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Abstract

We define 2-gerbes bound by complexes of braided group-like stacks. We prove a classification
result in terms of hypercohomology groups with values in abelian crossed squares and cones of
morphisms of complexes of length 3. We give an application to the geometric construction of
certain elements in Hermitian Deligne cohomology groups.
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Introduction

The aim of the present work is to study in some detail gerbes and, mostly, 2-gerbes bound by
complexes of groups and braided gr-stacks, respectively, and the cohomology groups determined by
their equivalence classes.

Background and motivations

The idea of a gerbe bound by a complex is of course not new: it dates back to Debremaeker ([Deb77])
in the form of a gerbe G on a site S bound by a crossed module δ : A→ B. Milne ([Mil03]) adopts the
same idea in the special case of an abelian crossed module. It is observed in loc. cit. that the crossed
module in fact reduces to a homomorphism of sheaves of abelian groups, and the whole structure
simplifies to that of a gerbe G bound by the sheafA and equipped with a functor G → TORS(B) which
is a δ-morphism, i.e. compatible with the homomorphism δ (see below for the precise definition).

Our starting point is the observation that this structure captures the differential geometric notion
of “connective structure” on an abelian gerbe, introduced by Brylinski and McLaughlin1 ([BM94,
BM96, Bry99], see also[Bry93] for a version in the context of smooth manifolds). Briefly, by suitably
generalizing the familiar concept of connection on an invertible sheaf on an analytic or algebraic
manifold X , they defined a connective structure on an abelian gerbe bound by O"

X as a functor
x Co(x) associating to each local object x over an open U a Ω1

U -torsor, subject to a certain list of
properties reviewed in sect. 2.2. It turns out, and we show it explicitly in sect. 2.2, that this is exactly
the same thing as prescribing a structure of gerbe bound by the complex

O"
X

dlog−−→ Ω1
X .

More recently, we have similarly introduced the concept of hermitian structure on an abelian gerbe
bound by O"

X , by modeling it on the corresponding familiar notion of invertible sheaf equipped with
a fiber hermitian metric ([Ald05a]). In simplified terms, this structure is also of the type introduced

1In [Bry93] the concept is ascribed to Deligne.
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above, namely we find that in this case it can be conveniently encoded in the structure of gerbe bound
by the complex

O"
X

log|·|−−−→ E 0
X ,

where the latter denotes the sheaf of smooth real functions on X .
It is reasonable to expect that the list can be made longer with other interesting examples. However,

we want point out that the real interest of these construction lies in a different direction (or directions).
On one hand, there is the obvious interest of being able to generalize to the case of gerbes several
structures of differential geometric interest. On the other, there is the fact that typically equivalence
classes (suitably defined) of these structures turn out to be classified by interesting cohomology
theories, and as a feedback we can get a geometric characterization of the elements of these groups.
For instance, the cohomology groups relevant in the above examples are the Deligne cohomology
group H3

D(X,Z(2)), and the hermitian Deligne cohomology group Ĥ3
D(X, 1).

In fact, Brylinski and McLaughlin have shown that their constructions provide the adequate context
for notable extensions of the tame symbol map in algebraic K-theory, where gerbes are useful in
order to obtain a geometric picture for some regulator maps to Deligne-Beı̆linson cohomology (cf.
[Bry94]). More importantly, they extend their framework in two directions: (1) they consider the
case of 2-gerbes as well, and (2) they define appropriate notions of curvature both for gerbes and
2-gerbes bound by O"

X . Passing from gerbes to 2-gerbes corresponds to an increase in the degree of
the involved cohomology groups, whereas introducing more levels of differential geometric structures
corresponds to cohomology groups of higher weights. The geometric and the cohomological aspects
are tied together very neatly in the following sense: the Deligne cohomology groups Hp

D(X,A(k)),
where A is a subring of R, can be regarded as somewhat pathological in the range p > 2k, where they
cannot receive regulator maps from, say, absolute cohomology.2 It is reassuring that the gerbes and
2-gerbes corresponding to the tame symbol maps and various related cup products turn out to naturally
have a connective structure (and even curvatures), so that their classifying Deligne cohomology groups
lie in the “safe” range p ≤ 2k.3

A similar story was developed by the author in the case of hermitian Deligne cohomology
([Ald05a]), motivated by the existence of certain natural hermitian structures on tame symbols. As
mentioned before, the cohomological counterpart is given by hermitian Deligne cohomology, and
there is a parallel for 2-gerbes as well. Namely, we have put forward a definition of hermitian structure
for 2-gerbes (to be reviewed and revised below) bound by O"

X and found that the corresponding
equivalence classes are in 1–1 correspondence with the elements of the group Ĥ4

D(X, 1). In particular,
the gerbes and 2-gerbes corresponding to the tame symbols studied by Brylinski and McLaughlin were
found to naturally support a hermitian structure as well. Moreover, it was found that these structures,
namely the analytic (or algebraic) connective structure of Brylinski and McLaughlin and the hermitian
structure we introduced are compatible in the following sense: One of the byproducts of our work is
that there is a natural notion of connective structure canonically associated with the hermitian structure.
It was found that this new connective structure agrees with the one of Brylinski-McLaughlin once they
are mapped into an appropriate complex of smooth forms. (Part of this theory will be recalled and
further clarified in the last part of the present paper.)

Not quite satisfying, as the reader will have no doubt noticed, is the fact that weights and degrees
are precisely in what seems to be the bad range. However, a more interesting group Ĥ4

D(X, 2)
does appear in the following way: in [Ald05a] we introduced a complex, denoted Γ(2)• (defined in

2The absolute cohomology groups in that range are zero.
3There is of course an interest in knowing that, say, H3

D(X,Z(1)) classifies abelian gerbes bound by O"
X , however the

nice connection with regulators, etc. is lost.
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section 7.1), and we (informally) argued that the hypercohomology group H4(X,Γ(2)•) classifies 2-
gerbes equipped with both a connective structure à la Brylinski-McLaughlin and a hermitian structure
in our sense which are compatible as explained to above. In loc. cit. we found there is a surjection
Ĥ4

D(X, 2) → H4(X,Γ(2)•), so classes of 2-gerbes can indeed be lifted to a more desirable group,
but a truly geometric characterization was not provided. Let us remark that the interest of the group
Ĥ4

D(X, 2) lies in the fact that it is the receiving target of the cup product map

P̂icX ⊗ P̂icX −→ Ĥ4
D(X, 2) ,

where P̂icX ' Ĥ2
D(X, 1) is the group of isomorphism classes of metrized invertible sheaves. When

X is a complete curve, this map gives a cohomological interpretation of Deligne’s determinant of
cohomology construction ([Del87]), which has been analyzed in various guises in [Bry99, Ald04],
and [Ald05b] in the singular case.

The desire to remedy the above shortcoming and enhance the results of [Ald05a], as well as
the desire to cast the results in the form expounded at the beginning of this introduction—suitably
extended to include 2-gerbes—constitute our motivation for the present work. The framework we
have found, that of 2-gerbes bound by a complex of braided gr-stacks, is quite more general than what
would be minimally required for just solving the mentioned problems, and lends itself to possible
generalizations to the non-abelian case, which we plan to address in part in a subsequent publication.
We now proceed to describe the present results in the remaining part of this introduction.

Statement of the results

For the purpose of this introduction let us informally assume that X is a smooth base scheme, or an
analytic manifold, and that C/X is an appropriate category of spaces “over” X with a Grothendieck
topology, making it into a site.

To keep track of cohomology degrees, recall that Deligne cohomology and its variants have a
built-in degree index shift. The convention we use in this introduction and the rest of the paper is to
revert to standard cohomology degrees whenever we are not specifically dealing with one of these
specific cohomology theories.

Our first result is a straightforward generalization of the concept of abelian gerbe bound by a
homomorphism of sheaves of abelian groups to the case where we have a complex of abelian groups
of the form:

A
δ−→ B

σ−→ C .

We find that an abelian gerbe G bound by the above complex is conveniently defined as an A-gerbe G
equipped with a functor

G −→ TORS(B,C) ,

where the right hand side denotes the gerbe of B-torsors with a section of the associated C-torsor
obtained by extension of the structure group from B to C. We then obtain through a simple Čech
cohomology argument that equivalence classes of such gerbes are classified by the hypercohomology
group

H2(X,A→ B → C) .

We show at the end of section 3 that this is the appropriate general cadre for the notion of curvature:
indeed we prove that Brylinski and McLaughlin’s original definition of a gerbe with connective
structure and “curving” can be cast as a gerbe bound by a complex of length 3, for an appropriate
choice of the groups involved.
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The extension of the idea of gerbe bound by a complex to the case of 2-gerbes is more involved,
but quite interesting.

We want to consider abelian 2-gerbes, where of course the word “abelian” must be properly
qualified. We adopt the point of view of loc. cit. of calling “abelian” a 2-gerbe bound by a braided
gr-stack in the following sense: It is known that the fibered category of automorphisms of an object x
over U → X in a 2-gerbe is a gr-stack. Let A be a gr-stack over X . A 2-A -gerbe G is a 2-gerbe
with the property that each local automorphism gr-stack is equivalent to (the restriction of) A . As we
know from [Bre94a], if this equivalence is natural in x, then A will be forced to be braided, i.e. its
group law has a non-strict commutativity property. A special case is when A = TORS(A), that is, the
gr-stack is the stack of torsors (in fact, a gerbe) over an abelian group A. Then we speak of a 2-gerbe
bound by A, or 2-A-gerbe.

Note that it follows from [Bre92, Bre94a] that for an abelian 2-A -gerbe G the stack of morphisms
AutU (x, y) of two objects over U → X has the structure of A |U -torsor, and that G determines a
1-cocycle, hence a cohomology set, with values in TORS(A ). Note that for any gr-stack A this is a
neutral 2-gerbe, see [Bre90]. By suitably decomposing the torsors comprising this cocycle, we obtain
a degree 2 cohomology set with values in A itself. This leads to the familiar degree 3 cohomology
group with values in A in the case A = TORS(A). We will find generalizations by studying the
analogous constructions for complexes of gr-stacks, defined below.

Thus, given an additive functor λ : A → B of braided gr-stacks we define a 2-gerbe bound by
this “complex” as a pair (G, J), where G is a 2-A -gerbe and J is a cartesian 2-functor

J : G −→ TORS(B)

which is a λ-morphism, see section 5.3 for the precise definition. Once the notion of morphism and then
of equivalence of such pairs are defined, we find that equivalence classes are in 1–1 correspondence
with the elements of a cohomology set which we could provisionally write as:

H1(TORS(A )→ TORS(B)) .

Once again, by suitably decomposing the torsors comprising the 1-cocycle with values in the complex
λ∗ : TORS(A )→ TORS(B) determined by G, we obtain a degree 2 cohomology set with values in
the complex λ : A → B itself.

In order to properly handle the hermitian Deligne cohomology group we are ultimately interested
in, we can further generalize this notion to that of a 2-gerbe bound by a complex of gr-stacks, that is a
diagram of additive functors:

(+) A
λ−→ B

µ−→ C

where the composition µ ◦ λ is required to be isomorphic to the null functor sending A to the unit
object of C . Thus a 2-gerbe G is bound by the above complex if there is a cartesian 2-functor

J̃ : G −→ TORS(B,C ) ,

where the right hand side denotes the 2-gerbe of B-torsors which become equivalent to the trivial
C -torsor. Then we show that equivalence classes of such pairs (G, J̃) are classified by a cohomology
set:

H1(TORS(A )→ TORS(B)→ TORS(C )) ,

from which we can obtain a degree two cohomology set with coefficients in the gr-stack complex
above. This is done in sections 5 and 6, where the relevant theorems are stated and proven in full.
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Along the way we get interesting byproducts shedding a new light on the notion of gerbe bound by
a complex. In section 5.4 we prove that for a strictly abelian (and not just braided) gr-stack B, that is,
one that arises from a homomorphism of sheaves of abelian groups, we have the equivalence

GERBES(B,H) ∼−→ TORS(B)

where B = TORS(B,H). Then later in section 6.1, we observe that TORS(B,C ) introduced above
is equivalent, when C = TORS(C,K) with the 2-gerbe of gerbes bound by B → H which become
neutral as gerbes bound by C → K.

These partial results are part of a general process whereby we make contact with ordinary
hypercohomology by assuming all all the involved gr-stacks are strictly abelian. Concretely, if
A = TORS(A,G), B = TORS(B,H), and C = TORS(C,K) the complex of gr-stacks we have
been considering reduces to the commutative diagram of (sheaves of) abelian groups:

(*)
A

δ
��

f
// B

σ

��

g
// C

τ

��

G u
// H v

// K

The theorem we obtain in section 6.4 is that equivalence classes of 2-gerbes bound by the complex (+)
are classified by the standard hypercohomology group

H3(X, (cone of (*))[−1]) .

As we will see in section 7, this is exactly the kind of cohomology group we need in order to give
a geometric construction of the elements of the hermitian Deligne cohomology group Ĥ4

D(X, 2). In
particular, in section 7.3, we give a reasonably detailed construction of a 2-gerbe, denoted

(
L ,M

]
ĥ.h.

,
whose class in Ĥ4

D(X, 2) is the cup product [L , ρ] ∪ [M , σ] of [L , ρ], [M , σ] ∈ P̂icX .
In section 5, especially in sections 5.4 and 5.5 we prove intermediate results for the case where

there is no C , so the diagram (*) above reduces to the left square.
In all cases, when moving from cohomology sets with values in complexes of gerbes of torsors

to (hyper)cohomology groups with values in cone of complexes, we compute explicit cocycles with
respect to hypercovers, rather than ordinary covers. We find that even in the case of groups the cocycles
so obtained present additional interesting terms.

Organization and contents of the paper

Overall we have adopted a mix of bottom-up and top-down approaches. We have refrained from
starting from the most general statement and then working our way down. Instead we have adopted a
sequence of successive generalizations.

Our treatment of cohomology deserves some explanations. At the beginning, where several proofs
are standard, we have adopted a Čech point of view. In the latter part of the paper, where we deal
with torsors over gr-stacks, we have found worthwhile not to assume that decompositions with respect
to Čech covers are sufficient. So we have actually computed cocycles using hypercovers, adopting
the same point of view and formalism of [Bre94a]. Since we have dealt with hypercovers in a rather
direct way, formulas acquire a substantial decoration of indices, which can be quite daunting. The
usual advice is to ignore the hypercover indices on first parsing and reduce everything to the Čech
formalism and replace (hyper)cohomology with its Čech counterpart.
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A note about sites: When dealing with categorical matters, it comes at no additional cost to
formulate everything, including cohomology sets, for sites. Thus usually we will assume that gerbes
and 2-gerbes are fibered over a site S. This site will in fact be a category of objects over an object
X , so that we will often use the notation C/X , assuming the category C has been equipped with
an appropriate Grothendieck topology. By thinking of X as the terminal object in C/X , we can
conveniently denote cohomology sets as H•(X,−) or H•(X,−), depending on whether we wish to
emphasize the “hyper” aspect.

This paper is organized as follows. In section 1 we recall a few background notions, collect some
notation, and we provide a quick overview of various Deligne-type cohomology theories needed in the
rest of the paper.

We introduce the concept of gerbe bound by a length 2 complex in section 2, where we also review
the pivotal example of connective structure in some detail. We then proceed in section 3 to define and
classify gerbes bound by a length 3 complex. Section 4 is dedicated to a quick review of 2-gerbes.
Unfortunately we cannot make this paper completely self-contained without writing another book on
2-gerbes, therefore referring to the literature, especially [Bre94a], remains indispensable. Sections 5
and 6 then contain our main results, where we classify 2-gerbes bound by complexes of gr-stacks.
Finally, in section 7, we return to the realm complex algebraic manifolds, and give some applications
to hermitian Deligne cohomology.
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1 Background notions

1.1 Assumptions and notations

In the following, X will be a smooth scheme or a complex analytic manifold. In the algebraic case,
some results can be stated for X smooth over a base scheme S. Actually, in most of the applications
we will be concerned with the case when X is an algebraic manifold,4 hence S = SpecC. In this case
the complex analytic manifold above will be Xan , the set of complex points of X with the analytic
topology, but usually we will not explicitly mark this in the notation.

