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Abstract

A closed topological n-manifold M
n is of S

1-category 2 if it can be

covered by two open subsets W1,W2 such that the inclusions Wi → M
n

factor homotopically through maps Wi → S
1
→ M

n. We show that

the fundamental group of such an n-manifold is a cyclic group or a free

product of two cyclic groups with nontrivial amalgamation. In particular,

if n = 3, the fundamental group is cyclic. 1 2

1 Introduction

The concept of the A-category of a manifold was introduced by Clapp and Puppe
[1]. For a closed, connected 3-manifold M it is defined as follows: Let A be a
closed connected k-manifold, 0 ≤ k ≤ 2. A subset B in the 3-manifold M is
A-contractible if there are maps ϕ : B −→ A and α : A −→ M such that the
inclusion map i : B −→M is homotopic to α ·ϕ. The A-category catA (M) of M
is the smallest number of sets, open and A-contractible needed to coverM . Note
that 2 ≤ catA (M) ≤ 4. Endowing M with a (essentially unique) differential
structure, an A-function on M is a smooth function M −→ R whose critical set
is a finite disjoint union of components each diffeomorphic to A. The invariant
critA(M) of M is the minimum number of components of the critical set over
all A-functions on M..
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If A is a point, then critpoint(M) = crit(M) has been calculated by Takens
([10]). He shows that crit(M) = 2 if and only if M = S3 and crit(M) = 3 if
and only if M is a connected sum of S2-bundles over S1. A related invariant
of a more geometrical nature is C(M), which is the smallest number of open
3-cells needed to cover M . Hempel-McMillan [6] (see also [4]) showed that
in fact C(M) = crit(M). Finally, catpoint (M) = cat (M) , is the Lusternik-
Schnirelmann category of M, and in [2] it is shown that cat (M) = 2 if and only
if π1(M) = 1 and cat (M) = 3 if and only if π1(M) is a non-trivial free group
(of finite rank). Hence, modulo the Poincarè conjecture, the three invariants
crit(M),C(M), and cat (M) coincide for closed 3-manifolds.

If A = S1, then critS1(M) has been studied in ([8]). A smooth function
M −→ S1 whose critical set is a finite link in M is called a round function
and Khimshiashvili and Siersma [8] show that round functions exist on all (ori-
entable) 3-manifolds. Furthermore they show that critS1(M) = 2 if and only if
M is a lens space. A related invariant of a more geometrical nature is T(M),
which is the smallest number of open solid 3-tori needed to cover M . In [3]) it
is shown that in fact (for orientable 3-manifolds) T(M) = critS1(M).

In this paper we show that for a closed 3-manifold M we have catS1(M) = 2
if and only if π1(M) is cyclic.

By results of Olum [9] this implies that M is homotopy equivalent to a lens
space. Therefore, modulo the conjecture that homotopy lens spaces are lens
spaces, critS1(M) = 2 if and only if T(M) = 2 if and only if catS1(M) = 2.

The case that catS1(M) = 3 seems to be difficult and one is lead to conjecture
that the three invariants critS1(M), T(M), and catS1(M) coincide for closed 3-
manifolds.

The paper is organized as follows: For a closed topological n-manifold Mn

we assume that catS1(Mn) = 2. As a starting point we show in section 2 that
then M can be constructed from two compact S1-contractible submanifolds
that intersect along their boundaries, and we prove some basic properties of S1-
contractible submanifolds and intersection numbers of their boundary surfaces
with closed curves. In section 3 we show that all closed 2-manifolds with negative
Euler characteristic have catS1(M2) = 3. Section 4 is devoted to the proof of
the

Main Theorem: Suppose Mn is closed, n ≥ 3 and catS1 Mn = 2. Then
π1M

n = A ∗C B with A,B and C cyclic non-trivial or π1M
n = 1.

Finally, in section 5 we apply the Main Theorem to infer that if catS1 M3 = 2
then π1(M) is cyclic.

