
CHERN CLASSES OF SINGULAR VARIETIES, REVISITED

PAOLO ALUFFI

Abstract. We introduce a notion of ‘proChow group’ of algebraic varieties, reproducing
the notion of Chow group for complete varieties, and functorial with respect to arbi-
trary morphisms. We construct a natural transformation from the functor of constructible
functions to the proChow functor, extending MacPherson’s natural transformation. We
illustrate the result by giving very short proofs of (generalizations of) two well-known facts
on Chern-Schwartz-MacPherson classes.

1. Introduction

Let X be a variety over an algebraically closed field of characteristic 0. Equivalent
notions of total Chern class of X were given independently by Marie-Hélène Schwartz ([9])
and by Robert MacPherson ([8]) for compact complex algebraic varieties, in homology;
the definition was later extended to complete algebraic varieties on an algebraically closed
field of characteristic 0, in the Chow group A∗X of X. We call this class Chern-Schwartz-
MacPherson (CSM) class of X, denoted cSM(X).

The CSM class agrees with the ordinary Chern class of the tangent bundle if X is non-
singular: cSM(X) = c(TX) ∩ [X] in this case. It also satisfies a remarkable functorial
property: it is defined as the value c∗(11X) taken by a natural transformation c∗ of the
constructible function functor F to the Chow functor A∗, on the constant function 11X .
Alexandre Grothendieck and Pierre Deligne had conjectured the existence of this natu-
ral transformation; MacPherson constructed it explicitly in [8], by using other important
invariants introduced in the same article.

In this note we propose an alternative construction of Chern-Schwartz-MacPherson classes,
in an ‘enriched’ Chow group Â∗X (the proChow group) obtained by taking appropriate lim-
its of ordinary Chow groups. The proChow group is a covariant functor with respect to every
morphism (while the Chow group is only functorial with respect to proper morphisms); we
prove that a corresponding CSM transformation F ; Â∗ is natural with respect to arbitrry
morphisms. If X is complete, the proChow group of X is canonically isomorphic to the
ordinary Chow group, and its proCSM class equals the Chern-Schwartz-MacPherson class.

Our definition is direct, without reference to auxiliary invariants such as Chern-Mather
classes or the local Euler obstruction. To illustrate its use, we give very condensed proofs
of two known results on CSM classes: the product formula of Kwieciński ([7]), and the
Ehlers-Barthel-Brasselet-Fieseler formula for the CSM classes of toric varieties ([3]).

2. the proChow functor

We work over an algebraically closed field k of characteristic 0.
Let S be a category of k-varieties. For U in S , let SU be the category whose objects

are the S -morphisms i : U → Zi from U to complete varieties in S , and whose morphisms
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j 7→ i are the commutative diagrams of k-varieties
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where π is a proper morphism. We assume that the following conditions on S are verified:
• For all U in S and every pair of objects i, j of SU , there is an object k in SU such

that k → i and k → j, and k : U ↪→ Zk is a closure (that is, k is an open embedding,
and U = Zk);
• If U is nonsingular, one may choose the closure Zk as above and good: that is, Zk

is nonsingular, and the complement Zk r U is a divisor with normal crossings and
nonsingular components.

For example, these conditions are satisfied for the category of all k-varieties (in charac-
teristic zero, by resolution of singularities).

Definition 2.1. The proChow group of U (with respect to S ) is the limit ÂS
∗ U := lim←−i

A∗Z
i.

Concretely, an element ρ ∈ ÂS
∗ U consists of the choice of an element ρi in the (con-

ventional) Chow group A∗Z
i for every i in SU , subject to the condition of compatibility

π∗ρ
j = ρi for every π : j → i. We say that ρi is the component of ρ in A∗Z

i.
We will omit the upper index S when no ambiguity seems likely; the reader will note

that the proChow group does depend on the chosen category S . The following facts are
however independent of S (if S satisfies the conditions of ‘cofinality’ specified above), and
immediately verified:

Lemma 2.2. With notation as above:
• If U is complete, there is a canonical isomorphism Â∗U ∼= A∗U .
• In order to specify an element of Â∗U , it suffices to choose a compatible set of

ρi ∈ A∗Z
i for all closures i : U → Zi in S .

• If, further, U is nonsingular, it suffices to choose a compatible set of ρi ∈ A∗Z
i for

every good closure i : U → Zi in S .

Every subscheme B of U determines a distinguished element [B] of Â∗U : for every closure
j : U → Zj , choose the class [B] ∈ A∗Z

j of the closure of B in Zj ; this choice is clearly
compatible. If U is complete, [B] ∈ Â∗U ∼= A∗U is the ordinary ‘fundamental class’ of B.

The proChow group Â∗ = ÂS
∗ is a functor S ; Abelian Groups: if f : X → Y is a

morphism in S , then j → j ◦ f induces a functor SY → SX , and hence a homomorphism
f∗ : Â∗X → Â∗Y . Concretely, for ρ ∈ Â∗X and j : Y → Zj in SY , the component
of f∗ρ dans A∗Z

j is simply equal to the component of ρ. If f is proper and X and Y

are complete, then f∗ : Â∗X ∼= A∗X → A∗Y ∼= Â∗Y is the ordinary proper push-forward
of Chow groups. Note however that while A∗ is only functorial with respect to proper
morphisms, the proChow Â∗ is functorial with respect to all morphisms in S .