Gerbes “over X” are stacks in groupoids and, similarly, 2-gerbes are 2-categories fibered in (lax)
2-groupoids satisfying certain conditions to be explained below, over an appropriate site of “spaces”
over X . As explained at the end of the introduction, whenever dealing with general categorical
matters, the specific choice of this site will be somewhat immaterial. In order to fix ideas, and to
revert in the end to specific cohomology theories, we will assume that we are given an appropriate
category with fiber products C/X of spaces over X equipped with a Grothendieck topology. The
main requirement will be that the various sheaves such as OX , Ω•

X , etc. as defined with respect to
C/X restrict to their usual counterparts under U → X , whenever U is open in the ordinary—for the
Zariski or Analytic topology—sense. More specifically, following ref. [Bry93], if X is a scheme we
may as well consider the small étale site Xét , namely C/X = Et/X , where we denote by Et the
class of étale maps over X , and covers are jointly surjective families of étale maps. It is useful to
allow the same type of construction when S = SpecC, and we want to consider Xan . Namely we
obtain a corresponding “analytic” site by mapping U → X from Xét to Uan → Xan . According to

4By algebraic manifold we mean a smooth, separated scheme of finite type over C
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ref. [Mil80], this determines the same topology as the standard analytic one. In the latter case, that
is if X is a complex manifold, C/X will be the small Top site. Similarly, when X is a scheme to be
considered with its ordinary topology, we set C/X = Xzar , the small Zariski site of X whose covers
are injective maps V → U with U open in X . Note that in general we will not be considering the
corresponding “big” sites. However, the general categorical constructions which form the main body
of this paper are going to work in that context too. 5

In general we will refer to the topology on C/X simply as a topology on X , and accordingly we
will simply speak of “open” sets for members V → U of a cover of U → X . As it is well known,
fibered products take the place of intersections, and we will use the standard notation of denoting
the various multiple “intersections” (i.e. fibered products) relative to a covering {Ui → U}i∈I as:
Uij = Ui ×U Uj , Uijk = Ui ×U Uj ×U Uk, etc. Also in the relative case of X over a base S, C/X
will be obtained by restriction from C/S. However, our notation will not always explicitly reflect this.

1.1.1 Often used notations.

For a subring A of R and an integer p, A(p) = (2π
√
−1)pA is the Tate twist of A. We identify

C/Z(p) ' C" via the exponential map z 7→ exp(z/(2π
√
−1)p−1), and C ' R(p)⊕R(p− 1), so

C/R(p) ' R(p− 1). The projection πp : C→ R(p) is given by πp(z) = 1
2(z+(−1)pz̄), for z ∈ C,

and similarly for any other complex quantity.
If E is a set (or group, ring, module...), then EX denotes the corresponding constant sheaf of sets

(or groups, rings, modules...).
If X is a scheme or complex manifold, Ω•

X denotes the corresponding (algebraic or analytic)
de Rham complex. We set OX ≡ Ω0

X as usual. E •
X denotes the de Rham complex of sheaves

of R-valued smooth forms on the underlying smooth manifold. Furthermore, A •
X = E •

X ⊗R C,
and is E •

X(p) the twist E •
X ⊗R R(p). Also, A p,q

X will denote the sheaf of smooth (p, q)-forms, and
A n
X =

⊕
p+q=n A p,q

X , where the differential decomposes in the standard fashion, d= ∂+∂̄, according
to types. We also introduce the imaginary operator dc = ∂ − ∂̄ 6 and we have the rules

dπp(ω) = πp(dω) , dcπp(ω) = πp+1(dcω)

for any complex form ω. Note that we have 2∂∂̄ = dcd.
The standard Hodge filtrations on Ω•

X and A •
X are as follows: F pΩ•

X ≡ σpΩ•
X is the sharp

truncation in degree p:

0 −→ · · · −→ 0 −→ Ωp
X −→ · · · −→ ΩdimX

X ,

whereas F pA •
X is the total complex of:

⊕
r≥p A r,•−r

X .

1.2 Various Deligne complexes and cohomologies

Standard references on Deligne cohomology are: [Beı̆84, EV88].
For a subring A ⊂ R and an integer p, the Deligne cohomology groups of weight p of X with

values in A are the hypercohomology groups:

(1.2.1) H•
D(X,A(p)) def= H •(X,A(p)•D,X) ,

5To be more specific one could consider sites such as XÉt , the big étale site of X , if X is a scheme, namely C/X =
Sch/X equipped with the étale topology defined by the class Et of étale maps over X; correspondingly, C/X = Cmplx/X ,
with the topology given by standard open covers, or by analytification of étale covers as described above.

6We omit the customary factor 1/(4π
√
−1)
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where A(p)•D,X is the complex

A(p)•D,X = Cone
(
A(p)X ⊕ F pΩ•

X −→ Ω•
X

)
[−1](1.2.2)

'−→
(
A(j)X

ı−→ OX
d−→ Ω1

X
d−→ · · · d−→ Ωp−1

X

)
.(1.2.3)

where the map in the cone is the difference of the two inclusions and '−→ denotes a quasi-isomorphism.
The complex in (1.2.3) is the one we will normally use in what follows.

When A = R, Deligne cohomology groups can be computed using other complexes quasi-
isomorphic to (1.2.2) or (1.2.3), in particular:

(1.2.4) R̃(p)•D = Cone
(
F pA •

X → E •
X(p− 1)

)
[−1] .

(See the references quoted above for a proof.)
The Hermitian variant of Deligne cohomology is obtained by considering the hypercohomology

groups

(1.2.5) Ĥ•
D(X, p) def= H •(X,C(p)•X)

of the complex

(1.2.6) C(p)•X = Cone
(
Z(p)X

⊕
(F pA •

X ∩ σ2pE •
X(p)) −→ E •

X(p)
)
[−1] ,

introduced by Brylinski in [Bry99]. We proved in [Ald04] that it is quasi-isomorphic to the complex:

(1.2.7) Dh.h.(p)•X = Cone
(
Z(p)•D ⊕ (F pA •

X ∩ σ2pE •
X(p)) −→ R̃(p)•D

)
[−1] .

The interest of (1.2.7) lies in the fact that the second hypercohomology group of Dh.h.(1)•X provides a
characterization of the canonical connection associated to a hermitian line bundle ([Ald04, Ald05a]).
We will also need a leaner version of the complex (1.2.7) introduced in [Ald05b], namely:

(1.2.8) Dh.h.(p)•X = Cone
(
Z(p)•D

ρp−→ σ<2pD•(A •
X , p)

)
[−1] .

Here D•(A •
X , p) is the Deligne Algebra over the complex A •

X , discussed in full in [BG97, BGKK,
Gon04], and σ<2p denotes its sharp truncation in degrees above 2p, so that:

(1.2.9) σ<2pDn(A •
X , p) =

0 n = 0 ,
E n−1
X (p− 1)

⋂ ⊕
p′+q′=n−1
p′<p,q′<p

A p′,q′

X n ≤ 2p− 1 .

The differential is −π ◦ d, where π is the projection that simply chops off the degrees falling outside
the scope of (1.2.9). Using (1.2.3), the map ρp is:

ρnp =

{
0 n = 0 ,
(−1)nπp−1 1 ≤ n ≤ p .

1.2.10 Example. In the following we will be concerned almost exclusively with the complexes of
weight p = 1 and p = 2. Explicitly, we have:

(1.2.11) Dh.h.(1)•X =
(
Z(1)X

ı−→ OX
π0−→ E 0

X

)
,

9



whereas the complex Dh.h.(2)•X is the cone (shifted by 1) of the map:

(1.2.12)

Z(2)X
ı // OX

d //

−π1

��

Ω1
X

π1

��

E 0
X(1)

− d
// E 1
X(1)

−π◦d
// E 2
X(1) ∩A 1,1

X

1.2.13 Remark. Using the complex (1.2.11), one shows that

Ĥ2
D(X, 1) ' P̂icX ,

the group of isomorphism classes of line bundles with hermitian metric. This follows from an easy
Čech argument, as in [Esn88]. Thus the same type of argument, using the complex Dh.h.(1)•X , implies
the uniqueness of the canonical connection, see [Ald05a].

We conclude this review section by observing that all complexes introduced so far possess a
product structure (or several mutually homotopic such structures), additive with respect to the weights,
so that we have graded commutative cup products

Hk
D(X,A(p))⊗Hl

D(X,A(q)) ∪−→ Hk+l
D (X,A(p+ q))

and
Ĥk

D(X, p)⊗ Ĥl
D(X, q) ∪−→ Ĥk+l

D (X, p+ q) .

The reader should refer to the literature cited in this section for more details and explicit formulas for
the products.

2 Gerbes with abelian band

In the following we recall a few definitions about gerbes. The canonical reference is [Gir71], whereas
a detailed exposition adapted to spaces is [Bre94a]. We will need the abelian part of the whole theory,
for which a readable account is to be found in [Bry93].

Let C be a category with finite fibered products, equipped with a Grothendieck topology. A gerbe
G over C is a stack in groupoids p : G → C such that:

1. G is locally non-empty, namely there exists a cover U → X such that Ob(GU ) is non-empty;

2. G is locally connected, that is, for each pair of objects of G , there is a cover ϕ : V → U such that
their inverse images are isomorphic. In other words if x, y ∈ ObGU , then HomU (ϕ∗x, ϕ∗y) is
non-empty.

For an object x ∈ ObGU , the sheaf Aut(x) is a sheaf of groups on C/U . (Recall that over ϕ : V → U ,
we have Aut(x)(V ) = AutV (ϕ∗x).) Let now A be a sheaf of groups on C: We say that G is an
A-gerbe if for each object x with ϕ(x) = U as above there is a natural isomorphism

ax : Aut(x) ∼−→ A|U .

The naturality in x will force the group A to be abelian, and in the following we will restrict our
attention to this case. The sheaf A will be referred to as the band of the gerbe G . We also say that
G is bound by A. (In the general—non-abelian—case, the band L(A) will have a more complicated

10



definition, as the various sheaves A|U are glued along U ×X U only up to inner automorphisms. In
the abelian case this is immaterial and we can abuse the language and call A the band of G .)

A morphism λ : G → H is a cartesian functor between the underlying fibered categories, and
it is an equivalence if it is an equivalence of categories. Moreover, if G is an A-gerbe, and H is
a B-gerbe, with a group homomorphism f : A → B, then the morphism λ will have to satisfy the
obvious commutative diagrams. Such a morphism is called an f -morphism.

An f -morphism for which f is an isomorphism is automatically an equivalence. So is, in particular,
a morphism between two A-gerbes G and G ′. So if A is abelian, it follows from [Gir71] that A classes
of equivalences of A-gerbes are classified by H2(X,A), the standard second cohomology group of X
in the derived functor sense. See also, e.g. [Bry93], for a proof in the Čech setting.

2.1 Gerbes bound by a complex

We are going to use the notion of gerbe bound by a length two complex A→ B of sheaves of abelian
groups over C/X , as in [Mil03]. Let us review the formal definition:

2.1.1 Definition. Let A and B be two sheaves of abelian groups on C/X , and δ ∈ Hom(A,B), so

that A δ−→ B is a complex of length two. A gerbe G bound by A → B is an A-gerbe over C/X
equipped with a δ-morphism of gerbes

µ : G → TORS(B) .

(Notice that TORS(B) is a B-gerbe, so the notion of δ-morphism makes sense.)
More generally, one would have the notion of a gerbe G bound by a sheaf of crossed modules,

as per Debremaeker’s original definition in ref. [Deb77]. If (A,B, δ) be a crossed module, where
δ : A → B is a group homomorphism, compatible with the action of B over A, a gerbe bound by
it is an A-gerbe G with a δ-morphism λ above, together with other data relative to the stacks of
automorphisms of local objects, see ref. [Deb77]. When both A and B are abelian, the crossed module
becomes simply a complex, and everything reduces to the data in the previous definition.

As usual, a morphism of complexes (f, g) : (A,B, δ)→ (A′, B′, δ′) is a commutative diagram of
group homomorphisms:

A
δ //

f
��

B

g

��

A′ δ′ // B′

If G and G ′ are bound by (A,B) and (A′, B′), respectively, then we have a corresponding notion of
(f, g)-morphism as follows:

2.1.2 Definition. An (f, g)-morphism from G to G ′ consists of:

1. an f -morphism λ : G → G ′;

2. a natural isomorphism of functors

α : g∗ ◦ µ =⇒ µ′ ◦ λ

from G to TORS(B′).
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In the definition g∗ is the g-morphism TORS(A)→ TORS(B) induced by g in the obvious way.
For completeness, let us also mention that we also have the notion of morphism of morphisms,

see [Mil03]. Namely, let (λ1, α1) and (λ2, α2) be two morphisms (G , µ) → (G ′, µ′). A morphism
m : (λ1, α1)→ (λ2, α2) is a natural transformation m : λ1 ⇒ λ2 such that the following is verified:

(µ ∗m) ◦ α1 = α2 .

With these notions the gerbes bound by a complex of length 2 form a 2-category. In particular, when
A′ = A and B = B′ we denote this 2-category by GERBES(A,B).

2.1.1 Classification of (A,B)-gerbes.

Once again, consider the special case A′ = A and B′ = B, with f and g being the respective
identity maps. Then we speak of an (A,B)-morphism, and in particular of a (A,B)-equivalence
if the underlying functor λ : G → G ′ is an equivalence in the usual sense. (A,B)-equivalence is
an equivalence relation, and the set of equivalence classes is H2(X,A → B) . While this can be
defined in general (see ref. [Deb77]) in the abelian case it turns out to coincide with the second
hypercohomology group with values in the complex A→ B in the standard sense (cf. [Mil03]).

2.1.2 The canonical (f, g)-morphism.

Given a commutative diagram of group homomorphisms as above, there is a canonical (f, g)-morphism

(f, g)∗ : GERBES(A,B) −→ GERBES(A′, B′) ,

given by extension of the band. Namely, if G is an A-gerbe, there is a well-defined procedure giving
an A′-gerbe which we may call f∗(G ). Since locally GU ' TORS(A|U ), then f∗(G )U is simply given
by standard extension of the structure group. Now, if (G , µ) is an (A,B)-gerbe, then (G , g∗ ◦ µ) is
an (A,B′)-gerbe and locally the functor g∗ ◦ µ will be isomorphic to g∗ ◦ δ∗ (see in particular the
proof of Thm. 5.4.3 below for more details7). The latter will be replaced, by commutativity induced
from the commutative square of group homomorphisms, by δ′∗ ◦ f∗, which glues back to a functor
µ′ : f∗(G )→ TORS(B′).

This construction is universal in the sense that an (f, g)-morphism can be written by the composi-
tion of (f, g)∗ followed by a unique (up to equivalence) (A′, B′)-morphism.

An alternative characterization of (A,B)-gerbes will appear in sect. 5.4, when we discuss 2-gerbes
bound by complexes.

2.2 Examples

The following are few examples of Gerbes bound by complexes of length 2 which are relevant from
the point of view of extending differential geometric structures to gerbes.

We will first review the definition of connection—or connective structure—on a O"
X -gerbe accord-

ing to Brylinski and McLaughlin (see, e.g. [BM94, BM96], or [Bry93] for the smooth case).

2.2.1 Definition. Let G be a O"
X -gerbe. A connective structure Co on G is the datum of a Ω1

U -torsor
Co(x) for any object x ∈ GU , where U ⊂ X , subject to the following conditions.

7This construction will not be used until sect. 6.1 and it is only dependent on the arguments of sect. 5.4, in particular the
proof of Thm.. 5.4.3.
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1. For every isomorphism f : x→ y in GU there is an isomorphism

f∗ ≡ Co(f) : Co(x) −→ Co(y)

of Ω1
U -torsors. In particular, if f ∈ Aut(x) ' O"

X |U , we require:

(2.2.2)
f∗ : Co(x) −→ Co(x)

∇ 7−→ ∇+ dlog f

where ∇ is a section of Co(x).

2. If g : y → z is another morphism in GU , then (gf)∗ ' g∗f∗.

3. The correspondence must be compatible with the restriction functors and natural transformations.
Namely, if ı∗ : GU → GV is the restriction functor corresponding to the morphism ı : V → U
in C/X , then there is a natural isomorphism αı : ı∗ ◦ Co ⇒ Co ◦ ı∗ such that the diagram:

ı∗ Co(x)

ı∗(f∗)

��

αı(x)
// Co(ı∗x)

(ı∗f)∗

��

ı∗ Co(y)
αı(y)

// Co(ı∗y)

commutes. Moreover given  : W → V and the corresponding α, there must be the obvious
pentagonal compatibility diagram with the natural transformations ϕı, : ∗ı∗ → (ı)∗ arising
from the structure of fibered category over X . That is, given the object x, we have the
commutative diagram:

CoW (∗ı∗x)

ϕı,(x)∗
��

α
// ∗ CoV (ı∗x)

∗αı // ∗ı∗ CoU (x)

ϕı,(CoU (x))

��

CoW ((ı)∗x)
αı

// (ı)∗ CoU (x)

mapping to a corresponding one with y.

The following is a reformulation of the conditions in Definition 2.2.1:

2.2.3 Proposition. A connective structure on the O"
X -gerbe G amounts to the datum of a structure of

gerbe bound by the complex

Γ : O"
X

dlog−−→ Ω1
X .

