�i(x1�x2)��d�(x1; r1) d�(x2; r2)�(2�jj�j)dLd(�)

Changing to polar coordinates on Rd and abusing notation by writing b�(j�j)
to stand for b�(�), this is
Z
K

Z
K

Z 1

0

b�(r1r) b�(r2r) b�(jx1 � x2jr)�(2
�jr)rd�1dr d�(x1; r1) d�(x2; r2) =

(13)

Z
K

Z
K

b(r1; r2; jx1 � x2j) d�(x1; r1) d�(x2; r2)

if

b(r1; r2; s) =

Z 1

0

b�(r1r) b�(r2r) b�(sr)�(2�jr)rd�1dr:
We will use the following notation: if S1 = S(x1; r1) and S2 = S(x2; r2) are

spheres, then Æ = Æ(S1; S2) will stand for the distance jx1 � x2j + jr1 � r2j
between S1 and S2 while � = �(S1; S2) while stand for jjx1�x2j�jr1�r2jj.
We also observe that on the compact subset K of S, r is bounded away from

0. We will estimate (13), and therefore establish (12), by considering the

di�erent cases which result from splitting the integral in a certain way.

Case I:
R R

f�<Æ=2g
b(r1; r2; jx1 � x2j) d�(x1; r1) d�(x2; r2)

If � < Æ=2 then Æ � jx1�x2j. Now jb(r1; r2; jx1�x2j)j . 2j follows from

(14) jb�(s)j . s(1�d)=2
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(recall that the rj are bounded away from 0 and that jb�j is bounded). Thus
the portion of the Case I integral where jx1 � x2j � 2�j is controlled by

2j
Z Z

fÆ.2�jg
d�(x1; r1) d�(x2; r2) . 2�j(��1);

where the last inequality follows (as in the proof of Theorem 3H) from the

capacitarian assumption on �. If jx1�x2j & 2�j then (14) and Æ � jx1�x2j
imply that the relevant integral is controlled by

2j

(2jjx1 � x2j)(d�1)=2
.

1

Æ(d�1)=22j(d�3)=2
.

1

Æ�2�j[(d�1)=2��]
1

2j(d�3)=2
=

1

Æ�2j(�1+�)
:

Here the second inequality follows from Æ & 2�j and � � (d � 1)=2. Thus

the Case I integral is controlled by 2�j(��1).

Case II:
R R

fÆ<4�2�jg
b(r1; r2; jx1 � x2j) d�(x1; r1) d�(x2; r2)

Since Z Z
fÆ<4�2�jg

d�(x1; r1) d�(x2; r2) . 2�j�

and jb(r1; r2; jx1 � x2j)j . 2j, the desired bound of 2�j(1��) is immediate.

Case III:
R R

f4�2�j�Æ�2�g
b(r1; r2; jx1 � x2j) d�(x1; r1) d�(x2; r2)

Recall that

b(r1; r2; jx1 � x2j) =

Z b

a

b�(r1r) b�(r2r) b�(jx1 � x2jr)�(2
�jr)rd�1dr

where a & 2j. Utilizing the asymptotic expansion of b� and recalling that

r1 and r2 are bounded away from 0, the principal term in this integral is

controlled by the largest of

(15)
���
Z b

a

ei(�r1�r2�jx1�x2j)r

(rjx1 � x2j)(d�1)=2
dr
���:

After rescaling and then multiplying � by a cuto� function of x, we may

assume that r1; r2 � 1=2 and jx1 � x2j � 1=2. One can check that then

� = jjr1 � r2j � jx1 � x2jj minimizes j � r1 � r2 � jx1 � x2jj. An integration

by parts bounds (15) by some multiple of

jx1 � x2j
�(d�1)=2

����
Z b

a

Z r

a

ei�sds r�(d+1)=2dr
���+ 2�j(d�1)=2

���
Z b

a

ei�sds
���
�
:
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Since a � 2j, it follows that

j(15)j .
2�j(d�1)=2

� � jx1 � x2j(d�1)=2
.

2�j(d�1)=2

�(d+1)=2
.

2�j(d�1)=2

�� 2�j[(d+1)=2��]
;

where the last inequality follows from � & 2�j and � � (d�1)=2 < (d+1)=2.

Thus Z Z
f4�2�j�Æ�2�g

j(15)j d�(x1; r1) d�(x2; r2) . 2�j(1��)

by the capacitarian assumption on �. The nonprincipal terms are controlled

similarly. For example, the term coming from the principal terms of b�(rir)
and the second order term from b�(jx1 � x2jr) is controlled by

Z b

1

dr

(rjx1 � x2j)(d+1)=2
.

1

�(d+1)=22j(d�1)=2

and so may be treated as was j(15)j. This completes the proof of Theorem

3S.

The changes to the proof of Theorem 3S which are required in order to

prove Theorem 4S are analogous to the changes in the proof of Theorem 3H
which yield the proof of Theorem 4H .
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