2 Preliminaries

A subspace W of the manifold Mn is S1-contractible (in Mn) if there exist maps
f : W → S1, α : S1 → Mn such that the inclusion ι : W → Mn is homotopic
to αf . If H : W × I → Mn is a homotopy between ι and αf , and ∗ ∈ W , we
have a commutative diagram
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π1(W, ∗) −→
ι∗

↓
f∗

π1(M
n, ∗)

↓
≈ γ#

π1(S
1, f(∗))

α∗
−→ π1(M

n, αf(∗)),

where γ = H | {∗}×I is the trace of the homotopy. Hence im ι∗ is cyclic.
Notice that a subset of an S1-contractible set is also S1-contractible.
catS1 M is the smallest m such that there exist m open S1-contractible

subsets of M whose union is M .
It is easy to show that catS1 is a homotopy type invariant.
We first note that for the case that catS1 Mn = 2 we can choose compact

S1-contractible submanifolds that intersect along their boundaries:

Lemma 1. If U0 and U1 are open subsets of the closed manifold Mn whose
union is Mn then there exist compact n-submanifolds W0, W1 such that
W0 ∪W1 = Mn, W0 ∩W1 = ∂W0 = ∂W1 and Wi ⊂ Ui (i = 0, 1).

Proof. Let g : Mn → [0, 1] be a map such that g(Mn−Ui) = {i}, (i = 0, 1). For
ε with 0 < ε < 1/2 there is an ε−approximation f of g such that f−1(1/2) is an
(n− 1)−submanifold of M (see [7], Theorem 1.1). Let W0 = f−1([1/2, 1]) and
W1 = f−1([0, 1/2]). These submanifolds satisfy the conclusion of the lemma.

Corollary 1. Suppose catS1 Mn = 2 where Mn is a closed n-manifold. Then
there exist S1-contractible compact n-submanifolds W0, W1 such that
W0 ∪W1 = Mn and W0 ∩W1 = ∂W0 = ∂W1.

Lemma 2. If W n is S1-contractible in Mn and every loop in W n is nullhomo-
topic in Mn, then Wn is contractible in Mn.

Proof. The inclusion W → M is homotopic to a composition W
f̃
−→ A

α̃
−→ M

where p : A → S1 is the covering space of S1 corresponding to f∗(π1W, ∗) ⊂
π1(S

1, f(∗)) and f̃ is a lift of f , α̃ = αp. If A ≈ R1, then W is contractible in
M ; if not, α must be null homotopic and, again, W is contractible in M .

We think of S1 as the space of complex numbers with modulus 1. If α :
S1 → M and m ∈ Z, we define αm by αm(z) = α(zm). Clearly, if β ' α
then βm ' αm where ' means “is homotopic in Mn to”. If F is a compact
(n− 1)-submanifold of Mn with empty boundary and α : S1 →M is a loop, we
define the intersection number α · F = min{|β−1(F )| : β ' α}.

Lemma 3. Let Mn be a closed n-manifold and let W n
0 and Wn

1 be compact
nonempty n-submanifolds of Mn such that W n

0 ∪W
n
1 = Mn and Wn

0 ∩W
n
1 =

∂Wn
0 = ∂Wn

1 and let α : S1 →M be a loop. If αm · (W0 ∩W1) = 0 and m 6= 0,
then α · (W0 ∩W1) = 0.
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Proof. We may assume m > 0. Write F = W n
0 ∩W

n
1 . The number α · F is

finite and we may assume that α is in general position with respect to F so that
|α−1(F )| = α · F = p say. Suppose p > 0. Since αm · F = 0 there exists a loop
β, homotopic to αm, such that β(S1) ∩ F = ∅.

There is a homotopy ϕ : S1 × I → M with ϕ|S1×{0} = αm and ϕ|S1×{1}

= β. Using transversality of maps between topological manifolds (for example
Theorem 1.1 of [7]) we may assume that ϕ is in general position with respect to
F . Then S = ϕ−1(F ) consists of simple closed curves in int(S1 × I) and arcs,
with the endpoints of each arc in S1 × {0}. Each arc of S splits off a disk from
S1 × I . Since p > 0 there is an innermost such disk D such that ∂D = a ∪ b,
where a is an arc of S and b is an arc on S1 × 0 and D ∩ S − a is empty or
consists of simple closed curves only. Then ϕ | D defines a homotopy rel ∂ of
the restriction of α to b to a map from b into F , contradicting the fact that
|α−1(F )| = α · F . Hence 0 = p = α · F .