Proof. That the various conditions in Definition 2.2.1 define a cartesian functor

Co : G −→ TORS(Ω1
X)

is just a matter of unraveling the definition of cartesian functor. Moreover, eq. (2.2.2) implies that Co
is in fact a dlog-morphism.
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According to the general results, O"
X -gerbes with connective structure are classified by the hyper-

cohomology group

H2(X,O"
X

dlog−−→ Ω1
X) .

Via the quasi-isomorphisms:(
O"
X

dlog−−→ Ω1
X

)
[−1] '−→

(
Z(2) −→ OX

d−→ Ω1
X

) '−→ Z(2)•D ,

where Z(k)•D is the weight k Deligne complex, we have that the classifying group is isomorphic to the
Deligne cohomology group

H3
D(X,Z(2)) .

2.3 Further examples

Several variations on the theme established in Definition 2.2.1 and Proposition 2.2.3 have been
considered, typically by providing the necessary modifications in Definition 2.2.1. Following the idea
embodied in Proposition 2.2.3 they can be restated in terms of gerbes bound by a complex.

In ref. [Ald05a] we have introduced a notion of hermitian structure and a variant of connective
structure valued in the Hodge filtration. We consider these examples next.

2.3.1 Hermitian Structures.

Consider the complex:

O"
X

|·|2−−→ E +
X

where E +
X is the sheaf of smooth functions valued in R>0, the connected component of 1 in R". A

O"
X -gerbe G is said to have a hermitian structure (cf. ref. [Ald05a, Definition 5.2.1]) if it has the

structure of a gerbe bound by (O"
X ,E

+
X ).

Classes of equivalences of O"
X -gerbes equipped with hermitian structures are therefore classified

by the group

H2(X,O"
X

|·|2−−→ E +
X ) ' Ĥ3

D(X, 1) .

Recall that the latter is the third Hermitian Deligne cohomology group of weight 1, and the isomorphism
is induced by the quasi-isomorphism

(
Z(1)→ OX

Re−→ E 0
X

) '−→
(
O"
X

|·|2−−→ E +
X

)
[−1] ,

where the first is the corresponding Hermitian Deligne complex.

2.3.2 F 1-connections.

A slight modification of the notion of connective structure recalled in sect. 2.2 is to consider the length
2 complex ([Ald05a]):

O"
X

∂ log−−−→ F 1A 1
X .

Note that F 1A 1
X = A 1,0

X , so this is called a “type (1, 0) connective structure” in [Ald05a].
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2.3.3 Compatibility.

We have the obvious map ∂ log : E +
X → F 1A 1

X and the morphism of complexes

O"
X

|·|2
// E +
X

∂ log

��

O"
X

∂ log
// F 1A 1

X

The notion of compatibility between a hermitian and a type (1, 0) connective structures on G amounts
to an (id, ∂ log)-morphism. In fact, it is the canonical one in the sense of sect. 2.1.2. The equivalence
with [Ald05a, 5.3.2], is merely a question of unraveling Definition 2.1.2 for the case at hand. The
classifying group was identified in [Ald05a] with Ĥ3

D(X, 1), computed using the complex Dh.h.(1)•X .

2.3.1 Remark. It was found that the notion of connection compatible with a given hermitian structure as
defined in loc. cit. not the same as the one used by Brylinski and others (see, e.g. [Bry99, Proposition
6.9 (1)]). Here we can further elucidate the remarks at the end of [Ald05a] by pinpointing the
geometric difference: the notion of compatibility used by Brylinski involves solely the structure of
(E +
X ,E

1
X(1))-gerbe, whereas the definition we put forward uses the notion of morphism of gerbes

bound by a complex. The latter remembers, so to speak, the structure of O"
X -gerbe.

3 Gerbes bound by complexes of length 3

3.1 (B, C)-torsors

First, recall that for a given complex B σ−→ C of non-necessarily abelian groups, an (B,C)-torsor
(see [Del79, Bre90]) is a pair (P, s) where P is an B-torsor and s a section of σ∗(P ) def= P ∧B C. A
morphism between two pairs (P, s) and (P ′, s′) is a morphism f : P → P ′ of B-torsors such that
σ∗(f)(s) = s′. With these definitions the (B,C)-torsors form a category, in fact a gerbe, TORS(B,C),
and we denote by H1(X,B → C) the set of isomorphism classes. There is an obvious forgetful
functor TORS(B,C) −→ TORS(B), and a corresponding map of cohomology sets H1(X,B →
C) −→ H1(X,B).

When B and C are abelian, which is the case of interest here, the cohomology set classifying
isomorphism classes of (B,C)-torsors is isomorphic to the standard hypercohomology group.

Suppose we are given a map of complexes

B
σ //

g

��

C

h
��

B′ σ′ // C ′

then we obtain a functor

(g, h)∗ : TORS(B,C) −→ TORS(B′, C ′) ,

which is defined as follows. To an object (P, s) of TORS(B,C) we associate the pair (g∗P, h∗(s)),
where g∗P = P ∧B B′. This is well defined, since σ′∗g∗P ∼= h∗σ∗P . Then it is immediate to verify
that morphisms (P, s)→ (P ′, s′) in TORS(B,C) are brought to morphisms in TORS(B′, C ′).
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The following alternative characterization will be useful in the following. Using [Gir71, III.1.6.1],
it is easily seen that the structure of (B,C)-torsor on P corresponds to the datum of a C-equivariant
map:

(3.1.1)
σ∗(P ) −→ HomB(P,C)

t 7−→ [s 7→ t−1σ∗s]

where HomB denotes (right) B-equivariant maps, and C is considered as a right B-space via σ.

3.2 (A, B, C)-gerbes

Let A δ→ B
σ→ C be a complex of abelian groups on C/X , and let p : G → C/X be a gerbe with

band A.

3.2.1 Definition. We say that G is bound by the complex A→ B → C, or that is an (A,B,C)-gerbe,
if there is morphism

µ̃ : G −→ TORS(B,C)

such that G is an (A,B)-gerbe for the δ-morphism defined by the composition of µ̃ with the forgetful
functor TORS(B,C)→ TORS(B).

In other words, the structure of (A,B,C)-gerbe on G is a factorization of the morphism µ defining
the structure of (A,B)-gerbe through TORS(B,C). For an object x ∈ ObGU , denote

µ̃(x) = (µ(x), ν(x)) ,

where µ = forget ◦ µ̃, and ν(x) is a section of σ∗(µ(x)).
Next, we can consider the notion of morphism of two such gerbes along the same lines as for

(A,B)-gerbes. Thus, let us be given a morphism of complexes of abelian sheaves over C/X:

A
δ //

f
��

B
σ //

g

��

C

h
��

A′ δ′ // B′ σ′ // C ′

Let G and G ′ be two gerbes bound by (A,B,C) and (A′, B′, C ′), respectively.

3.2.2 Definition. An (f, g, h)-morphism from G to G ′ consists of:

1. an f -morphism λ : G −→ G ′;

2. a natural isomorphism of functors

α̃ : (g, h)∗ ◦ µ̃ =⇒ µ̃′ ◦ λ

from G to TORS(B′, C ′) such that the composition (=pasting) F ′ ∗ α̃ with the forgetful functor
F ′ : TORS(B′, C ′) −→ TORS(B′) is the natural isomorphism associated to an (f, g)-morphism
as in Definition 2.1.2.
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The second condition in the definition can be explained as follows. Consider the diagram

G
µ̃

//

λ

��

TORS(B,C) F //

(g,h)∗

��

α̃ow

TORS(B)

g∗

��

G ′ µ̃′
// TORS(B′, C ′) F ′

// TORS(B′)

Pasting with F ′ gives

F ′ ∗ α̃ : F ′ ◦ (g, h)∗ ◦ µ̃ =⇒ F ′ ◦ µ̃′ ◦ λ

that is,

F ′ ∗ α̃ : g∗ ◦ F ◦ µ̃ =⇒ µ′ ◦ λ

We require this to coincide with the isomorphism α in Definition 2.1.2.
Again, we call this morphism an equivalence, or more precisely, an (f, g, h)-equivalence, if so is

the underlying functor λ : G −→ G ′. In particular, this is the case when A′ = A, B′ = B, C ′ = C
and f , g, and h are the identity map, which we refer to as an (A,B,C)-equivalence. Being equivalent
in this sense is an equivalence relation, and we have:

3.2.3 Proposition. Classes of equivalences of (A,B,C)-gerbes are classified by the hypercohomology
group

H2(X,A→ B → C) .

Proof. We will just sketch how to obtain the class corresponding to a gerbe G on C/X bound by the
complex A→ B → C. Let us proceed under the assumption that working with Čech cohomology is
sufficient. Thus, let (Ui → X)i∈I be a cover for X and assume that G is decomposed [Bre94a] by the
choice of objects xi ∈ ObGUi and morphisms ϕij : xj |Uij → xi|Uij .

For each object xi the functor µ̃ : G −→ TORS(B,C) gives us a pair µ̃(xi) = (µ(xi), ν(xi)),
where ν(xi) ∈ Γ(σ∗(xi)). Then, from the morphism ϕij we obtain the morphism of torsors

(ϕij)∗ ≡ µ(ϕij) : µ(xj) −→ µ(xi)

so that

(3.2.4) ν(xi) = σ∗((ϕij)∗)(ν(xj)) .

The decomposition (xi, ϕij) of G gives a cocycle (aijk) ∈ Z2((Ui → X), A) in the usual way,
[Bre94a], [Gir71, IV.3.5.1]. Furthermore, let (si)i∈I be a collection where si is a section of the
B|Ui-torsor µ(xi). It follows that a cochain (bij) with values in B is defined by

(ϕij)∗(sj) = si bij ,

and the usual argument shows that

(3.2.5) aijk = b−1
ik bijbjk .

Now, since µ̃(xi) is a (B,C)-torsor, we have that

σ∗(si) = ν(xi) ci ,
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for an appropriate section ci of C|Ui , for each i ∈ I . On one hand, this gives:

σ∗((ϕij)∗(sj)) = ν(xi) ci σ(bij) .

On the other hand, by functoriality we have

σ∗((ϕij)∗(sj)) = σ∗(µ(ϕij))(σ∗(sj))
= σ∗((ϕij)∗)(ν(xj)) cj ,

and using (3.2.4) we finally obtain

(3.2.6) ci σ(bij) = cj .

Then (3.2.5), (3.2.6), and the cocycle property for (aijk) give the desired 2-cocycle with values in the
complex A→ B → C.

The alternative characterization of (B,C)-torsor at the end of sect. 3.1, and the technique used in
the proof of the proposition can be put together to provide the following alternative characterization of
the notion of (A,B,C)-gerbe.

Let A δ→ B
σ→ C be a complex of abelian groups over C/X .

3.2.7 Lemma. The structure of (A,B,C)-gerbe on G −→ C/X is equivalent to the following data:

1. µ : G −→ TORS(B) making G into an (A,B)-gerbe;

2. for each object x ∈ ObGU a map ν(x) : µ(x) −→ C|U such that:

(a) ν(x)(s b) = ν(x)(s)σ(b) for each section s of µ(x) and b of B|U ;

(b) for each morphism f : x −→ y in GU a commutative diagram

µ(x)
µ(f)

//

ν(x) ((

µ(y)

ν(y)vv
C|U

Proof. The existence of the map ν(x) is simply a consequence of the existence of a section ν(x) of
σ∗(µ(x)) in the structure of (B,C)-torsor of µ(x) determines a morphism µ(x) −→ C|U according
to (3.1.1).

The commutativity of the diagram follows then from the fact that the structure of (B,C)-torsor of
µ(x) implies that ν(y) = σ∗µ(f)(ν(x)).

A different characterization of (A,B,C)-gerbes in terms of torsors over a morphism of gr-stacks
will appear in sect. 6.1, when we will be discussing 2-gerbes bound by complexes (of gr-stacks).

3.3 Examples: Curvings

The main example we want to consider, is that of a curving on a O"
X -gerbe G equipped with a

connective structure. The concept, introduced by Brylinski ([Bry93]), but attributed to Deligne, is the
analogous of the curvature of a connection on a line bundle.

G possesses a connective structure if it is a gerbe bound by O"
X

dlog−−→ Ω1
X . We can move one step

forward and consider instead the longer complex:

(3.3.1) O"
X

dlog−−→ Ω1
X

d−→ Ω2
X .
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3.3.2 Definition. A curving on G is the structure of gerbe bound by the complex (3.3.1) .

According to Lemma 3.2.7, a curving on a gerbe G with connective structure Co will be given by
a map

K (x) : Co(x) −→ Ω2
U

for each object x ∈ ObGU , and open U → X , such that

K (x)(∇+ α) = K (x)(∇) + dα ,

where ∇ is a section of Co(x) and α is a section of Ω1
U . Moreover, if f : x −→ y is a morphism in

GU , then the commutative diagram in Lemma 3.2.7 translates into

K (y)(f∗(∇)) = K (x)(∇) .

By direct comparison, we can see that these are exactly the properties of the curving listed in [Bry93],
hence our definition agrees with the one in loc. cit.

It follows from the classification result above that we have a gerbe G equipped with connective
structure and curving defines a class in the hypercohomology group:

H2(X,O"
X

dlog−−→ Ω1
X

d−→ Ω2
X) ' H3

D(X,Z(3)) .

The isomorphism with the Deligne cohomology group follows from the quasi-isomorphisms:(
O"
X

dlog−−→ Ω1
X

d−→ Ω2
X

)
[−1] '−→

(
Z(3) −→ OX

d−→ Ω1
X

d−→ Ω2
X

)
,

the complex on the right hand side being Z(3)•D.

4 2-Gerbes: main definitions

In this section we review some basic definitions and relevant facts about 2-gerbes here. The standard
reference is [Bre94a], which should be referred to for a complete treatment.

Recall that a 2-gerbe is a 2-stack, in particular a fibered 2-category, satisfying local non-emptiness
and connectivity requirements generalizing those of a gerbe. The general definition of fibered 2-
categories can be found in [Hak72]. Analogously to loc. cit., we will assume that given a fibration
p : G −→ S of 2-categories, the base 2-category is in effect a category regarded as a discrete 2-
category—namely, one with all 2-arrows being identities. In other words, S = 2-Cat(S), where S is a
category. To avoid overburdening our notation, we will simply write our fibrations as p : G −→ S,
without risk of confusion. In the following, the category S will in fact be the site C/X , with all our
standing assumptions concerning C/X to be kept for 2-gerbes as well.

4.1 2-Stacks

A 2-stack is a fibered 2-category p : G −→ S such that:

1. 1-arrows and 2-arrows can be glued, a fact that can be succinctly stated by saying that for any
two objects x, y ∈ ObGU over U ∈ ObS, the fibered category HomU (x, y) is stack over
S/U ;

2. Objects can be glued, namely 2-descent on objects holds.
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(A pre-2-stack is a fibered 2-category satisfying only the first condition above.)
Without entering into too many details, it is worthwhile making the gluing condition on objects

more explicit. Thus, let U be an object of S, and let (Ui → U) be a cover as usual. The assignment of
2-descent data over U is the assignment of a collection of objects xi ∈ ObGUi such that there is a
1-arrow:

ϕij : xj −→ xi

over Uij and a 2-arrow (in fact, a 2-isomorphism):

xj ϕij

��
αijk

��xk

ϕjk 33

ϕik

// xi

over Uijk such that the following compatibility condition holds:

αikl ◦ (αijk ∗ ϕkl) = αijl ◦ (ϕij ∗ αjkl) .

The assignment of the triple (xi, ϕij , αijk), is called 2-Descent data. Condition 2 above then means
that there exists an object x ∈ ObGU with 1-arrows

ψi : xi −→ x

and 2-isomorphisms
xi ψi

��
χij

��xj

ϕij 33

ψj

// x

satisfying the now obvious compatibility conditions with the isomorphisms αijk. This is referred to by
saying that the 2-descent data is effective.

4.2 2-Gerbes

In words, a 2-gerbe G −→ S is a 2-stack in 2-groupoids which is locally non-empty and connected.
A detailed account of several variants of this definition of a 2-gerbe is given in the text [Bre94a].
Following loc. cit., the properties characterizing a 2-Gerbe are the following:

1. G is locally non-empty: assuming S = C/X , there exists a cover U → X such that ObGU is
not empty.

2. G is locally connected: for each x, y ∈ ObGU , for some object U of S, there exists a cover
ϕ : V → U such that the set of arrows from xV to yV 8 is not empty.

3. 1-arrows are weakly invertible: for any 1-arrow f : x→ y in GU , U ∈ ObG, there is an inverse
g : y → x up to two 2-arrows.

4. 2-arrows are (strictly) invertible in GU .

There are different equivalent forms of the last two axioms, as well as local versions of all four to be
obtained by considering coverings of U , see [Bre94a] for more details. Here we only quote the fact
that condition 3 above is equivalent (if condition 4 is also satisfied) to:

8Note that given ϕ : V → U and an object x above U thanks to the axioms of a fibered 2-category we can speak of “the”
object xV above V with an arrow xV → x above ϕ up to 2-equivalence.
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3’ Given two 1-arrows f : x → y and g : x → z in GU , there exists a 1-arrow h : y → z and a
2-arrow α : h ◦ f ⇒ g.