3. proCSM classes proCSM

With S as in §2, and X in S , we define the group of S -constructible functions FS (X)
as the group of finite Z-linear combination of caracteristic functions 11U (where 11U (p) = 1
if p ∈ U , and 0 if p ∈ X rU) where U are nonsingular locally closed subvarieties of X, such
that the inclusions U ⊂ X are morphisms of S .
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We now pose a further condition on S . We require that the conventional push-forward
of constructible functions (defined by taking the fiberwise Euler characteristic, see [8] for
the complex case) preserve S -constructibility: that is, that it defines a push-forward f∗ :
FS (X) → FS (Y ) for every morphism f : X → Y dans S . We also require that 11X be
S -constructible for every X in S .

Under these hypotheses, FS defines (in characteristic zero!) a covariant functor S ;

Abelian Groups, and every X in S determines a distinguished element 11X ∈ FS (X). We
will usually omit the upper index S .

Next, we define a homomorphism F(X) → Â∗X, α 7→ {α}, and a distinguished element
{X} := {11X} ∈ Â∗X. We begin with the nonsingular case:

Definition 3.1. Let U be nonsingular, in S . The proCSM class of U in Â∗U , denoted
{U}, is the element of the proChow group determined by c(Ω1

U
(log D)∨)∩ [U ] ∈ A∗U for any

good closure U of U in SU , where D = U rU is the corresponding normal crossing divisor,
and Ω1

U
(log D)∨ denotes the dual of the bundle of differential forms with logarithmic poles

along D.

This choice is compatible in the sense of §2, as we will see in Theorem 3.3; thus it defines
an element of Â∗U , by Lemma 2.2.

Now let X be an arbitrary (that is, not necessarily nonsingular) in S , and let α ∈ F (X)
be a constructible function on X. Let α =

∑
U mU11U , with U nonsingular, locally closed,

iU : U ⊂ X in S , and mU ∈ Z.

Definition 3.2. The proCSM class of α is the sum {α} =
∑

U mU iU ∗{U} ∈ Â∗X. The
proCSM class of X is the class {X} := {11X}.

We can now state and proof the main result of this note.

Theorem 3.3. With notation as above:
(1) The classes specified in Definition 3.1 are compatible: that is, if i : U → U

i and
j : U → U

j are good closures of U in SU , with complements Di, Dj, and π :
U

j → U
i is a morphism such that i = π ◦ j, then π∗

(
c(Ω1

U
j (log Dj)∨) ∩ [U j ]

)
=

c(Ω1

U
i(log Di)∨) ∩ [U i].

(2) The class in Definition 3.2 does not depend on the choices: that is, if α =
∑

U mU11U =∑
V nV 11V are two realizations of α as finite linear combinations of characteristic

functions of nonsingular locally closed subvarieties of X, then
∑

U mU iU ∗{U} =∑
V nV iV ∗{V }.

(3) The homomorphism F(X)→ Â∗X, α 7→ {α} given in Definition 3.2 gives a natural
transformation F ; Â∗; that is, f∗{α} = {f∗(α)} for every morphism f : X → Y
in S .

(4) If X is complete, then the proCSM class of X is the ordinary Chern-Schwartz-
MacPherson class: {X} = cSM(X) ∈ A∗X ∼= Â∗X.

One can prove the first three points independently of Macpherson’s result in [8]; this
is done in [1]. In the particular case of complete varieties and proper morphisms, the
third point gives a natural transformation as prescribed by the (Chow version of) the
Grothendieck-Deligne conjecture; the equality of proCSM classes and CSM classes for com-
plete varieties follows then from the uniqueness of this natural transformation (which is an
immediate consequence of resolution of singularities.)
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We present here a proof that uses MacPherson’s theorem (that is, the fact that MacPher-
son’s transformation c∗ is natural), and that leads to a quicker argument.

Proof . – If U is nonsingular, U is a good closure of U , and D = U r U , then

(†) c(Ω1
U

(log D)∨) ∩ [U ] = c∗(11U ) ∈ A∗U .

This follows easily from the fact that c∗ is natural, and from an explicit Chern class com-
putation; see for example Proposition 15.3 in [6], or Theorem 1 in [2].

(1) follows from (†), from the fact that c∗ is natural, and from the definition of push-
forward of constructible functions:

π∗

(
c(Ω1

U
i(log Di)∨) ∩ [U i]

)
= π∗c∗(11U ) = c∗π∗(11U ) = c∗(11U ) = c(Ω1

U
j (log Dj)∨) ∩ [U j ] .

The proof of the other points is streamlined by the following alternative version of Defi-
nition 3.2:

Lemma 3.4. For every z : X → Z in SX , and every α ∈ F(X), the component of {α} in
A∗Z is c∗(z∗(α)).

