CHERN CLASSES OF SINGULAR VARIETIES, REVISITED

PAOLO ALUFFI

ABSTRACT. We introduce a notion of ‘proChow group’ of algebraic varieties, reproducing
the notion of Chow group for complete varieties, and functorial with respect to arbi-
trary morphisms. We construct a natural transformation from the functor of constructible
functions to the proChow functor, extending MacPherson’s natural transformation. We
illustrate the result by giving very short proofs of (generalizations of) two well-known facts
on Chern-Schwartz-MacPherson classes.

1. INTRODUCTION

Let X be a variety over an algebraically closed field of characteristic 0. Equivalent
notions of total Chern class of X were given independently by Marie-Hélene Schwartz ([9])
and by Robert MacPherson ([8]) for compact complex algebraic varieties, in homology;
the definition was later extended to complete algebraic varieties on an algebraically closed
field of characteristic 0, in the Chow group A, X of X. We call this class Chern-Schwartz-
MacPherson (CSM) class of X, denoted cgnm(X).

The CSM class agrees with the ordinary Chern class of the tangent bundle if X is non-
singular: cspm(X) = ¢(TX) N [X] in this case. It also satisfies a remarkable functorial
property: it is defined as the value c¢,.(1x) taken by a natural transformation c, of the
constructible function functor F to the Chow functor A,, on the constant function 1Ix.
Alexandre Grothendieck and Pierre Deligne had conjectured the existence of this natu-
ral transformation; MacPherson constructed it explicitly in [8], by using other important
invariants introduced in the same article.

In this note we propose an alternative construction of Chern-Schwartz-MacPherson classes,
in an ‘enriched” Chow group A, X (the proChow group) obtained by taking appropriate lim-
its of ordinary Chow groups. The proChow group is a covariant functor with respect to every
morphism (while the Chow group is only functorial with respect to proper morphisms); we
prove that a corresponding CSM transformation F ~» A, is natural with respect to arbitrry
morphisms. If X is complete, the proChow group of X is canonically isomorphic to the
ordinary Chow group, and its proCSM class equals the Chern-Schwartz-MacPherson class.

Our definition is direct, without reference to auxiliary invariants such as Chern-Mather
classes or the local Euler obstruction. To illustrate its use, we give very condensed proofs
of two known results on CSM classes: the product formula of Kwieciriski ([7]), and the
Ehlers-Barthel-Brasselet-Fieseler formula for the CSM classes of toric varieties ([3]).

2. THE PROCHOW FUNCTOR

We work over an algebraically closed field &k of characteristic 0.
Let . be a category of k-varieties. For U in ., let %1y be the category whose objects
are the .-morphisms i : U — Z* from U to complete varieties in ., and whose morphisms
1
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j — 1 are the commutative diagrams of k-varieties
i 77
/ J/F
T~
1 Z’L

U

where 7 is a proper morphism. We assume that the following conditions on . are verified:

e For all U in . and every pair of objects i, j of 777, there is an object k in .7 such
that k — i and k — j, and k : U — Z* is a closure (that is, k is an open embedding,
and U = Z%);

e If U is nonsingular, one may choose the closure Z* as above and good: that is, Z*
is nonsingular, and the complement Z* ~ U is a divisor with normal crossings and
nonsingular components.

For example, these conditions are satisfied for the category of all k-varieties (in charac-
teristic zero, by resolution of singularities).

Definition 2.1. The proChow group of U (with respect to .7 ) is the limit ASU = lim, WA

Concretely, an element p € /&f U consists of the choice of an element p’ in the (con-
ventional) Chow group A,Z! for every i in .#, subject to the condition of compatibility
mep) = p for every m: j — i. We say that p is the component of p in A, Z°.

We will omit the upper index . when no ambiguity seems likely; the reader will note
that the proChow group does depend on the chosen category .. The following facts are
however independent of .7 (if . satisfies the conditions of ‘cofinality’ specified above), and
immediately verified:

Lemma 2.2. With notation as above:

o IfU is complete, there is a canomcaAl isomorphism /X\*U = AU.

e In order to specify an element of AU, it suffices to choose a compatible set of
pt € AZ! for all closuresi:U — Z' in 7.

o If, further, U is nonsingular, it suffices to choose a compatible set of p' € A, Z* for
every good closure i : U — Z' in 7.

Every subscheme B of U determines a distinguished element [B] of A,U: for every closure
j : U — ZJ, choose the class [B] € A,Z7 of the closure of B in Z7; this choice is clearly
compatible. If U is complete, [B] € ;‘\\*U =~ A,U is the ordinary ‘fundamental class’ of B.