Finally, a note of caution: although the stack HomU (x, y) is locally non empty by condition 2, in
general it will not be connected, so that condition 3 does not quite imply that HomU (x, y) is a gerbe.
This is the case when x = y for fully abelian 2-gerbes, to be discussed below.

4.2.1 Gr-stacks of automorphisms

To conclude these remarks of preparatory nature, let us briefly discuss automorphisms of objects.
For any given object x ∈ ObGU , the stack AutU (x) of self-arrows of x is a stack in groupoids

equipped with a strictly associative monoidal structure, that is a functor AutU (x)×AutU (x) −→
AutU (x) implementing a product law on AutU (x). It follows from the 2-gerbe axioms that AutU (x)
admits a choice of inverses, compatible with descent, hence it is a group-like stack, or gr-stack, for
short, cf. [Bre92, Bre94a, SR72].

Analogously to the gerbe case, if A is a fixed gr-stack on S, we define a 2-A -gerbe to be a 2-gerbe
G over S such that for every object x ∈ ObGU there is an equivalence

ax : AutU (x) ∼−→ A |U .

4.3 Abelian 2-gerbes

A 2-A -gerbe to be abelian if the equivalences ax introduced above are natural in the sense specified
in [Bre94a, Definition 4.13]. As shown in loc. cit., this has the consequence that A is braided, that is,
there is a commutativity functor for the monoidal structure.

An additional commutativity condition is to assume that

A = TORS(A) ,

for a sheaf of abelian groups A over S. (Since A is abelian, this is a gr-stack under the standard
contracted product of A-torsors.)

As explained in loc. cit., these two requirements have the consequence that the gr-stack AutU (x)
is a gerbe over S/U , and in fact a neutral one, i.e. it is equivalent to TORS(A|U ), since it has the
global object idx. Automorphisms of 1-arrows are then equivalent to sections of the sheaf of groups A,
as in [BM94]. If both commutativity conditions hold, we commit a mild abuse of language and say
that the 2-gerbe G is bound by the sheaf of abelian groups A, or that it is a 2-A-gerbe, dropping the
typographical reference to the gr-stack A .

It is by now standard that the fully abelian 2-gerbes, or 2-A-gerbes, are classified up to equivalence
by the ordinary cohomology group H3(X,A).

In what follows we will limit our consideration to abelian 2-gerbes which are not, however,
necessarily fully abelian.

4.3.1 Morphisms.

As noted, a morphism between two 2-gerbes G and H is a cartesian 2-functor F : G −→ H between
the underlying 2-stacks.

Suppose that G is a 2-A -gerbe and H is a 2-B-gerbe, and λ : A −→ B is a morphism of
gr-stacks, where we assume both A and B at least braided. By analogy with the case of gerbes, we
will call F a λ-morphism if the obvious commutative diagrams (up to 2-isomorphism, this time) are
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satisfied. In particular, this means that F must be compatible with the morphisms ax in the sense that
we have the following diagram:

Aut(x) //

ax

��

Aut(F (x))

bx
��

A |U
λ

//

νx

�	
B|U

for an appropriate isomorphism νx.
In particular, we are interested in the situation where a homomorphism δ : A −→ B of abelian

groups is given, and λ = δ∗ is simply the induced functor:

δ∗ : TORS(A) −→ TORS(B) .

between the corresponding gr-stacks. In this case we will refer to F as a δ-morphism, with a mild
abuse of language. The salient property of a δ-morphism in this sense is that if a section a ∈ A|U
corresponds to an automorphism of a 1-arrow f of GU , then the corresponding automorphism of F (f)
in HU will be δ(a) ∈ B|U .

4.3.2 Classification.

As already mentioned, a 2-A-gerbe is classified by an element of the (ordinary) cohomology group
H3(X,A): Let us briefly recall here the well-known local calculation leading to the classification.

For simplicity, let us remain in the Čech setting, so let us once again consider a cover (Ui → X)i∈I
of X . Now, given a 2-gerbe G, let us choose a decomposition by selecting a collection of objects xi in
GUi . There is a 1-arrow

ϕij : xj → xi

between their restrictions to GUij . Then axiom 3’ in sect. 4.2, and the abelianness assumptions imply
that there exist 2-arrows such that:

αijk : ϕij ◦ ϕjk =⇒ ϕik .

Over a 4-fold intersection Uijkl, we have two 1-arrows ϕij ◦ϕjk ◦ϕkl : xl → xi and ϕil : xl → xi and
between them two 2-arrows, namely αijl ◦ (idϕij ∗αjkl) and αikl ◦ (αijk ∗ idϕkl

) . Since 2-arrows are
strictly invertible, it follows again from the axioms that there exists a section aijkl of O"

X over Uijkl
such that

(4.3.1) αijl ◦ (idϕij ∗αjkl) = aijkl ◦ αikl ◦ (αijk ∗ idϕkl
) .

This section is a 3-cocycle and the assignment G 7→ [a] gives the classification isomorphism.

5 2-Gerbes bound by a complex

5.1 B-torsors

The notion of torsor under a gr-stack will play a significant role below. The definition has been given
in full generality in [Bre90, 6.1], and [Bre92], so here we will confine ourselves to only recall the
main points.
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Let B be a gr-stack on C/X . Briefly, a stack in groupoids P will be a (right) B-torsor if there is
a morphism of stacks

m : P ×B −→P

compatible with the group law of B in the sense specified in loc. cit., and such that the morphism

m̃ = (pr1,m) : P ×B −→P ×P

is an equivalence. As in loc. cit., there will be an associativity natural isomorphism:

µx,b,b′ : (x · b) · b′ ∼−→ x · (b · b′) ,

where x · b stands for m(x, b). This isomorphism will have to satisfy the standard pentagon diagram.
Having so far defined what ought to be called a pseudo-torsor, we need to complete the definition

by adding the condition that there exists a cover U → X such that the fiber category PU is non-empty.
There are a few constructions for B-torsors that are generalizations of well-known ones for

standard torsors which we are going to recall now: cocycles and contracted products.

5.1.1 Contracted product of torsors.

The notion of contracted product for torsors over a gr-stack is introduced in [Bre90, §6.7].
If P (resp. Q) is a right (resp. left) B-torsor, the contracted product P ∧BQ is defined as follows.

The objects are pairs (x, y) ∈ ObP ×Q. A morphism (x, y)→ (x′, y′), however, is an equivalence
classes of triples (f, b, g), where b ∈ ObB, and f : x · b → x′ and g : y → b · y′ are morphisms
of P and Q, respectively. Two triples (f, b, g) and (f ′, b′, g′) are equivalent if there is a morphism
β : b→ b′ in B such that f = f ′ ◦ (x · β) and g′ = (β · y′) ◦ g.

Properties analogous to the familiar ones for ordinary torsors hold. For example, one has the
isomorphism

(x · b, y) ∼−→ (x, b · y) ,

given by the pair (idx·b, b, idb·y).
In the following we will be considering braided (and in fact, Picard) gr-stacks exclusively, hence

the distinction between left and right-torsor will not matter. In principle, by analogy with the case of
standard torsors over an abelian group we could dispense with the notation for the contracted product
and denote the product with the symbol P ⊗Q, instead. We will not do so, however.

5.1.2 Cocycles.

A torsor P over a (not necessarily braided) gr-stack B can also be characterized by a cocycle with
respect to a cover.

Given a cover (Ui → X)i∈I , the torsor P has non-empty fiber categories over it. Thus choose
objects xi ∈ ObPUi . Since by definition P is locally (i.e. over the cover) equivalent to B, it
follows that we can obtain isomorphism xj

∼−→ xi · bij , where bij is an object of B over Uij , and the
isomorphism takes place in PUij . (We are systematically ignoring the isomorphisms resulting from
the pull-back functors.) By pulling back to Uijk we obtain a 1-cocycle with values in B:

(5.1.1) βijk : bij · bjk
∼−→ bik .

The isomorphisms βijk in B|Uijk
turn out to satisfy the obvious compatibility condition on quadruple

intersections Uijkl, which we do not explicitly write here. The pair (bij , βijk) is the 1-cocycle with
values in the gr-stack B determined by P .
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5.1.3 B-torsors and B-gerbes.

It arises from the general classification theory of 2-gerbes that TORS(B) is a 2-B-gerbe. Moreover, it
follows from the general discussion in [Bre90, §7.2 and Proposition 7.3] that if B = TORS(B), then
TORS(B) is equivalent to GERBES(B), the 2-gerbe of B-gerbes over X .

It is possible to see this via the 1-cocycle pair (5.1.1) as follows. Recall that B = TORS(B) with
B abelian, so we obtain a “torsor cocycle” in the sense of [Bre94b]. It follows that the groupoids
TORS(B)|Ui can be glued in the standard way to give a B-gerbe.

5.1.2 Remark. The argument just outlined is of course not specific to B being abelian. Upon replacing
TORS(B) with BITORS(B) everything works in general.

5.1.3 Remark. The 1-cocycle written above coincides with Hitchin’s notion of “gerbe data,” [Hit01].
The latter lacks the categorical input, however.

5.2 Crossed modules of gr-categories

It was observed above that the complex δ : A −→ B of abelian groups ought to be considered as
an abelian crossed module, namely one where we impose strict commutativity on the associated
gr-category. (That is, we demand it be strictly Picard.)

It turns out that a similar pattern holds in the case of a crossed module of gr-categories in the sense
of [Bre92, Définition 2.2.8]. It requires that there exist additive functors

λ : A −→ B ,  : B −→ Eq(A )

such that the relations determined by the following diagrams hold:

B 

��
µ

��
A

λ
66

ıA
// Eq(A )

B ×A
̂

//

1B×λ
��

A

λ
��

B ×B
ı̂B

// B

ν

��

where Eq(A ) denotes the gr-stack of self-equivalences of A , ıA denotes the inner conjugation, and
the top and bottom horizontal arrows in the diagram to the right are the actions of B on A and on
itself induced by  and the inner conjugation.

Now observe that requiring the resulting group law on A ×B to be commutative (up to natural
isomorphism), entails that both A and B are braided, and that the action of B on A is trivial. Thus,
an abelian crossed module of gr-categories will simply be an additive functor

(5.2.1) λ : A −→ B ,

between braided gr-categories. The same conclusions hold if we replace gr-categories with gr-stacks
over C/X . We will also refer to (5.2.1) as a complex of (braided) gr-stacks.

If both A and B have strict group laws, then they are the gr-categories associated to crossed
modules, so we obtain a “crossed module of crossed modules,” namely a crossed square, see [Lod82,
Bre92]. Thus (5.2.1) reduces to the commutative square

(5.2.2)
A

δ
��

f
// B

σ

��

G u
// H
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where the vertical arrows are the crossed modules associated to A and B, respectively, and the
horizontal arrows, as well as the composite diagonal one, are also crossed modules. There are other
axioms, for which we refer the reader to the treatment in loc. cit. We will not need them here,
however, because if both A and B are strictly commutative, their associated crossed modules become
complexes of abelian groups, so that (5.2.2) becomes a commutative square of homomorphisms of
abelian groups, which is the situation we will be interested in. Thus “crossed square” will be meant as
a synonym for a morphism of complexes of abelian groups.

5.3 2-(A , B)-gerbes

We are now going to consider the analog of Definition 2.1.1 for abelian 2-gerbes. We proceed by
giving a direct generalization of Definition 2.1.1, where we replace the complex A → B with the
length 2-complex (that is a morphism) of gr-stacks, which we assume braided, heeding to the principle
that we climb the ladder of the higher algebraic structures by promoting the coefficients of cohomology
from sheaves of (abelian) groups, to gr-stacks, etc.

5.3.1 Definition. A 2-gerbe bound by the complex (5.2.1) is a 2-A -gerbe G over C/X , equipped
with a λ-morphism:

J : G −→ TORS(B) .

A 2-gerbe bound by the complex (5.2.1) will be called a 2-(A ,B)-gerbe. (Notice that TORS(B) is a
2-B-gerbe in an obvious way, hence the notion of λ-morphism makes sense.)

If G is actually a 2-A-gerbe, and B = TORS(B), where B is a sheaf of abelian groups over C/X ,
with a homomorphism δ : A −→ B, we call it a 2-(A,B)-gerbe, or a 2-gerbe bound by A→ B. (The
morphism J in the definition is a λ = δ∗-morphism.)

For a 2-(A,B)-gerbe, owing to the last remark in sect. 5.1, Definition 5.3.1 can be recast in the
form used in [Ald05a, Definition 5.5.1] (in a special case), which we state here as a lemma:

5.3.2 Lemma. The datum of a 2-(A,B)-gerbe is equivalent to that of a Cartesian 2-functor

J : G −→ GERBES(B)

which is a δ-morphism of 2-gerbes.

Morphisms of 2-gerbes bound by a complex of length 2 can be defined by promoting Def-
inition 2.1.2 to using braided gr-stacks and then (for those coming from abelian groups) using
Lemma 5.3.2. Specifically, analogously to what was done in sect. 2.1, consider the square of gr-stacks:

(5.3.3)

A
λ //

ϕ

��

B

ψ

��

A ′
λ′

//



�

B′

5.3.4 Definition. A (ϕ,ψ)-morphism (F, µ) : (G, J) −→ (G′, J ′) consists of:

1. an ϕ-morphism F : G −→ G′;
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2. a natural transformation of 2-functors:

µ : ψ∗ ◦ J =⇒ J ′ ◦ F : G −→ TORS(B′) ,

where ψ∗ : TORS(B) −→ TORS(B′) is induced from ψ in the obvious way.

In particular, the special case where (5.3.3) is induced by the morphism of complexes

(f, g) : (A,B, δ) −→ (A′, B′, δ′)

of abelian groups will be referred to as an (f, g)-morphism of the 2-(A,B)-gerbe (G, J) to the
2-(A′, B′)-gerbe (G′, J ′). Using Lemma 5.3.2, condition 2 in Definition 5.3.1 says that we have a
natural transformation of 2-functors

µ : g∗∗ ◦ J =⇒ J ′ ◦ F : G −→ GERBES(B′) ,

where g∗∗ : GERBES(B) −→ GERBES(B′) is induced from g : B −→ B′.
We speak of a (A ,B)-morphism if A ′ = A and B′ = B and both ϕ and ψ are identities. We

shorten this to (A,B)-morphism if both gr-stacks arise from abelian groups A and B in the usual way.
We speak of an equivalence if the underlying 2-functor F is an equivalence of 2-stacks.

5.4 Classification I

The classification of 2-(A,B)-gerbes follows the usual pattern. The following theorem generalizes
previous results on connective and hermitian structures on 2-gerbes, see [BM96, Bry99] and [Ald05a].

5.4.1 Theorem. Let δ : A → B be a complex of abelian groups over C/X . Equivalence classes of
2-(A,B)-gerbes are classified by the elements of the (ordinary) hypercohomology group

H3(X,A→ B) .

Proof. We only need to sketch the proof, for the details can be lifted from the above quoted references
and adapted to the present situation without difficulty. Therefore let us only indicate how to obtain the
cocycle representing the class of a given 2-(A,B)-gerbe.

Let us work in the Čech setting, so let (Ui → X)i∈I be a cover as usual. Let (G, J) be a 2-
(A,B)-gerbe over X , and let xi, ϕij , and αijk be objects, morphisms, and 2-morphisms providing
a full decomposition of G relative to the chosen cover as in sect. 4.3.2. In addition, let us pick a
decomposition of the gerbes J(xi) over Ui by choosing objects ri and arrows ξij : J(ϕij)(rj)→ ri.

Over Uijk we obtain the following diagram in J(xi)|Uijk
:

J(ϕij) ◦ J(ϕjk)(rk)

��

J(ϕij)(ξjk)
// J(ϕij)(rj)

ξij
// ri

bijk

��
J(ϕij ◦ ϕjk)(rk)

J(αijk)(rk)
// J(ϕik)(rk)

ξik
// ri

which defines the section bijk ∈ Aut(ri) ' B|Uijk
. (The left vertical arrow comes from the natural

transformation built in the definition of 2-functor [Hak72].)
Pulling back to Uijkl we obtain a cube determined by the objects ri, . . . , rl whose faces are built

from copies of the previous diagram. Using relation (4.3.1), and the fact that J is a δ-morphism, we
finally have:

bjkl b
−1
ikl bijl b

−1
ijk = δ(aijkl) ,
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which together with the cocycle relation satisfied by aijkl (consequence of (4.3.1)), gives the desidered
cocycle relation for (aijkl, bijk).