Now consider again the case that catS1 Mn = 2. Recall that we can write
Mn = Wn

0 ∪W
n
1 as a union of two compact submanifolds with W n

0 ∩W
n
1 =

∂Wn
0 = ∂Wn

1 such that for i = 0, 1 we have homotopy commutative diagrams

Wn
i M

S1

-

@
@Rfi �

��
αi

Proposition 1. For i = 0, 1, we can take αi so that αi(S
1) does not intersect

Wn
0 ∩W

n
1 .

Proof. If every loop in W n
i is nullhomotopic in Mn then, by lemma 2, W n

i is
contractible in Mn and therefore we can take as αi a constant map with image
in int(Wn

0 ) or int(Wn
1 ). If there is a loop γ in W n

i that is not nullhomotopic
in Mn, then γ ' αifiγ ' αm

i for some m 6= 0. Hence 0 = γ · (W n
0 ∩W

n
1 ) =

αm
i · (W

n
0 ∩W

n
1 ) and, by Lemma 3, αi · (Wn

0 ∩W
n
1 ) = 0. Therefore, we can take

as αi a loop such that αi(S
1) ∩Wn

0 ∩W
n
1 = ∅.

Lemma 4. Suppose n > 2. Then every component of W n
0 ∩W

n
1 is separating.

Proof. Such a component C is S1-contractible and so the inclusion induced
homomorphism factors as

Hn−1(C; Z2)→ Hn−1(S
1; Z2)→ Hn−1(M

n; Z2).

Hence C bounds in Mn and so C is separating.

3 2-manifolds.

Note that for in a closed 2-manifold M , disks, annuli, and Möbius bands are
S1-contractible.

Since
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S2 = (disk)∪(disk)
P 2 =(Möbius band)∪(disk)
T 2 =(annulus)∪(annulus)
K2 =(Klein bottle)=(annulus)∪(annulus)

we have catS1(S2) = catS1(P 2) = catS1(T 2) = catS1(K2) = 2.
We will see that all other closed 2-manifolds have catS1 equal to 3.

Proposition 2. Let M2 be a closed 2-manifold. Suppose there is a compact
1-submanifold of M2, with empty boundary, such that, for every component X
of its complement, im(π1X → π1M

2) is cyclic. Then χ(M2) ≥ 0.

Proof. Let F be a compact 1-submanifold of M 2, with a minimal number of
components, having the property of the statement. We claim that every com-
ponent X of M2 − F has nonnegative Euler characteristic. For, if χ(X) < 0
then ∂X → X is π1-injective, π1X is not cyclic and im(π1X → π1M

2) is
cyclic. These three properties imply that ∂X → M 2 − X is not π1-injective
and, therefore, some component C of ∂X bounds a 2-disk D in M 2 −X . But
then im(π1(X ∪D) → π1M

2) is cyclic and F − C is a compact 1-submanifold
having the property of the statement, contradicting our minimality assump-
tion. Hence χ(X) = χ(X) ≥ 0 for every component X of M − F . Therefore
χ(M2) =

∑
χ(X) − χ(F ) =

∑
χ(X) ≥ 0, where in the sum X runs over the

components of M2 − F .

Corollary 2. If catS1 M2 = 2, then χ(M2) ≥ 0.

Proof. By Corollary 1, there are S1-contractible submanifolds W0, W1 such that
W0∪W1 = M2, W0∩W1 = ∂W0 = ∂W1. Every componentX ofM2−W0∩W1 is
S1-contractible and so im(π1X → π1M

2) is cyclic. By Prop. 1, χ(M2) ≥ 0.

4 n-manifolds.

In this section we prove the Main Theorem :
Suppose Mn is closed, n ≥ 3 and catS1 Mn = 2. Then π1M

n = A∗C B with
A,B and C cyclic non-trivial or π1M

n = 1.
Suppose catS1 Mn = 2. Recall that we can write Mn = Wn

0 ∪W
n
1 , where

Wn
0 and Wn

1 are S1-contractible compact n-submanifolds with W n
0 ∩ W

n
1 =

∂Wn
0 = ∂Wn

1 .
We first consider the case that Wi is connected:

Theorem 1. If W0 and W1 are connected, then π1M
n is cyclic.

Proof. By Lemma 4, W n
0 ∩ W

n
1 is connected. Let A = im(π1W

n
0 → π1M

n),
B = im(π1W

n
1 → π1M

n) and C = im(π1(W
n
0 ∩W

n
1 )→ π1M

n). Since Wn
0 ,W

n
1

and Wn
0 ∩W

n
1 are S1-contractible A,B and C are cyclic.