To prove the lemma, use (†) to write the component of {U} in A∗Z, for U nonsingular and
zU : U → Z in S , as c∗(zU ∗(11U )). If α ∈ F(X), then α =

∑
U mU11U , with U nonsingular

and the inclusion U ⊂ X in S ; thus, for every z : X → Z, the component of
∑

U mU{U}
in A∗Z is

∑
U mUc∗(z∗11U ) = c∗(z∗(

∑
U mU11U )) = c∗(z∗(α)), as stated.

(2) follows immediately, since c∗(z∗(α)) only depends from α, and not from the decom-
position α =

∑
∗mU11U . On the other hand, if X is itself complete, then taking Z = X,

z = idX , and α = 11X in Lemma 3.4, one gets (4).
Finally, Lemma 3.4 implies (3). Indeed, let z : Y → Z be any object of SY ; then w ◦ f is

an object of SX and, by the definition of push-forward of proChow groups, the component
in A∗Z of the push-forward f∗{α} is simply equal to the component of {α} in A∗Z. By
Lemma 3.4, this component is c∗((w ◦ f)∗α) = c∗(z∗(f∗(α))), and once more by Lemma 3.4
this is equal to the component of {f∗(α)} in A∗Z, yielding (3). �

4. Examples

We illustrate the formalism presented in §2 and §3 by giving condensed proofs (valid in
the proCSM context) of two known results on Chern-Schwartz-MacPherson classes.

We will use different categories, as permitted by the constructions given in the previous
sections. Denoting by Â∗ the proChow functor obtained with S = the category of all k-
varieties, and by F the functor of constructible functions on this category, note that for every
other category S one has canonical homomorphisms FS (X) → F(X), Â∗(X) → ÂS

∗ (X),
compatible with the corresponding proCSM natural transformations.

The first result is the product formula of Micha l Kwieciński. Let S be the category of
products X × Y (technically, of pairs (X, Y )), where X and Y are k-varieties, and where
morphisms X1×Y1 → X2×Y2 consist of pairs (f, g), where f : X1 → X2 and g : Y1 → Y2 are
morphisms. The conditions specified in §2 and §3 are clearly satisfied (in characteristic 0),
and one therefore has a proChow functor Â×∗ and a functor F× of S -constructible functions.
The group F×(X ×Y ) consists of functions α⊗ β defined by α⊗ β(x, y) = α(x)β(y), where
α ∈ F(X), β ∈ F(Y ) are (ordinary) constructible functions. We’ll denote the corresponding
proCSM class by {α⊗ β}×.

Further, there is an evident canonical homomorphism

Â∗(X)⊗ Â∗(Y )
⊗ // Â×∗ (X × Y ) ,
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(α, β) 7→ α⊗ β, induced by the exterior products for ordinary Chow groups ([4], §1.10).

Theorem 4.1. Let X and Y be two varieties, α ∈ F(X), β ∈ F(Y ) and α⊗β ∈ F×(X×Y )
as above. Then {α⊗ β}× = {α} ⊗ {β}.

Proof . – By bilinearity, the statement follows from the case α = 11U , β = 11V for U , V
nonsingular subvarieties of X, Y resp.; that is, it suffices to verify that for U , V nonsingular,
and for good closures U , V of U , V , with complements D = U r U , E = V r V ,

c(Ω1
U×V

(log(D + E))∨) ∩ [U × V ] =
(
c(Ω1

U
(log D)∨) ∩ [U ]

)
⊗

(
c(Ω1

V
(log E)∨) ∩ [V ]

)
,

and that follows immediately from the standard computation of Chern classes for differential
forms with logarithmic poles. �

The particular case in which X and Y are complete reproduces Kwieciński’s theorem
([7]), since in that case all the proChow groups in the statement are isomorphic to the
conventional Chow group (by Lemma 2.2), and the proCSM classes are equal to the Chern-
Schwartz-MacPherson classes (by Theorem 3.3).

Our second example is the formula of Fritz Ehlers for the Chern-Schwartz-MacPherson
class of a toric variety; see [5], p. 113, et [3] for the proof for conventional CSM classes. For
a statement and proof in the more general proChow case, let S be the category of toric
k-varieties, with T -equivariant morphisms. The corresponding functor and proCSM classes
will be denoted ÂT and {X}T, respectively; the fundamental class of B ⊂ X in ÂT

∗ (X) will
be denoted [B].

Theorem 4.2. Let X be a toric variety. Then {X}T =
∑

B∈X/T [B] ∈ ÂT
∗ (X), where the

sum is over the (finite) set of T -orbits.

Proof . – Since X is the union of T -orbits B, we have {X}T =
∑
{B}T, and consequently

it suffices to prove that if B is the open orbit in the toric subvariety B ⊂ X, then {B}T =
[B] ∈ ÂT

∗ (B); this is equivalent to proving that if B is a good (toric) closure of B, and
D = B r B, c(Ω1

B
(log D)∨) ∩ [B] = [B] ∈ A∗(B): and this is true because Ω1

B
(log D) is

trivial ([5], Proposition, p. 87). �

In the particular case in which X is a complete toric variety, this reproduces Ehlers’
formula.

Theorem 4.2 admits (with the same proof) a generalization to toral embeddings that are
not necessarily normal.
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