The proChow group A, = /&fj is a functor % ~» Abelian Groups: if f : X — Y is a
morphism in ., then j — j o f induces a functor .3 — ¥x, and hence a homomorphism
fe ,&*X — /&*Y. Concretely, for p € K*X and j : Y — ZJ in %, the component
of f.p dans A,Z’ is simply equal to the component of p. If f is proper and X and Y
are complete, then f, : ;‘\\*X 2 AX - AY = B\*Y is the ordinary proper push-forward
of Chow groups. Note however that while A, is only functorial with respect to proper
morphisms, the proChow A, is functorial with respect to all morphisms in .%.

3. PROCSM CLASSES PROCSM

With .7 as in §2, and X in .7, we define the group of .7 -constructible functions F” (X)
as the group of finite Z-linear combination of caracteristic functions 1y (where 1y (p) = 1
ifpeU,and 0if p e X \U) where U are nonsingular locally closed subvarieties of X, such
that the inclusions U C X are morphisms of .%.
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We now pose a further condition on .. We require that the conventional push-forward
of constructible functions (defined by taking the fiberwise Euler characteristic, see [8] for
the complex case) preserve .-constructibility: that is, that it defines a push-forward f, :
F7(X) — FZ(Y) for every morphism f : X — Y dans .. We also require that Ix be
-constructible for every X in .7.

Under these hypotheses, F” defines (in characteristic zero!) a covariant functor .7 ~»
Abelian Groups, and every X in . determines a distinguished element 1y € F7(X). We
will usually omit the upper index .#. R

Next, we define a homomorphism F(X) — A, X, a — {a}, and a distinguished element
{X}:={lx} € A,X. We begin with the nonsingular case:

Definition 3.1. Let U be nonsingular, in . The proCSM class of U in K*UL denoted
{U}, is the element of the proChow group determined by c(QIU(log DYY)N[U] € AU for any
good closure U of U in .y, where D = U~ U is the corresponding normal crossing divisor,
and Qlﬁ(log D)V denotes the dual of the bundle of differential forms with logarithmic poles
along D.

This choice is compatible in the sense of §2, as we will see in Theorem 3.3; thus it defines
an element of K*U , by Lemma 2.2.

Now let X be an arbitrary (that is, not necessarily nonsingular) in .#, and let o € F(X)
be a constructible function on X. Let o = ), mylly, with U nonsingular, locally closed,
igp:UC X in.Y, and my € Z.

Definition 3.2. The proCSM class of « is the sum {a} = >, myiv.{U} € A.X. The
proCSM class of X is the class {X} = {llx}.

We can now state and proof the main result of this note.

Theorem 3.3. With notation as above:
(1) The classes specified in Definition 5.1 are compatible: that is, if i : U — U and
Jg:U — U’ are good closures of U in S, with complements D, D7, and 7 :

U - T isa morphism such that i = 7o j, then 7, (c(Qlﬁj (log D/)V) N [Uj]) =
C(Qlﬁl (log DY) N [U].

(2) The class in Definition 3.2 does not depend on the choices: that is, ifa =) ,; mylly =
Yoy nvily are two realizations of « as finite linear combinations of characteristic
functions of nonsingular locally closed subvarieties of X, then > ;myiv.{U} =
>vnvive{V} R

(3) The homomorphism F(X) — A, X, a— {a} given in Definition 3.2 gives a natural
transformation F ~ A.; that is, f.{a} = {f«(a)} for every morphism f: X — Y
in <.

(4) If X is complete, then the proCSM class of X is the ordinary Chern-Schwartz-
MacPherson class: {X} = csm(X) € AL X ZAX.

One can prove the first three points independently of Macpherson’s result in [8]; this
is done in [1]. In the particular case of complete varieties and proper morphisms, the
third point gives a natural transformation as prescribed by the (Chow version of) the
Grothendieck-Deligne conjecture; the equality of proCSM classes and CSM classes for com-
plete varieties follows then from the uniqueness of this natural transformation (which is an
immediate consequence of resolution of singularities.)
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We present here a proof that uses MacPherson’s theorem (that is, the fact that MacPher-
son’s transformation ¢, is natural), and that leads to a quicker argument.

Proof. — 1If U is nonsingular, U is a good closure of U, and D = U \ U, then
(1) (L (10g D)) N [U] = e, (1) € A,T

This follows easily from the fact that ¢, is natural, and from an explicit Chern class com-
putation; see for example Proposition 15.3 in [6], or Theorem 1 in [2].

(1) follows from (), from the fact that c, is natural, and from the definition of push-
forward of constructible functions:

- (C(Qlﬁi(log DY) [Ui]) = meu(lly) = exm(lly) = (L) = e(@L, (log D)) 1 [T7]

The proof of the other points is streamlined by the following alternative version of Defi-
nition 3.2:

Lemma 3.4. For every z : X — Z in X, and every a € F(X), the component of {a} in
AZ is ci(ze()).