To conclude, let us hint at how the procedure is reversed. The first step is to glue the local
trivial 2-gerbes GERBES(A|Ui) via aijkl. This is standard, see [Bre94a, BM94, BM96]. Then we
define a 2-functor J by assigning to each object xi over Ui, i.e. an A|Ui-gerbe, the trivial B|Ui-gerbe
J(xi) = TORS(B|Ui). Over Uijk, the section bijk is used as an automorphism of an object ri of J(xi),
and the cocycle condition above ensures compatibility.

Using the results in sect. 2.1 about (A,B)-gerbes we can informally reword the proof of the
theorem by noticing that the representative cocycle of the 2-(A,B)-gerbe G was given in terms of
(A,B)-gerbes. We want to make this observation precise.

To this end, let us first observe that if δ : A → B is a complex of sheaves of abelian groups,
then G = TORS(A,B), introduced in sect. 3.1, is a gr-stack: the group law is given by the standard
contracted product, so for two pairs (P, s) and (Q, t) we have (P, s)⊗ (Q, t) = (P ⊗Q, st). In fact G
is the gr-stack associated to the homomorphism A→ B viewed as an abelian crossed crossed module.
Thus,

G = TORS(A,B) ' (A δ−→ B)∼ ,

cf. [Bre90, Bre94a].
The following intermediate results (in the next proposition and theorem), are also of independent

interest, as they provide an alternative characterization of (A,B)-gerbes.

5.4.2 Proposition. Equivalence classes of G = TORS(A,B)-torsors are classified by the hypercoho-
mology group H2(X,A→ B) .

Proof. Let P be a G -torsor. According to sect. 5.1.3 the choice of objects xi in the fiber categories
PUi with respect to a cover (Ui → X)i∈I , determines a pair (gij , γijk) with values in G satisfying
the cocycle identity (5.1.1).

Given the specific nature of G , each gij is an (A|Uij , B|Uij )-torsor, namely it corresponds to
a pair (Pij , tij), where Pij is an A-torsor over Uij , and tij is a section of Pij ∧A B. Moreover,
γijk : Pij ⊗ Pjk

∼→ Pik (suitably restricted to Uijk), and δ∗(γijk)(tijtjk) = tik.
It is perhaps better not to assume at this point that the torsor Pij is trivialized, but rather consider

the full blown hypercover (Uαij , Ui), where (Uαij → Uij)α∈Aij is a cover, and assume that sαij is a

trivializing section of Pij over Uαij . This choice gives rise to sections aαβγijk of A|
Uαβγ

ijk
and bαij of B|Uα

ij
,

in the usual way:
γijk(sαij ⊗ s

β
jk) = sγik a

αβγ
ijk , tij = (sαij ∧ 1) bαij .

Then, using that s · a ∧ 1 = s ∧ δ(a) = (s ∧ 1) · δ(a), it is easily checked that (aαβγijk , b
α
ij) satisfies the

cocycle condition with values in the complex A→ B with respect to the chosen (hyper)cover. The
rest of details (to check that this is well-defined on classes) are routine and left to the reader.

Conversely, given a cocycle with values in A→ B with respect to the above hypercover, we can
reconstruct (A|Uij , B|Uij )-torsors (Pij , tij) satisfying the cocycle condition. We can then glue the
various GUi using this cocycle to obtain a G -torsor on X . Details are again left to the reader.

Now we consider the trivial 2-gerbe TORS(G ) of torsors over the gr-stack G . Also recall that
GERBES(A,B) denotes the fibered 2-category of (A,B)-gerbes over X .

Proposition 5.4.2, and the fact that the same hypercohomology group classifies (A,B)-gerbes
as well suggest the following theorem, which is an extension, in the abelian context, of [Bre90,

27



Proposition 7.3]. To prepare the statement, observe that there is an action

TORS(A)× TORS(A,B) −→ TORS(A)

given on objects by

(Q, (P, t)) 7−→ (P ⊗Q) ,

where (P, t) is an (A,B)-torsor, and Q is an A-torsor. Of course, since A is an abelian group,
TORS(A) is itself a gr-stack. Also, by local the triviality of torsors, an A-torsor is locally isomorphic
to an (A,B)-torsor, thereby making TORS(A) a TORS(A,B)-torsor.

5.4.3 Theorem. Let G = TORS(A,B). There is an equivalence (of 2-stacks)

F : TORS(G ) ∼−→ GERBES(A,B)

given by:
F : P 7−→ TORS(A) ∧GP .

In fact, the equivalence in the proposition is an equivalence of neutral (or trivial) 2-gerbes bound
by G .

Proof. We will confine ourselves to give a description of the 2-functor F , as well as its quasi-inverse,
following loc. cit., and leave the verification of the details to the reader.

Given a cover U → X , by definition we have an equivalence

PU
∼−→ GU = TORS(A|U , B|U ) .

Moreover, observe that for any gr-stack G and for any stack in groupoid with G -action P , we have an
equivalence

P
∼−→P ∧G G x 7−→ (x, oG ) ,

where oG is the unit object in G . By the same argument in the proof of [Bre90, Proposition 7.3], we
have the equivalence:

TORS(A|U ) ∼−→ TORS(A|U ) ∧GU GU
∼−→ TORS(A|U ) ∧G |U PU ,

showing that TORS(A) ∧G P is locally equivalent to TORS(A), hence it is an A-gerbe. We make it
into an (A,B)-gerbe by defining

µ
def= δ∗ ∧ 1: TORS(A) ∧G P −→ TORS(B) .

This is well-defined, since locally the definition dictates (Q, (P, t)) 7→ δ∗(Q) and, using the properties
of the contracted product, we have

(Q, (P, t)) ∼−→ (Q · (P, t), (A, 1)) = (P ⊗Q, (A, 1)) ,

so that
(Q, (P, t)) 7−→ δ∗(P ⊗Q) ' δ∗(P )⊗ δ∗(Q) ' δ∗(Q) ,

since δ∗(P ) ' B, by definition of (A,B)-torsor. (The pair (A, 1) represents the unit element in
G = TORS(A,B).)
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Conversely, let (Q, µ) be an (A,B)-gerbe. Since it is in particular an A-gerbe, there is an
equivalence

Q|U ' TORS(A|U )

with respect to a cover U → X , so that locally the structure of (A,B)-gerbe becomes

TORS(A|U )
µ|U−−→ TORS(B|U ) .

In turn this is isomorphic to δ∗, the “change of structure group” functor. To see this, consider
the image E = µ(A) of the trivial torsor. Since µ commutes with the product of torsors (since
Q1 ⊗Q2 ' Q1 ∧A Q2 for A abelian), it follows from Q ' Q⊗A that E ' B, the trivial B-torsor.
By local triviality over U and the fact that µ is a δ-morphisms, it follows that µ(Q) ' δ∗(Q).

A calculation identical to the one carried out to show that δ∗ ∧ 1 is well-defined, shows that if
(P, t) is an (A,B)-torsor, then the morphism

P ⊗− : TORS(A|U ) −→ TORS(A|U )

preserves the functor δ∗, namely the diagram

TORS(A|U ) P⊗−
//

δ∗
%%

TORS(A|U )

δ∗
yy

TORS(B|U )

commutes. In other words, tensoring with an (A,B)-torsor is locally a morphism of (A,B)-gerbes.
Moreover, since any equivalence ν : TORS(A|U )→ TORS(A|U ) can be realized as Q 7→ Pν ⊗Q for
an appropriate torsor Pν , compatibility with the previous diagram forces Pν to be an (A,B)-torsor.
Denoting by Eq the stack of equivalences, the foregoing proves that the correspondence

Q 7−→ Eq(TORS(A),Q)

gives the required quasi-inverse equivalence to F .

5.4.4 Remark. The theorem gives another perspective on the canonical morphism introduced in
sect. 2.1.2. Namely, if we have a morphism (5.2.1) of Picard gr-stacks coming from the crossed
square (5.2.2), from the theorem we obtain a morphism

GERBES(A,G) −→ GERBES(B,H)

as the conjugate FB ◦ λ∗ ◦ F ∗
A of the induced morphism

λ∗ : TORS(A ) −→ TORS(B) ,

where F• is the appropriate equivalence from Theorem 5.4.3 and F ∗
• its quasi-inverse. It is immediately

seen that this morphism corresponds to the canonical morphism (f, u)∗.

We return to 2-gerbes. The following proposition generalizes sect. 4.3.2 and Theorem 5.4.1, and it
can be considered as the analog of Proposition 5.4.2 to the case of 2-gerbes.

5.4.5 Proposition. Let G = TORS(A,B). Equivalence classes of 2-G -gerbes are classified by the
hypercohomology group H3(X,A→ B) .
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Proof. Most of the ingredients of the proof can be extracted from the cocycle analysis in [Bre94a], c.f.
in particular §4.7.

Let G be a 2-G -gerbe. Given a cover (Ui → X)i∈I , the choice of objects xi ∈ GUi determines, by
analogy with sect. 5.1.3, G -torsors Eij = Hom(xj |Uij , xi|Uij ) over Uij . Note that Eij is a G -torsor,
rather than a bitorsor, thanks to the fact that G is braided. The torsors Eij satisfy the following cocycle
condition: we have equivalences

(5.4.6a) gijk : Eij ∧GEjk
∼−→ Eik

and natural transformations (isomorphisms):

(5.4.6b) νijkl : gikl ◦ (gijk ∧ 1) =⇒ gijl ◦ (1 ∧ gjkl)

arising from the pentagonal 2-cell determined by starting at(
Eij ∧GEjk

)
∧GEkl ,

and associating with the help of (5.4.6a). Moreover, the morphisms νijkl satisfy the appropriate
coherence condition extracted from (5.4.6b) over Uijklm.

Notice that a section of, say, Eij over Uαij → Uij is a 1-arrow fαij : xj |Uα
ij
→ xi|Uα

ij
, and similarly

for the other indices. Therefore the restriction gαβγijk of gijk to Uαβγijk can be identified with an object of
G |

Uαβγ
ijk

. The same reasoning leads to the identification of the restriction of νijkl, with the appropriate

decoration of upper indices, with an arrow of (a corresponding restriction of) G . Finally, we note
that the equivalence in eqn. (5.4.6a) is given by the composition of 1-arrows and 2-arrows in G. Thus
eqns. (5.4.6) can be interpreted as giving a cocycle condition for (gijk, νijkl) with values in G .

Now, since G = TORS(A,B), is the stack associated to the abelian crossed module (i.e. complex
of abelian groups) δ : A→ B, the corresponding sheaf of groupoids will be

A×B
s //

t
// B

with source and target maps given by s(a, b) = b and t(a, b) = δ(a)b, so that (neglecting the upper
indices) the object gijk can be identified with a section bijk ofB, and the morphism νijkl with a section
aijkl of A. Now (5.4.6b) reads:

δ(aijkl) bijk bikl = bjkl bijl

which is the desired relation. Putting it together with the cocycle condition for aijkl determined by the
coherence condition on the νijkl alluded to above, provides the required 3-cocycle with values in the
complex A→ B.

Methods similar to the approach of the proof of Theorem 5.4.3 give the following theorem. We
omit the proof.

5.4.7 Theorem. Let again G = TORS(A,B). Then a 2-G -gerbe is equivalent to a 2-(A,B)-gerbe,
where the equivalence takes place in the appropriate 3-category.

The upshot of the foregoing unfortunately rather lengthy discussion can be summarized as follows.
Given a complex of abelian groups δ : A → B, the following two structures on a 2-A-gerbe G are
equivalent:

1. 2-gerbe bound by δ : A→ B, and:
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2. 2-gerbe bound by G = TORS(A,B).

They correspond to the following crossed squares of the type (5.2.2):

item 1:
A

δ //

��

B

��

1 // 1

item 2:

A //

δ
��

1

��

B // 1

where for case 1 we consider A and B as crossed modules A → 1 and B → 1, whereas case 2
corresponds to the crossed module λ : G → H where H is associated to 1→ 1. The equivalence
can be traced to the symmetry of the crossed square.

Next, we are going to explore the case when the crossed square (5.2.2) is non-trivial.

5.5 Classification II

Our first step is to address the case of a 2-gerbe bound by a crossed module of braided gr-stacks (5.2.1)
in greater generality than in the preceding sections. Note that there is an obvious induced map:

(5.5.1) λ∗ : TORS(A ) −→ TORS(B) ,

given by P →P ∧AB. It is convenient to have the following definition at hand:

5.5.2 Lemma-Definition. Given a cover UX = (Ui → X)i∈I , a 1-cocycle with values in (5.5.1) is
the datum of A -torsors Eij over Uij and B-torsors Fi over Ui, such that the cocycle condition (5.4.6)
holds for the Eij’s, and moreover there are equivalences of B-torsors

(5.5.3a) ξij : λ∗(Eij) ∧BFj
∼−→ Fi

and natural transformations (isomorphisms):

(5.5.3b) mijk : ξij ◦ (1 ∧ ξjk) =⇒ ξik ◦ (λ∗(gijk) ∧ 1) .

The natural transformations mijk are subject to the following coherence condition:

(5.5.4) ξil ∗ λ∗(νijkl) ◦mijl ∗ (1 ∧ λ∗(gjkl) ∧ 1) ◦ ξij ∗mjkl

= mikl ∗ (λ∗(gijk) ∧ 1 ∧ 1) ◦mijk ∗ (1 ∧ 1 ∧ ξkl) .

5.5.5 Remark. An easier (but less precise) way of displaying (5.5.4) is to ignore the pastings with the
identity 2-arrows, so that we have:

λ∗(νijkl) ◦mijl ◦mjkl = mikl ◦mijk .

Proof. The calculations are tedious, but entirely straightforward. We will content ourselves to note
that one has to form the standard cube of morphisms ξij , etc. starting from

(5.5.6) λ∗
(
Eij ∧A (Ejk ∧AEkl)

)
∧BFl

and ending to Fi, modulo the association isomorphisms for the contracted product, which have been
ignored in eq. (5.5.4). Then (5.5.4) is the result of composing the faces of this cube. Note that in (5.5.4)
there are five terms, since one of the faces will be strictly commutative, namely the one corresponding
to contracting the first two, and the second two terms in (5.5.6).
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We complement the definition of 1-cocycle with the notion of equivalence as follows:

5.5.7 Definition. Two 1-cocycles (Eij ,Fi) and (E ′
ij ,F

′
i ) with values in (5.5.6) are equivalent if there

exist A |Ui-torsors Qi over Ui such that there are equivalences:

E ′
ij ∧A Qj

∼−→ Qi ∧A Eij(5.5.8a)

λ∗(Qi) ∧BFi
∼−→ F ′

i .(5.5.8b)

The following is a mild extension of the statement in [Bre92, 4.1.11] in the braided case.

5.5.9 Theorem. Equivalence classes of 2-(A ,B)-gerbes are classified by the set

H1(X, TORS(A )→ TORS(B)) ,

namely the (pointed) set of equivalence classes of 1-cocycles in Lemma-Definition 5.5.2 under the
equivalence of Definition 5.5.7.

Proof. Let G be a 2-(A ,B)-gerbe. Since it is in particular a 2-A -gerbe, the choice of objects
xi ∈ ObGUi with respect to an open cover UX = (Ui → X)i∈I will generate a 1-cocycle {Eij} with
values in TORS(A ), as in the proof of proposition 5.4.5, eqns. (5.4.6). This part and the rest of the
cocycle analysis of the 2-gerbe G is as in [Bre94a], especially §4.7, with the additional hypothesis that
we are in the braided case (so that we are in the “decoupled” situation). Full details will be found in
loc. cit.

The new part is the one related to the extra structure given by the 2-functor

J : G −→ TORS(B) ,

as part of the definition of 2-(A ,B)-gerbe. Using J , for each object xi we obtain a B-torsor
Fi

def= J(xi). Now, recall that Eij = Hom(xj |Uij , xi|Uij ). Objects and arrows of Eij over Uαij →
Uij correspond to 1-arrows between xj |Uα

ij
and xi|Uα

ij
and 2-arrows between them. Via J , we get

equivalences and natural isomorphisms between the corresponding torsors Fj and Fi. In short, there
is an equivalence:

Eij
∼−→Hom(Fj ,Fi) ,

where the Hom on the right hand side denotes the category of morphisms of torsors (defined e.g. as
in [Bre90, §6]). That is, it is the Hom in TORS(B). In turn, this equivalence can be written in the
form of eqn. (5.5.3a), using the correspondence

fαij 7−→ [y 7−→ λ∗(fαij)(y)] ' λ∗(fαij) ∧ y 7−→ λ∗(fαij)(y) ,

where fαij is an object of Eij , i.e. 1-morphism of G, over Uαij , and similarly for 2-arrows. Here we have
also used the fact that J is a λ-morphism, therefore an A -torsor P corresponds to λ∗(P) = P ∧AB.