We have natural homomorphisms π1W
n
0 → A → A ∗C B and similarly for

π1W
n
1 and π1(W

n
0 ∩W

n
1 ). We also have a natural homomorphism ψ : A∗C B →
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π1(M). By Van Kampen’s theorem and the universal property of A ∗C B, we
have the following commutative diagram with a homomorphism ϕ.

ψ
6
ϕ

π1(M
n)

π1(W
n
0 ) A ∗C B π1(W

n
1 )

π1(W
n
0 ∩W

n
1 )

p

p

p

p

p

p

p

p?
-

�
�

�
��3

�
Q

Q
Q

QQk

6

Q
Q

Q
QQk

�
�

�
��3

Since ψϕ and ϕψ are the identity on A ∪ B we have ψϕ = id and ϕψ = id.
Hence π1M

n = A ∗C B and H1M
n = A⊕C B := (A⊕B)/{(c,−c) : c ∈ C}.

Observe that this implies that A = im(H1(W
n
0 )→ H1(M

n)), B = im(H1(W
n
1 )→

H1(M
n)) and C = im(H1(W

n
0 ∩W

n
1 )→ H1(M

n)).
Case (i): Mn is orientable.

We show that A = C = B (and so π1M
n is cyclic).

We have

Hn(Wn
i )←−Hn(Mn)←−≈ Hn(Mn,Wn

i )←−Hn−1(Wn
i )

0 ←−0 Hn(Mn)

= ≈ ≈ excision

0 Z Hn
(
Wn

1−i, ∂W
n
1−i

)

≈

H0

(
Wn

1−i

)
= Z

Poincaré duality

Hn−1
(
S1

)
= 0

−→
−→

Hence 0 = Hn−1(Wn
i ) = H1(W

n
i , ∂W

n
i ), so H1(∂W

n
i ) → H1(W

n
i ) is onto.

Therefore C = im(H1(∂W0) → H1(M)) = im(H1(W0) → H1(M)) = A and
similarly C = B.
Case (ii): Mn is nonorientable.

By a similar proof as in case (i) taking Z2 coefficients, we obtain that C has
odd index in A and in B. Hence coker(H1W

n
0 → H1M

n) = B/C is a finite cyclic
group of odd order. Since the subgroup of H1M

n consisting of all orientation-
preserving loops has index two in H1M

n it follows that im(H1W
n
0 → H1M

n)
contains an orientation-reversing loop and hence W n

0 (and similarly W n
1 ) is non

orientable. Therefore for the orientable two-fold covering p : M̃n → Mn the
lift W̃i = p−1(Wn

i ) is connected. We may assume that αi is an embedding.
Since an orientation reversing loop is not null-homotopic in M it follows that
S̃1 = p−1(S1) is homeomorphic to S1, αi lifts to an embedding α̃i, fi lifts to f̃i

and we obtain the following diagram
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W̃i M̃n

S̃1

Wn
i Mn

S1

?

p

@
@R
f̃i

?

p

�
��α̃i

?

p

@
@R
fi

�
��αi

Then α̃if̃i is homotopic to the inclusion ĩ : W̃i → M̃n and catS1 M̃n = 2
and by case (i) π1p

−1(Wi)→ π1M̃
n is surjective.

Hence im(π1W
n
i → π1M

n) contains im(π1M̃
n → π1M

n), the index 2 sub-
group of orientation preserving loops, and sinceW n

i is nonorientable, im(π1W
n
i →

π1M
n) = π1(M

n). Therefore π1M
n is cyclic.

We now consider the case that W0 or W1 is not connected.

By Proposition 1 we can assume αi(S
1) does not intersect W n

0 ∩W
n
1 . Now

depending on whether αi(S
1) is in Wi or W1−i we will prove the following

Theorem 2. (a) If α0(S
1) ⊂W1 or α1(S

1) ⊂W0, then π1(M
n) is cyclic.

(b) If αi(S
1) ⊂Wi (i = 0, 1) and F n−1 is any component of W0 ∩W1 sepa-

rating α0(S
1) from α1(S

1), then π1M
n = A0 ∗C A1

with C = im(π1F
n−1 → π1M

n) cyclic, and Ai = im(π1Xi → π1M
n) cyclic

(i = 0, 1), where Xi is the component of Mn − Fn−1 containing αi(S
1).