To prove the lemma, use () to write the component of {U} in A.Z, for U nonsingular and
2y U — Zin 7, as co(zv.(1y)). If a € F(X), then a = ) ;; mylly, with U nonsingular
and the inclusion U C X in .%; thus, for every z : X — Z, the component of » ,;, my{U}
in A,Z is Yy mucs(z:lly) = co(2 (Do mully)) = co(24(v)), as stated.

(2) follows immediately, since c(z«(a)) only depends from «, and not from the decom-
position o = Y mylly. On the other hand, if X is itself complete, then taking Z = X,
z =1idx, and a = 1 x in Lemma 3.4, one gets (4).

Finally, Lemma 3.4 implies (3). Indeed, let z : Y — Z be any object of .#y; then wo f is
an object of .#x and, by the definition of push-forward of proChow groups, the component
in A.Z of the push-forward f.{a} is simply equal to the component of {a} in A.Z. By
Lemma 3.4, this component is ¢, ((w o f).a) = ¢x(2+(f«(«))), and once more by Lemma 3.4
this is equal to the component of {f.(a)} in A, Z, yielding (3). O

4. EXAMPLES

We illustrate the formalism presented in §2 and §3 by giving condensed proofs (valid in
the proCSM context) of two known results on Chern-Schwartz-MacPherson classes.

We will use different _categories, as permitted by the constructions given in the previous
sections. Denoting by A, the proChow functor obtained with . = the category of all k-
varieties, and by F the functor of constructible functions on this category, note that fgr every
other category .# one has canonical homomorphisms F”(X) — F(X), A.(X) — A7 (X),
compatible with the corresponding proCSM natural transformations.

The first result is the product formula of Michat Kwiecinski. Let .# be the category of
products X x Y (technically, of pairs (X,Y")), where X and Y are k-varieties, and where
morphisms X7 x Y] — X x Y consist of pairs (f, g), where f : X1 — Xy and g : Y7 — Y3 are
morphisms. The conditions specified in §2 and §3 are clearly satisfied (in characteristic 0),
and one therefore has a proChow functor E\f and a functor F* of .#-constructible functions.
The group F*(X x Y) consists of functions a ® 3 defined by a ® f(x,y) = a(z)5(y), where
a € F(X), 8 € F(Y) are (ordinary) constructible functions. We’ll denote the corresponding
proCSM class by {a ® 5} *.

Further, there is an evident canonical homomorphism

AX) @ AL(Y) == AX(X xY)
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(o, B) — o ® B, induced by the exterior products for ordinary Chow groups ([4], §1.10).

Theorem 4.1. Let X andY be two varieties, a« € F(X), B € F(Y) and a®f € F*(X xY)
as above. Then {a® B}* = {a} ® {G}.

Proof. — By bilinearity, the statement follows from the case a = 1y, 6 = 1y for U, V
nonsingular subvarieties of X, Y resp.; that is, it suffices to verify that for U, V nonsingular,
and for good closures U, V of U, V, with complements D =U U, E=V \V,

(2 —(log(D+ EN)N[U xV] = (C(Qlﬁ(log DY)n[U]) ® (C(le(log E)Y)n[v])

UxV
and that follows immediately from the standard computation of Chern classes for differential
forms with logarithmic poles. U

The particular case in which X and Y are complete reproduces Kwiecinski’s theorem
([7]), since in that case all the proChow groups in the statement are isomorphic to the
conventional Chow group (by Lemma 2.2), and the proCSM classes are equal to the Chern-
Schwartz-MacPherson classes (by Theorem 3.3).

Our second example is the formula of Fritz Ehlers for the Chern-Schwartz-MacPherson
class of a toric variety; see [5], p. 113, et [3] for the proof for conventional CSM classes. For
a statement and proof in the more general proChow case, let . be the category of toric
k-varieties, withAT—equivariant morphisms. The corresponding functor and proCASM classes
will be denoted AT and {X}T, respectively; the fundamental class of B C X in Al (X) will
be denoted [B].

Theorem 4.2. Let X be a toric variety. Then {X}T = ZBGX/T[E] e AT(X), where the
sum is over the (finite) set of T-orbits.

Proof . — Since X is the union of T-orbits B, we have {X}T = >>{B}T, and consequently
it suffices to prove that if B is the open orbit in the toric subvariety B C X, then {B}" =
[B] € 7A*T(B), this is equivalent to proving that if B is a good (toric) closure of B, and
D = B\ B, C(Q%(log D)Y)N[B] = [B] € A.(B): and this is true because ng(log D) is
trivial ([5], Proposition, p. 87). O

In the particular case in which X is a complete toric variety, this reproduces Ehlers’
formula.

Theorem 4.2 admits (with the same proof) a generalization to toral embeddings that are
not necessarily normal.
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