The inverse correspondence is obtained by generalizing the standard gluing of local trivial 2-gerbes
TORS(A |Ui) in a way analogous to the proof of Thm. 5.4.1. Namely, given a 1-cocycle (Eij ,Fi), first
we glue TORS(A |Uj )|Uij with TORS(A |Ui)|Uij via Eij by

P 7−→P ∧AEij ,

and verify that this is coherent thanks to eqns. (5.4.6). Thus we obtain a 2-A -gerbe G, and, as a
byproduct, this procedure gives a collection of objects xi providing the labeling with respect to which
the newly obtained 2-gerbe G is represented by the cocycle Eij . We then define J as:

J |Ui : GUi ' TORS(A |Ui) −→ TORS(B|Ui)
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by assigning to xi the B-torsor Fi. More generally, to any object of GUi , i.e. to any A |Ui-torsor P ,
we assign the B|Ui-torsor

λ∗(P) ∧BFi .

We leave to the reader the task to verify that the two constructions are inverse of one another.
Finally, given a 2-(A ,B)-gerbe, a second collection of objects {yi} subordinated to the same

cover determines a new cocycle (E ′
ij ,F

′
i ). Moreover, for each i ∈ I we have the A |Ui-torsor

Qi = Hom(xi, yi). It is easily verified that the collection {Qi} satisfies both eqns. (5.5.8).

When the coefficient complexes of braided stacks come from complexes of abelian groups the
previous theorem can be rephrased in terms of ordinary hypercohomology. More precisely, we have
the following statement.

5.5.10 Theorem. If the braided gr-stacks A and B are strict and correspond to abelian crossed
modulesA→ G andB → H , respectively, then equivalence classes of 2-(A ,B)-gerbes are classified
by the (ordinary) hypercohomology group

H3(X,A→ B ⊕G→ H) ,

namely the coefficient complex is the cone (shifted by 1) of the abelian crossed square (5.2.2).

Proof. We will need to show how to extract an ordinary cocycle with value in the cone of (5.2.2) from
the abstract cocycle of Thm. 5.5.9.

Let A = TORS(A,G) and B = TORS(B,H) with complexes δ : A → G and σ : B → H and
homomorphisms f : A→ B and u : G→ H arranged to make the square (5.2.2). The corresponding
(sheaf of) crossed module(s) is:

A×G
s

��

t
��

(f,u)
// B ×H

s

��

t
��

G u
// H

where in both cases the source and target maps s and t are as in the proof of Proposition 5.4.5, page 30.
Thus the additive functor λ : A → B is induced (after having taken the associate stack functor) by
the pair (f, u).

After having gone through these recollections, let us consider a 2-(A ,B)-gerbe G, and let us
once again choose a cover UX = (Ui → X), and objects xi ∈ ObGUi . By Theorem 5.5.9, we obtain
a 1-cocycle (Eij ,Fi) with values in the complex (5.5.1) satisfying eqns. (5.4.6) and (5.5.3). Our first
task is to complement the proof of Proposition 5.4.5, and obtain a 1-cocycle with values in the complex
λ : A −→ B itself.

To this end, we will need to decompose the torsors Eij as well as Fi with respect to some choice
of objects, and then apply the reasoning preceding eq. (5.1.1). More precisely, consider objects fαij and
yi
α
j , of Eij and Fi, respectively, given (Uαij → Uij)α∈Aα

ij
. (Similarly, we denote by yjαi an object of

Fj over Uαij .) Then, since Fi is a B-torsor, the morphism ξij in eq. (5.5.3a) translates into

(5.5.11) (fαij)∗(yj
α
i) ' yi

α
j · hαij ,

where hαij is an object of B over Uαij . (Here we have used the notation (fαij)∗ = J(fαij).) Moreover,
yi
α
j and yiβk are related by:

(5.5.12) yi
α
j ' yiβk · q

βα
kij ,
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with qβαkij an object of B over Uαβijk . It easily seen that these new objects satisfy the identity (up to
isomorphism):

(5.5.13) qβαkij · q
αγ
jil ' q

βγ
kil .

For the part of the cocycle involving the Eij’s alone, subject to eqns. (5.4.6), our choice of objects
determines an object gαβγijk of A obtained from eqn. (5.4.6a) in the standard way:

fαij ∧ f
β
jk 7−→ fαij ◦ f

β
jk ' g

αβγ
ijk ◦ f

γ
ik .

(Recall that the map gijk is just composition of 1-arrows of G.) Moreover, still using the arguments
in [Bre94a], starting from eqn. (5.4.6b) we arrive at the morphism in A :

(5.5.14a) ναβδγηεijkl : gαβγijk · g
γδε
ikl

∼−→ gβδηjkl · g
αηε
ijl .

To translate eqn. (5.5.3b), compute the composition over Uαβγijk :

(fαij ◦ f
β
jk)∗(yk

β
j)

in the two possible ways. A standard calculation, where we use (5.5.11) and (5.5.12), yields the
sought-after arrow in B:

(5.5.14b) mαβγ
ijk : hαij q

αβ
ijk h

β
jk

∼−→ λ(gαβγijk ) qαγjik h
γ
ik q

γβ
ikj .

This arrow in turn satisfies a cocycle condition, which is the translation of eqn. (5.5.4). We arrive at it
by considering the expression

hαij q
αβ
ijk h

β
jk q

βδ
jkl h

δ
kl ,

which would correspond to ξij ◦ (1∧ ξjk) ◦ (1∧ 1∧ ξkl), and computing it in the two possible obvious
ways using (5.5.14b), the braiding of B—and the help of (5.5.13). The calculation itself proceeds
according to the techniques expounded in [Bre94a], therefore we will not reproduce it here. The result
is that the arrows mαβγ

ijk satisfy the cocycle condition:

(5.5.14c) λ(ναβδγηεijkl ) ◦mγδε
ikl ◦m

αβγ
ijk = mαηε

ijl ◦m
βδη
jkl .

Of course this identity holds modulo the obvious isomorphisms arising from the association and
braiding functors in B, which we have silently ignored, as well as the pull-back functors between
different fiber categories.

The cocycle with values in the complex λ : A → B we have obtained comprises the quintuple:

(5.5.15)
(
hαij , q

αβ
ijk ,m

αβγ
ijk , gαβγijk , ναβδγηεijkl

)
subject to eqns. (5.5.14) plus the cocycle condition on the terms ναβδγηεijkl arising from the coherence
condition on the maps (5.4.6b). We refrain from displaying such condition here.

Now let us use the fact that both the gr-stacks A and B are strict and in fact associated to crossed
modules. From the recollections at the beginning we have that in the above quintuple gαβγijk will be a

section of the abelian group sheaf G, hαij and qαβijk are both sections of H , whereas the arrows mαβγ
ijk
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and ναβδγηεijkl will correspond to sections of B and A, respectively denoted bαβγijk and aαβδγηεijkl , satisfying
the (strict) identities:

δ(aαβδγηεijkl ) · gαβγijk · g
γδε
ikl = gβδηjkl · g

αηε
ijl ,(5.5.16a)

σ(bαβγijk ) · hαij · q
αβ
ijk · h

β
jk = u(gαβγijk ) · qαγjik · h

γ
ik · q

γβ
ikj ,(5.5.16b)

f(aαβδγηεijkl ) · bγδεikl · b
αβγ
ijk = bαηεijl · b

βδη
jkl .(5.5.16c)

To these equations we have to add the condition satisfied by the aαβδγηεijkl as consequence of the identity

satisfied by the arrows ναβδγηεijkl .
It is just a matter of using the definition of the mapping cone of a complex to realize that (5.5.16)

express the condition for the quintuple

(5.5.17)
(
hαij , q

αβ
ijk , b

αβγ
ijk , gαβγijk , aαβδγηεijkl

)
to define a cocycle of degree 3 with values in the complex

(5.5.18) A
(f,δ)−−−→ B ⊕G σ·u−1

−−−→ H ,

with A placed in degree 0. This finishes the proof.

5.5.19 Remark. Ignoring the intimidating upper indices relative to the hypercover used in the proof
allows to set qαβijk = 1 so that eqns. (5.5.16), plus the cocycle identity on aijkl, will assume the standard
form for a Čech cocycle of degree 3 with values in (5.5.18).

5.5.20 Remark. The proof of Theorem 5.5.10 actually gives slightly more, in that it gives the 3-cocycle
with values in the complex λ : A → B corresponding to the torsor 1-cocycle with values in (5.5.1),
regardless of whether the involved (braided) gr-stacks are associated to crossed modules.

5.5.21 Remark. The statement (but not the proof) of Theorem 5.5.10 subsumes those of Theorem 5.4.1
and Proposition 5.4.5.

5.5.22 Remark. The cocycle identities (5.5.16) satisfied by the quintuple (5.5.17) are symmetric under
the exchange

bαβγijk ←→ gαβγijk ,

and the corresponding exchanges f ↔ δ and σ ↔ u. This symmetry rests upon that of the crossed
square (5.2.2) determined by the crossed module of strict gr-categories under consideration. Thus,
calling P the crossed square (5.2.2), a 2-gerbe G satisfying the hypotheses of Theorem 5.5.10 ought
be more properly called a 2-P-gerbe.

Let us also observe that the situation described by the hypotheses of Theorem 5.5.10 has another
interesting subcase. Namely, we can consider a complex of length 3 as it was done is sect. 3, and then
define the notion of a 2-gerbe bound by this complex. This is clearly possible using Theorem 5.5.10 by
setting G = 1 (or B = 1). Thus we can state the following definition, generalizing Definition 3.2.1.

5.5.23 Definition. Let A δ−→ B
σ−→ C be a complex of (sheaves of) abelian groups on C/X . A 2-

(A,B,C)-gerbe is a 2-A-gerbe G equipped with a structure of 2-(A ,B)-gerbe where A = TORS(A)
and B = TORS(B,C).
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In the previous definition A is the gr-stack associated to the abelian group A viewed as a crossed
module A → 1. The additive functor λ is thus determined by the pair (δ, 1). Of course, up to
a trivial isomorphism on the resulting cohomology group, we could have chosen the combination
A = TORS(A,B), B = TORS(1, C) due to the symmetry of the two resulting crossed squares.

In the end, one outcome of the material expounded in this section is that the theory of 2-(A ,B)-
gerbes can account for 2-gerbes bound by complexes of abelian groups which are in fact of length 3.
It is particularly relevant, as we will see in the applications to Hermitian Deligne cohomology further
below, that hypercohomology groups with values in the cone of a square can naturally be obtained in
this framework.

Two issues however suggest to push this circle of ideas a little further. On one hand, it is natural
to ask whether Definition 5.5.23 admits a “naive” generalization by simply replacing groups with
gr-stacks. On the other hand, capturing the geometric meaning of the hypercohomology groups with
values in the complex (1.2.12) requires that we have a theory of 2-gerbes bound by complexes of the
appropriate length, which cannot be obtained from what we have right now.

We will address the issue in section 6.

5.6 Examples

We review here a few fairly standard examples to illustrate the foregoing theory. In fact, the following
examples are the 2-gerbe counterpart of the examples presented in sect. 2.2 and 2.3. The analysis
of more interesting examples will be deferred until the last section dedicated to the interpretation of
certain Deligne cohomology groups.

X is an algebraic manifold, and we work with the standard site determined by Xan (see above).

5.6.1 Connective structures (or “concept of connectivity”).

This is the classical example due to Brylinski and McLaughlin (see [BM94, BM96] and [Bry99]).
Let G be a 2-gerbe over X . As expected, a connective structure (or “concept of connectivity” as it

was originally called) on G is a structure of 2-gerbe bound by the complex

O"
X

dlog−−→ Ω1
X

in the sense of Definition 5.3.1 and Lemma 5.3.2. Thus we retrieve Brylinski and McLaughlin’s
original definition, wherein the connective structure is seen as a 2-functor assigning to each local
object of G over U a corresponding Ω1

U -gerbe. In light of Proposition 5.4.5 and Theorem 5.4.7 G can
just as well be considered as a 2-gerbe bound by the gr-stack of (O"

X ,Ω
1
X)-torsors.

From the classification results (see loc. cit. for the original arguments) we have that 2-gerbes with
this connective structure are classified by the hypercohomology group:

H3(X,O"
X

dlog−−→ Ω1
X) ' H4

D(X,Z(2)) .

5.6.2 Hermitian structures.

This version of the idea of hermitian structure was introduced in [Ald05a] by analogy with the notion of
connective structure in the above mentioned works by Brylinski and McLaughlin. Thus, a 2-O"

X -gerbe
G over X with hermitian structure is a 2-gerbe bound by the complex:

O"
X

|·|2−−→ E +
X ,
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or, alternatively, by the gr-stack of (O"
X ,E

+
X )-torsors. Equivalence classes of such 2-gerbes are

classified by the Hermitian Deligne cohomology group of weight 1:

H3(X,O"
X

|·|2−−→ E +
X ) ' Ĥ4

D(X, 1) ,

where we use the same quasi-isomorphism as in sect. 2.3.1.
It is easy to continue the list of examples by promoting those of sect. 2.3 to the realm of 2-gerbes.

We will not do so here, and leave this task to the interested reader. We will examine finer examples of
geometric structures on 2-gerbes in sect. 7.

6 2-Gerbes bound by complexes of higher degree

So far, we have outlined a theory of 2-gerbes bound (in the appropriate sense) by a two-step complex
of braided gr-stacks. We have found that this theory is powerful enough to provide an interpretation in
geometric terms of the elements of degree three hypercohomology groups with values in (cones of)
crossed squares of abelian groups. However, as pointed out above, we need to address the case where
the coefficient complexes have degree higher than 3, where the degree loosely corresponds to the
length. We set out to accomplish this goal by generalizing the concept of (A,B,C)-gerbe, introduced
in sect. 3.2, to the case of 2-gerbes by promoting the coefficient groups to be gr-stacks instead. We
will ultimately be interested in the case of gr-stacks associated to abelian crossed modules, therefore
the general style for this section will be slightly more descriptive—and perhaps informal—compared
to the preceding ones.

6.1 (B, C )-torsors

Consider a complex (i.e. a morphism) of two (braided, as usual) gr-stacks µ : B −→ C on C/X . By
analogy with sect. 3.1, define a (B,C )-torsor to be a pair (P, σ), where P is a B-torsor, and σ is an
equivalence:

σ : P ∧B C
∼−→ C

where on the right-hand side C is considered as a trivial torsor. Equivalently, we require that there be
a morphism:

σ : P −→ C ,

namely a global object (over C/X) of the fibered category Hom(P,C ). Yet another equivalent point
of view is to regard σ as a global object of the torsor P ∧B C . The latter point of view is useful to
arrive at a description in terms of cocycles. Suppose indeed that P is decomposed as in sect. 5.1.3,
with associated 1-cocycle (bij , βijk) with values in B satisfying (5.1.1). By the stack condition, an
object of P ∧BC is equivalent to a collection of pairs

(xi, ci) ∈ Ob(P ∧BC )
∣∣
Ui

satisfying the descent condition on objects. Using the description of contracted product found in [Bre90,
§6.7], we find that the objects ci ∈ ObC |Ui satisfy the condition

(6.1.1a) ρij : cj
∼−→ µ(b∗ij) · ci

(where b∗ is a quasi-inverse of b). This essentially follows from the fact that a morphism (xj , cj)|Uij →
(xi, ci)|Uij in P ∧BC corresponds to the triple(

xj · bji
∼−→ xi , bji , cj

∼−→ µ(bji) · ci
)
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modulo an equivalence explained in loc. cit. The ρij are morphisms in CUij which then satisfy the
coherence condition:

(6.1.1b) µ(βijk) ◦ ρij ◦ ρjk = ρik .

This and (5.1.1) ensure, via the above mentioned equivalence relation, that bki and bkj · bji correspond
the same morphism, thereby ensuring that the cocycle condition in the descent condition is indeed
satisfied.

6.1.2 Definition. The triple (bij , βijk, ρij) satisfying equations (6.1.1), plus (5.1.1) and the coherence
condition on the βijk is a 1-cocycle with values in the complex µ : B −→ C .

Given the square of gr-stacks

B
µ

//

ψ

��

C

π

��

B′
µ′

//

k

�

C ′

we obtain a morphism

(6.1.3) (ψ, π)∗ : TORS(B,C ) −→ TORS(B′,C ′)

by sending a B-torsor P to P ∧B B′ and the morphism σ to π ◦ σ.
A morphism from a (B,C )-torsor (P, σ) to a (B′,C ′)-torsor (P ′, σ′) consists of a square

(6.1.4)

P
σ //

ξ

��

C

π

��

P ′
σ′

//

t

�

C ′

In particular, for B′ = B, C ′ = C , it reduces to a triangle

(6.1.5)

P
σ

��

ξ

��

P ′
σ′

//

t

��
C

Actually, any morphism (6.1.4) can be factored as the canonical morphism (6.1.3) followed by a
morphism of (B′,C ′)-torsors. A morphism will be called an equivalence if so is the underlying
functor ξ.

In summary, a (B,C )-torsor P determines (and it is determined by, up to equivalence) an
equivalence class of 1-cocycles as in the definition. The equivalence relation being the obvious one,
we obtain the following

6.1.6 Proposition.

1. Equivalence classes of (B,C )-torsors are classified by the cohomology set:

H1(X,B −→ C ) .
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2. Moreover, if µ : B → C comes from the crossed square of abelian groups:

B

σ

��

g
// C

τ

��

H v
// K

then the above cohomology set can be identified with the hypercohomology group

H2(X,B → C ⊕H → K) .

Proof. Repeats previous arguments, hence omitted.

6.1.7 Remark. We can use the statement in the above proposition to obtain another characterization of
gerbes bound by length 3-complex, specifically, the cone of the above crossed square. This gives an
alternative point of view for the discussion in sect. 3.2.

Since by definition (B,C )-torsors are B-torsors which become trivial as C -torsors, the following
alternative characterization of (B,C )-torsors coming from a crossed square as in Proposition 6.1.6–2
is an immediate consequence of Theorem 5.4.3:

6.1.8 Proposition. Let µ : B → C arise from a crossed square as in Proposition 6.1.6–2. The
2-functor F of Theorem 5.4.3 induces an equivalence

TORS(B,C ) ∼−→ GERBES(B,H)(TORS(C),τ∗)

where the right hand side denotes the “fiber” of the canonical morphism

(g, v)∗ : GERBES(B,H)→ GERBES(C,K)

over the neutral (C,K)-gerbe, that is τ∗ : TORS(C)→ TORS(K).

Proof. If P is a (B,C )-torsor, by definition there is a morphism σ : P → C , and the diagram

TORS(B)
FB //

µ∗
��

GERBES(B,H)

(g,v)∗
��

TORS(C )
FC

// GERBES(C,K)

from remark 5.4.4 gives
P

� //

σ

��

TORS(B) ∧BP

g∗∧σ
��

C
� // TORS(C)

and the lower right corner gives the neutral (C,K)-gerbe.
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6.2 Complexes of braided gr-stacks

Let A , B, and C be braided gr-stacks over C/X , and let λ : A → B and µ : B → C be additive
functors. We define the composition

(6.2.1) A
λ−→ B

µ−→ C

a complex of gr-stacks if µ ◦ λ is isomorphic to the “null” functor A −→ 1 , to the punctual category
determined by the unit object oC of C .

As before, a situation of particular interest for us will be when everything in sight is strict, and
all the gr-stacks above are in fact associated to abelian crossed modules. Building on what we have
already seen in sect. 5.2, assume that the morphisms λ and µ are associated to the squares

A

δ
��

f
// B

σ

��

G u
// H

B

σ

��

g
// C

τ

��

H v
// K

respectively, which we splice together to obtain the map of complexes:

(6.2.2)
A

δ
��

f
// B

σ

��

g
// C

τ

��

G u
// H v

// K

In all the above we have of course assumed C to be associated to the complex τ : C → K, the rest of
the notations being as in sect. 5.2.

6.3 2-(A , B, C )-gerbes

The main idea is to define 2-gerbes bound by the complex (6.2.1) of braided gr-stacks by analogy with
what was done for gerbes in sect. 3.2.

6.3.1 Definition. Let G be a 2-gerbe over C/X . We say that G is bound by the complex (6.2.1), or
that is is a 2-(A ,B,C )-gerbe, for short, if there is a 2-functor

J̃ : G −→ TORS(B,C )

such that G is a 2-(A ,B)-gerbe for the λ-morphism defined by the composition of J̃ with the obvious
morphism TORS(B,C )→ TORS(B).

Next, we can consider the diagram of gr-stacks:

A
λ //

ϕ

��

B
µ

//

ψ

��

C

π

��

A ′
λ′

//



�

B′

µ′
//

k

�

C ′
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where the top and bottom rows are complexes in the sense specified above in sect. 6.2. Still by analogy
with sect. 3.2, where the corresponding concept for gerbes was introduced, we define a morphism of a
2-(A ,B,C )-gerbe G to a 2-(A ′,B′,C ′)-gerbe G′ to be a cartesian 2-functor

F : G −→ G′

which is a ϕ-morphism, supplemented by a 2-natural transformation

α̃ : (ψ, π)∗ ◦ J̃ =⇒ J̃ ′ ◦ F : G −→ TORS(B,C ) .

We require that composing (pasting) this with the obvious morphism TORS(B,C )→ TORS(B) gives
(up to a modification) the natural morphism associated to the underlying (ϕ,ψ)-morphism.

6.4 Classification III

Given the complex (6.2.1), we obtain a corresponding “complex” of trivial 2-gerbes:

(6.4.1) TORS(A ) λ∗−→ TORS(B)
µ∗−→ TORS(C )

where µ∗ ◦ λ∗ ' (µ ◦ λ)∗ ' 1.

6.4.2 Lemma-Definition. Given a cover UX = (Ui → X)i∈I , a 1-cocycle with values in (6.4.1) is
given by the same data as those for a 1-cocycle with values in (5.5.1) stated in Lemma-Definition 5.5.2,
supplemented by the requirement that there exist morphisms

(6.4.3) σi : Fi −→ C |Ui

such that given the morphism ξij in (5.5.3a) there is a morphism of (B,C )-torsors

(6.4.4) (ξij , tij) : (Fj , σj)|Uij −→ (Fi, σi)|Uij

satisfying a triangle analogous to (6.1.5), namely:

Fj

σj

��

ξij

��

Fi σi

//

tij

��
C

Proof. We need only observe that a morphism

λ∗(Eij) ∧BFj −→ C |Uij

can equivalently be seen as a morphism of C -torsors:

(λ∗(Eij) ∧BFj) ∧BC |Uij −→ C |Uij .

But we have

(λ∗(Eij) ∧BFj) ∧BC |Uij ' λ∗(Eij) ∧B (Fj ∧BC |Uij ) ' Fj ∧BC |Uij

since µ∗ ◦ λ∗ ' (µ ◦ λ)∗ ' 1.
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The argument of the proof also implies that two 1-cocycles (Eij ,Fi, σi) and (E ′
ij ,F

′
i , σ

′
i) with

values in (6.4.1) ought to be considered equivalent if the same conditions of Definition 5.5.7 are
satisfied, with the additional requirement that the morphism (5.5.8b) induces a morphism of (B,C )-
torsors

(Fi, σi) −→ (F ′
i , σ

′
i) .

We leave to the reader the task of spelling out the rest of the details.
The next results combines the generalizations of Theorems 5.5.9 and 5.5.10 to the present case.

Large parts of the proof can be simply carried over, therefore we will be sketchy.

6.4.5 Theorem.

1. Equivalence classes of 2-(A ,B,C )-gerbes are classified by the (pointed) set

H1(X, TORS(A )→ TORS(B)→ TORS(C ))

of equivalence classes of 1-cocycles with values in the complex (6.4.1), according to the Lemma-
Definition 6.4.2.

2. If the braided gr-stacks are all strict and associated to abelian cross modules as in sect. 6.2,
then the above pointed set of equivalence classes is actually in 1–1 correspondence with the
hypercohomology group

H3(X,A→ B ⊕G→ C ⊕H → K)

where we recognize the cone (shifted by 1) of the morphism (6.2.2).

Proof. Let (G, J̃) be a 2-gerbe over C/X bound by the complex (6.2.1). Let us make the usual choice
of a cover UX , to be enhanced to a hypercover below. The proof of Part 1 rests upon the choice of a
decomposition of G with respect to a collection of objects xi ∈ ObGUi . By applying J̃ we obtain
(B,C )-torsors J̃(xi) = F̂i ≡ (Fi, σi) and morphisms

Eij −→Hom(F̂j |Uij , F̂i|Uij ).

Forgetting the morphisms into C gives the underlying functor in TORS(B), therefore Part 1 follows
from Thm. 5.5.9 (or rather, its proof) and the argument made in the proof of 6.4.2 to handle the extra
morphisms into C .

The proof of Part 2 is more laborious, but only computationally so. Fortunately everything that
was done in the proof of Thm. 5.5.10 can be transported verbatim here, so that we only have to deal
with the extra data ensuing from the (B,C )-torsor.

Our first task is to rewrite the classifying 1-cocycle with values in (6.4.1) from Part 1 in terms
of a cocycle with values in the complex of gr-stacks (6.2.1). As before, this is accomplished by
decomposing the cocycle (Eij ,Fi, σi) with respect to a choice of objects subordinated to a given
hypercover. As in the proof of Thm. 5.5.10, we refine UX by (Uαij → Uij)α∈Aα

ij
. We also keep all the

choices and notations made there.
Recall that we had obtained the quintuple (5.5.15) which we rewrite here for convenience:(

hαij , q
αβ
ijk ,m

αβγ
ijk , gαβγijk , ναβδγηεijkl

)
where hαij , q

αβ
ijk are objects of B, mαβγ

ijk are morphisms of B, and gαβγijk and ναβδγηεijkl are objects and
morphisms of A , respectively. They satisfy the cocycle conditions given by the equations (5.5.14)
and (5.4.6b).
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Since the morphism σi : Fi → C |Ui are global over Ui, the arguments in sect. 6.1 imply that there
are objects ziαj ∈ ObC |Uα

ij
and morphisms tαij and ραβjik in C |Uα

ij
and C |

Uαβ
ijk

such that:

tαij : zj
α
i

∼−→ µ(hαij) · ziαj(6.4.6a)

and

ρβαkij : zi
α
j

∼−→ µ(qαβjik) · zi
β
k .(6.4.6b)

Both equations (6.4.6) are obtained by applying the morphisms σi, σj , etc., namely the triangle right
after (6.4.4), to eqns. (5.5.11) and (5.5.12), respectively. We have used the relation qαβjik ' (qβαkij)

∗,
easily derived from (5.5.12), where (·)∗ denotes the quasi-inverse. The final piece of the cocycle
condition is a relation for the morphisms tαij and ρβαkij which is computed by passing from zk

γ
i to ziαj

in two different ways. Either as:

(6.4.7) ραγjik ◦ t
γ
ik : zkγi

∼−→ µ(hγki) · µ(qγαkij) · zi
α
j ,

or as:

(6.4.8) tαij ◦ ρ
αβ
ijk ◦ t

β
jk ◦ ρ

βγ
jki : zk

γ
i

∼−→ µ(qγβikj) · µ(hβkj) · µ(qβαkji) · µ(hαji) · ziαj ,

where, as before, we are ignoring the various associator isomorphisms and natural transformations
associated with µ.

If we replace the three middle terms in the right hand side of (6.4.8) using (5.5.14b) and the
relations µ ◦ λ(gβαγkji ) ' oC and qγβikj · q

βγ
jki ' oC , where oC is the unit element of C , we find

µ(mβαγ
kji ) ◦ tαij ◦ ρ

αβ
ijk ◦ t

β
jk ◦ ρ

βγ
jki : zk

γ
i

∼−→ µ(hγki) · µ(qγαkij) · zi
α
j .

Comparing with (6.4.7), we obtain the desired relation:

(6.4.9) µ(mβαγ
kji ) ◦ tαij ◦ ρ

αβ
ijk ◦ t

β
jk ◦ ρ

βγ
jki = ραγjik ◦ t

γ
ik .

Thus, starting from the cocycle (Eij ,Fi, σi) with values in (6.4.1), the corresponding cocycle with
values in the complex (6.2.1) is the 8-tuple

(6.4.10)
(
zi
α
j , t

α
ij , ρ

αβ
kij , h

α
ij , q

αβ
ijk ,m

αβγ
ijk , gαβγijk , ναβδγηεijkl

)
satisfying the conditions (5.5.14), (5.4.6b), (6.4.6), and (6.4.9).

The proof will be complete when we specialize (6.4.10) and the relations it satisfies to the case
where all the involved gr-stacks are Picard and associated to the abelian crossed modules introduced in
sect. 6.2. This means that C = TORS(C,K), where the underlying groupoid C ×K ⇒ K has source
and target maps given by (c, z) → z and (c, z) → τ(c)z, respectively, and similarly for A and B
with the appropriate notations and relations, which we can lift directly from the proof of Thm. 5.5.10,
eqns. (5.5.16). Thus, the objects ziαj will be identified with sections of the group K|Uα

ij
, and we also

need to introduce sections cαij of C|Uα
ij

and lαβijk of C|
Uαβ

ijk
to account for the morphisms tαij and ραβijk,

respectively.
With these provisions, the 8-tuple (6.4.10) becomes

(6.4.11)
(
zi
α
j , c

α
ij , l

αβ
kij , h

α
ij , q

αβ
ijk , b

αβγ
ijk , gαβγijk , aαβδγηεijkl

)
,
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and equations (6.4.6) and (6.4.9) become

τ(cαij) · zjαi = v(hαij) · ziαj(6.4.12a)

τ(lβαkij) · zi
α
j = v(qαβjik) · zi

β
k(6.4.12b)

g(bβαγkji ) · cαij · l
αβ
ijk · c

β
jk · l

βγ
jki = lαγjik · c

γ
ik .(6.4.12c)

The full cocycle condition for the 8-tuple (6.4.11) is then given by eqns. (6.4.12) plus eqns. (5.5.16),
which we rewrite here:

δ(aαβδγηεijkl ) · gαβγijk · g
γδε
ikl = gβδηjkl · g

αηε
ijl ,

σ(bαβγijk ) · hαij · q
αβ
ijk · h

β
jk = u(gαβγijk ) · qαγjik · h

γ
ik · q

γβ
ikj ,

f(aαβδγηεijkl ) · bγδεikl · b
αβγ
ijk = bαηεijl · b

βδη
jkl .

Finally we need also to add the cocycle condition on the elements aαβδγηεijkl .
The amount of typographical decoration provided by the upper indices related to the hypercover

can be quite daunting. Ignoring these indices (that is, reducing everything to the Čech case), although
potentially less precise from the cohomological point of view (cf. the discussion in [Bre94a]) does
shed some light on how the various parts are organized. Without upper indices we need to set qαβijk = 1

and lαβijk = 1 in the above formulas. Thus, the 8-tuple (6.4.11) becomes a sextuple(
zi , cij , hij , bijk , gijk , aijkl

)
satisfying the cocycle condition:

τ(cij) · zj = v(hij) · zi
g(bkji) · cij · cjk = cik ,

δ(aijkl) · gijk · gikl = gjkl · gijl ,
σ(bijk) · hij · hjk = u(gijk) · hik
f(aijkl) · bikl · bijk = bijl · bjkl .

Now write the cone of the the morphism of complexes (6.2.2) in the form:

A

“
f
δ

”
−−−→ B ⊕G

“
g 1
σ u−1

”
−−−−−−→ C ⊕H ( τ v−1 )−−−−−→ K

It can now be seen in a direct way that the 8-tuple (6.4.11) (or its simplified Čech version) indeed
defines a 3-cocycle with values in the cone of (6.2.2). This is straightforward and left to the reader. We
will also omit the verification that passing to an equivalent torsor 1-cocycle (E ′

ij ,F
′
i , σ

′
i) representing

(G, J̃), we obtain an equivalent 3-cocycle.

An even more special case of Theorem 6.4.5– 2 is when the diagram (6.2.2) reduces to the complex

A
f−→ B

g−→ C. Let (G, J̃) be a 2-gerbe over C/X bound by TORS(A)→ TORS(B)→ TORS(C).
By comparing the classifying cocycles we immediately obtain the following

6.4.13 Corollary. (G, J̃) is equivalent to a 2-(A,B,C)-gerbe in the sense of Definition 5.5.23.
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7 Applications

In this section we will address a few questions about the correspondence between certain Hermitian
Deligne Cohomology groups and equivalence classes of 2-gerbes equipped with various geometric
structures of the type described in the previous sections.

For consistency with the results of [Ald05a] and previous work in Deligne cohomology we will be
placing Z(p)X in degree zero, therefore all cohomology degrees will be shifted up in comparison with
those appearing in the previous sections.

7.1 Truncated hermitian Deligne complexes

Beside the Hermitian Deligne complexes recalled in sect. 1.2, we need two more complexes we
introduced the in [Ald05a], namely

Γ(2)• = Cone


Z(2) // OX //

��

Ω1
X

��

E 0
X(1) // E 1

X(1)

 [−1] ,

plus the truncation

Γ̃(2)
•

= Cone


Z(2) // OX //

��

Ω1
X

��

E 0
X(1) // 0

 [−1] ,

where the maps are the same as in the corresponding places in the diagram defining Dh.h.(2)•X . (It is
convenient to pass, from now on, to an additive notation.) Note that Γ(2)• is an obvious truncation of
the Hermitian Deligne complex Dh.h.(2)•X , while Γ̃(2)

•
is in turn a truncation of Γ(2)•. These two

complexes were introduced as part of the effort to analyze the interplay and compatibility of different
types of differential geometric structures on 2-gerbes. Indeed, it can be shown that Γ(2)• arises from
the diagram of complexes:

Z(2)•D,X −→ C(2)• ←− 2π
√
−1⊗Dh.h.(1)•X

in the sense of [Beı̆86], namely as the cone of the difference of the two maps. Here C(2)• is the
complex

Z(2)X −→ OX −→ E 1
X(1) .

Similarly, Γ̃(2)
•

arises in the same way from the diagram:

Z(2)•D,X −→ Z(1)•D,X ←− 2π
√
−1⊗Dh.h.(1)•X ,

where the two maps are just the forgetful maps. We have repeatedly seen how the complexes Z(2)•D,X
(resp. Dh.h.(1)•X ) intervene in the definition of connective (resp. hermitian) structures. Note, however,
that the above complexes and their geometric role was introduced rather informally in the context of
[Ald05a]. The results of sect. 7.2 provide a more rigorous footing.

We quote from [Ald05a] the following exact sequences. From the definitions we immediately
have:

0 −→ E 1
X(1)[−3] −→ Γ(2)• −→ Γ̃(2)

• −→ 0
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and

0 −→ E 2
X(1) ∩A 1,1

X [−4] −→ Dh.h.(2)•X −→ Γ(2)• −→ 0 .

Furthermore, using the standard arguments, as well as the softness of E 1
X(1), E 2

X(1), and A 1,1
X , we

obtain:

· · · −→ E1
X(1) −→ H3(X,Γ(2)•) −→ H3(X, Γ̃(2)

•
) −→ 0

· · · −→ E2
X(1) ∩A1,1

X −→ Ĥ4
D(X, 2) −→ H4(X,Γ(2)•) −→ 0

and the isomorphism
Hk(X,Γ(2)•) ' Hk(X, Γ̃(2)

•
) , k ≥ 4 .

7.2 Geometric interpretation of some cohomology groups

Observe that using OX/Z(2)X ' O"
X , the complex Γ(2)• can be identified (modulo the index shift)

with the cone of the square

(7.2.1)

OX/Z(2)X //

��

Ω1
X

��

E 0
X(1) // E 1

X(1)

and similarly for Γ(2)• by replacing E 1
X(1) with 0:

(7.2.2)

OX/Z(2)X //

��

Ω1
X

��

E 0
X(1) // 0

Both cases correspond to the diagram (5.2.2).
To make contact with the contents of sect. 5, let us set

A = TORS(OX/Z(2)X ,E 0
X(1)) , B = TORS(Ω1

X ,E
1
X(1))

so that we have the equivalences

TORS(A ) ∼−→ GERBES(OX/Z(2)X ,E 0
X(1))

and

TORS(B) ∼−→ GERBES(Ω1
X ,E

1
X(1)) .

Using Theorem 5.4.3 and Proposition 6.1.8 we find the following alternative characterization of
O"
X -gerbes with compatible hermitian and connective structure:

7.2.3 Corollary. The group H3(X,Γ(2)•) classifies equivalence classes of (OX/Z(2)X ,E 0
X(1))-

gerbes, that is, hermitian gerbes in the sense of 2.3.1, which become neutral as (Ω1
X ,E

1
X(1))-gerbes.
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Of course, the other possible but entirely equivalent statement would have been that the cohomology
group under scrutiny classifies (TORS(OX/Z(2)X ,E 0

X(1)), TORS(Ω1
X ,E

1
X(1)))-torsors. We leave to

the reader the task of formulating a similar statement for the complex Γ̃(2)
•
.

7.2.4 Remark. A short remark is in order about other possible ways of interpreting the same coho-
mology group. As noted, we can take advantage of the symmetry of the square (7.2.1) in the sense
explained in Remark 5.5.22, and modify things accordingly. This preserves the cone, namely Γ(2)•,
and does not alter the classifying group. It does change the gr-stacks A and B, but ultimately not the
fact that we are dealing with O"

X -gerbes.

7.2.5 Remark. The above characterization (and the general theory it descends from) provides a finer
description of the geometric objects corresponding whose equivalence classes correspond to the group
elements when the coefficient complex come from a cone. Had we just used the complex Γ(2)• as
it stands, we would have been in the rather awkward position of calling something with values in
Ω1
X ⊕ E 0

X(1) a “connective structure,” a fact that does not seem to sit well with the degrees.

The corresponding result for 2-gerbes provides a similar interpretation for the group of equivalence
classes of 2-O"

X -gerbes with compatible hermitian and connective structure defined in [Ald05a]. It is
an immediate consequence of Theorem 5.5.10 as follows:

7.2.6 Corollary. Elements of the hypercohomology group H4(X,Γ(2)•) are in 1–1 correspondence
with equivalence classes of 2-gerbes on X bound by the square (7.2.1) (in the sense of remark 5.5.22).
A similar conclusion holds by replacing Γ(2)• with Γ̃(2)

•
.

Note that a remark concerning the square similar to the one just made for gerbes holds in this case
as well.

In a similar vein to what was just done for the complex Γ(2)•, we can identify Dh.h.(2)•X defined
in eq. (1.2.12) with the cone of

(7.2.7)

OX/Z(2)X //

��

Ω1
X

//

��

0

��

E 0
X(1) // E 1

X(1) // E 2
X(1) ∩A 1,1

X

which will correspond to the diagram (6.2.2). We have explicitly written the last column as 0 →
E 2
X(1) ∩A 1,1

X in order to emphasize the correspondence. To take the point of view of sect. 6, let us
introduce the discrete gr-stack

C = TORS(0,E 2
X(1) ∩A 1,1

X ) ' E 2
X(1) ∩A 1,1

X ,

namely the only morphisms are the identity maps. Note since C is discrete, then the corresponding
2-gerbe is discrete as well, that is we have:

TORS(C ) ' TORS(E 2
X(1) ∩A 1,1

X ) .

In other words, it has only identity 2-arrows, and it corresponds to the neutral gerbe of torsors.
Now, as a consequence of Theorem 6.4.5 we obtain the following general geometric interpretation

for the hermitian Deligne cohomology group:

7.2.8 Corollary. Elements of the hermitian Deligne cohomology group Ĥ4
D(X, 2) are in 1–1 corre-

spondence with equivalence classes of 2-gerbes on X bound by the diagram (7.2.7), that is, by the
complex (6.2.1) of gr-stacks associated to the columns of (7.2.7).
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7.3 Geometric construction of some cup products

7.3.1

If (L , ρ) and (M , σ) are two metrized line bundles (invertible sheaves) over X , their isomorphism
classes determine elements of Ĥ2

D(X, 1) ' P̂icX . According to the last paragraph of sect. 1.2, the
cup product [L , ρ] ∪ [M , σ] in hermitian Deligne cohomology will land in Ĥ4

D(X, 2).
It is known from the works of Brylinski and McLaughlin ([BM94, BM96, Bry99]) that the

corresponding problem in standard Deligne cohomology has a geometric interpretation: there is a
2-gerbe

(
L ,M

]
bound by Z(2)•D,X whose class is the cup product [L ] ∪ [M ] ∈ H4

D(X,Z(2)) of
the elements in PicX determined by L and M . Similarly, in [Ald05a] we constructed a modified
cup product

PicX ⊗ PicX −→ Ĥ4
D(X, 1)

and a corresponding “tame symbol,” namely a 2-gerbe
(
L ,M

]
h.h.

bound by Dh.h.(1)•X . It turns
out that both symbols have the “same” (in the sense of equivalent) underlying 2-gerbe, obtained by
applying a suitable forgetful functor to both sides. In other words we have a lift

PicX ⊗ PicX −→ H4(X, Γ̃(2)
•
)

and it follows from the material recalled in sect. 7.1 that at the level of cohomology the latter lift can
be arranged to take values in H4(X,Γ(2)•). Thus, from a pair of invertible sheaves L and M we
obtain (canonically) a 2-gerbe bound by the square (7.2.2), and (non canonically) by way of softness
of one of the sheaves involved, a 2-gerbe bound by the square (7.2.1).

The cohomology exact sequences recalled in sect. 7.1, and the fact that truncation will map the
diagram (7.2.7) to the square (7.2.1), and then to the square (7.2.2), show that the 2-gerbe bound
by (7.2.7) corresponding to the cup product [L , ρ] ∪ [M , σ] will provide the required lift.

7.3.2

We will denote by
(
L ,M

]
ĥ.h.

the 2-gerbe bound by (7.2.7) corresponding to the cup product of the
two metrized line bundle. Let us sketch the geometric construction of such 2-gerbe borrowing on the
corresponding constructions of [BM96] and [Ald05a].

If we work locally with respect to some cover U → X of X , any 2-A -gerbe G will be a 2-gerbe
of torsors, namely there is an equivalence:

GU
∼−→ TORS(A |U ) ∼−→ GERBES(OX/Z(2)X |U ,E 0

X(1)|U ) ,

where the latter equivalence follows from Theorem 5.4.3. Thus if G is bound by the complex of
gr-stacks determined by the diagram (7.2.7), with A , B, and C as in sect. 7.2, then locally it has the
form

TORS(A |U ) −→ TORS(B|U ,C |U ) .

Note that, thanks to 6.1.6-2, Proposition 6.1.8, and to the fact that in the relevant diagram one of the
group is zero, we have an equivalence:

TORS(B|U ,C |U ) ∼−→ GERBES(Ω1
X |U ,E 1

X(1)|U ,E 2
X(1) ∩A 1,1

X |U ) .

Let
〈
L ,M

]
denote the underlying 2-gerbe of both

(
L ,M

]
and

(
L ,M

]
h.h.

. The local objects of〈
L ,M

]
over U are in 1–1 correspondence with the non-vanishing sections of L |U . We may denote

such a section s, which thought of as an object, by
〈
s,M

]
.
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The choice of s will determine an A |U -torsor as follows. Given any other non-vanishing section
s′, write s = s′ · g where g ∈ OX/Z(2). The A |U -torsor Hom(s, s′) can be identified with the
(OX/Z(2)X |U ,E 0

X(1)|U )-gerbe
(
g,M

]
h.h.

by the above equivalence. Let us denote by
〈
g,M

]
the underlying OX/Z(2)X -gerbe. Recall from [BM96, Ald05a] that its objects over U are in 1–
1 correspondence with the non-vanishing sections t of M |U , denoted

〈
g, t

]
, and that an arrow

ϕ :
〈
g, t

]
→

〈
g, t′

]
is identified with a section of Deligne’s torsor

(
g, g′

]
, where t = t′ · g′, for g′

a section of OX/Z(2)X over U , see [Del91]. We reserve the notation
(
g, g′

]
for the same torsor

equipped with the connection defined in loc. cit., whereas the notation
(
g, g′

]
h.h.

denotes the same
underlying torsor equipped with the hermitian structure defined in [Ald05a].

To summarize, to define
(
L ,M

]
ĥ.h.

we have to define a 2-functor J̃U from GU to the fibered
2-category of gerbes bound by

Ω1
X |U

π1−→ E 1
X(1)|U

π◦d−→ E 2
X(1) ∩A 1,1

X .

To begin with, let us define a 2-functor JU to GERBES(Ω1
X |U ,E 1

X(1)|U ) as follows. To an object〈
s,M

]
assign the trivial B|U -torsor T (B|U ) ' TORS(Ω1

U ,E
1
U (1)). To a 1-arrow〈

g, t
]
:
〈
s,M

]
−→

〈
s′,M

]
the functor

〈
g, t

]
∗ : T (B|U )→ T (B|U ) defined as follows: an object of T (B|U ) is identified with

an object (C, ξ) of TORS(Ω1
U ,E

1
U (1)), where C is a Ω1

U -torsor which becomes trivial as a E 1
U -torsor

by way of ξ, which in turn can be identified with a section of E 1
U . Then we define

〈
g, t

]
∗ by

(7.3.1)
〈
g, t

]
∗ : (C, ξ) 7−→ (C, ξ + ξt) ,

where the underlying map on TORS(Ω1
U ) is the identity, and ξt is the imaginary 1-form:

(7.3.2) ξt = −1
2

log |g| · dc log σ(t) +
1
2

dc log |g| · log σ(t) .

Here we have used the notation σ(t) = |t|2σ. It is straightforward to verify that this is compatible with
morphisms in T (B|U ) and with the action of B|U : if (D, η) is an object of TORS(Ω1

U ,E
1
U (1)), then

(C, ξ) · (D, η) = (C ⊗D, ξ + η) ,

and obviously this commutes with (7.3.1), making it a morphism of torsors.
Now, if ϕ is a section of

〈
g, g′

]
, the corresponding object of

(
g, g′

]
h.h.

is (ϕ, ‖ϕ‖) where ‖·‖ is
the hermitian structure given in [Ald05a]. To it we assign the natural transformation given by the
morphism in T (B|U ):

(7.3.3) (ϕ, ‖ϕ‖)∗ : (C, ξ + ξt) −→ (C, ξ + ξt′) ,

which is defined by the underlying map

(7.3.4)
ϕ : C −→ C

c 7−→ c+ ϕ−1∇ϕ

where∇ is the connection on
(
g, g′

]
. From [Del91] we have that locally it has the form− log g dlog g′ .

Therefore the section ξ + ξt will map to ξ + ξt + π1(ϕ−1∇ϕ) and notice that this differs from ξt′ by
2π
√
−1 dlog‖ϕ‖, using the fact that locally ‖·‖ is given by π1(log g) log |g′|. Note that the addition

of dlog‖ϕ‖ is just the action of (Ω1
U , 2π

√
−1 dlog‖ϕ‖) as an object of B|U .
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Finally, in order to get the functor J̃U , we need one more prescription. Namely we define it by
assigning to

〈
s,M

]
the (B|U ,C |U )-torsor defined as follows. It is the trivial B|U -torsor defined as

above equipped with the morphism

TORS(Ω1
U ,E

1
U (1)) −→ E 2

U (1) ∩A 1,1
U

defined by the assignment

(7.3.5) (C, ξ) 7−→ π(dξ)− 1
4

log ρ(s) ddc log σ(t)

for every object (C, ξ) of TORS(Ω1
U ,E

1
U (1)). Observe that ddc log σ(t) = c1(M ), hence there is no

dependence on t. Now, a calculation shows that

π(dξt) = −1
2

log |g| ddc log σ(t)

so that it is immediately verified that the assignment (7.3.5) commutes with the morphism (7.3.1).
With these provisions we have:

7.3.6 Theorem. The class of the 2-gerbe
(
L ,M

]
ĥ.h.

in the cohomology group Ĥ4
D(X, 2) is the cup

product [L , ρ] ∪ [M , σ] in hermitian Deligne cohomology.

Proof. It follows immediately from Theorem 6.4.5, the form of the maps in diagrams (1.2.12) and
(7.2.7), and the cup product map

Dh.h.(1)•X ⊗Dh.h.(1)•X −→ Dh.h.(2)•X

given in [Ald05b], where the explicit cup-product in Čech cohomology is computed.

Conclusions

We have generalized the concept of “abelian gerbe bound by a complex” to the case of longer
coefficient complexes, and to 2-gerbes, where we have used complexes of gr-stacks of length 3. We
have verified that these 2-gerbes are classified by cohomology sets of degree 1 with values in the
associated complexes of torsors over these gr-stacks. We have also obtained, by choosing appropriate
decompositions and hypercovers, that in the strictly abelian situation the general classification reduces
to degree 3 cohomology groups with values in cones of crossed squares, and other similar diagrams.
In all cases we have obtained explicit cocycles, where we have given their expression in terms of
hypercover, rather than simply in terms of Čech cocycles.

As an application, we have dealt with differential geometric structures on gerbes and 2-gerbes
and questions of geometric constructions of certain cup-products in hermitian Deligne cohomology.
In particular, we have put certain by now standard constructions of the concept of connection and
curvature in the general context of gerbe (or 2-gerbe) bound by a complex. We have further clarified
the reason why there seem to exist different possibilities in defining what a “hermitian gerbe” should
be (cf. remark 2.3.1). Finally, in the last section we have geometrically constructed a 2-gerbe bound
by the hermitian Deligne complex Dh.h.(2)•X corresponding to the cup product of two metrized line
bundles in hermitian Deligne cohomology.

There are several possible extensions and generalizations of the work carried out in this paper. In
the case of gerbes, it would be interesting to remove the abeliannes assumption and work in the same
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framework as [Deb77] to study extended structures as coefficients, beyond crossed modules: crossed
squares, 2-crossed complexes, etc. come to mind. In particular, it would be interesting to see whether
the idea of phrasing the notion of connection and curvature in terms of gerbes bound by complexes
extends to the non-abelian case, and how it compares with other existing approaches (see, e.g. [BM]).
In [Deb77] a compelling motivation was to obtain a theory of non-abelian H2 which behaved better
than Giraud’s with respect to group exact sequences. Pursuing some these ideas in the case of 2-gerbes
would also be quite interesting. We hope to return to some of these issues in future publications.
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