Write F = W0 ∩W1. To study π1M we now attach 2-cells to F , W0 and W1

along loops that are nullhomotopic in M , obtaining spaces F̂ , Ŵ0, Ŵ1 such that
the fundamental group of their components are cyclic and F̂ is π1-injective in
Ŵi (i = 0, 1). The new space M̂ will have the same fundamental group as M .

Let W 1
i ,W

2
i , . . . be the component of Wi. If W j

0 ∩ W
k
1 6= ∅ write Fjk =

W j
0 ∩ W

k
1 . Notice that the image of π1W

j
i −→ π1M and π1Fjk −→ π1M

are cyclic. Let Kjk = ker (π1Fjk −→ π1M) , Kj
i = ker

(
π1W

j
i −→ π1M

)
. For

every jk, attach 2-cells to Fjk along a collection of loops whose normal closure
in π1Fjk is Kjk. Let Ejk be the union of these 2-cells. For every i and every j

attach 2-cells to W j
i along a collection of loops whose normal closure in π1W

j
i is

Kj
i . Let Aj

i be the union of these 2-cells.

Let F̂jk = Fjk ∪Ejk , Ŵ
j
0 = W j

0 ∪A
j
0 ∪ (∪kEjk) , Ŵ j

1 = W j
1 ∪A

j
1 ∪ (∪jEjk) ,

Ŵi = ∪jŴ
J
i and M̂ = Ŵ0 ∪ Ŵ1.

Note:
• π1F̂jk is cyclic for every jk
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• π1Ŵ
j
i is cyclic for every i and every j.

• The inclusion M −→ M̂ induces an isomorphism on fundamental group.
• The inclusions F̂jk −→ Ŵ j

0 , F̂jk −→ Ŵ j
1 are π1-injective.

If Y is a union of subspaces of M which are components of W0 or of W1 we

write Ŷ = ∪
{
Ŵ j

i : W j
i is a component of W0 or of W1 contained in Y

}
. Ob-

serve that if Y is connected then π1Ŷ → π1M̂ is injective (use, for example, [5,

Lemma 2.2]) and we have a commutative diagram with π1Ŷ → π1Y surjective:

π1Y π1M

π1Ŷ π1M̂

-

? ?

≈

-

Hence we can identify the image of π1Y in π1M with π1Ŷ .

Lemma 5. Let β be loops in F̂jk that are homotopic in Ŵ j
0 or in Ŵ k

1 . Then

they are homotopic in F̂jk .

Proof. Since the fundamental groups of F̂jk , Ŵ
j
0 and Ŵ k

1 are abelian, the in-

clusions F̂jk −→ Ŵ j
0 and F̂jk −→ Ŵ k

1 are H1-injective. Hence β and γ are

homologous, and therefore homotopic, in F̂jk

Recall that F = W0 ∩W1. In the following lemma we will use the graph G
of (M,F ) which is defined as follows. The vertices (resp. edges) of G are in
one-to-one correspondence with the closures of the components of M −F (resp.
with the components of F). The endpoints of an edge e of G corresponding to
components F ′ of F correspond to W ′

0 and W ′
1, components of W0 and W1,

where F ′ ⊂W ′
i (i = 0, 1).

If n > 2, the graph G is a tree because of Lemma 2.
An example, in the form of a schematic diagram of M̂ , is shown in Figure

1. The graph G of (M,F ) is obtained by collapsing each Ŵ j
i to a point.

Lemma 6. Let β and γ be loops in different components of M − F that are
homotopic in M. Let p : [0, 1] −→ M be a map, with p (0) ∈ imβ, p (1) ∈ im γ,
such that p−1 (F ) has minimal cardinality m. Write p−1 (F ) = {t1, . . . , tm}
where t1 < t2 < · · · < tm. Then there is a sequence of loops β0, β1, . . . , βm such
that

1) β0 = β and βm+1 = γ

2) imβj is contained in the component of F where p (tj) lies (j = 1, . . . ,m)
and

3) βj is homotopic to βj+1 in Ŵ0 or in Ŵ1 (j = 0, 1, . . . ,m)

8



Proof. Let ϕ : S1× I −→M be a homotopy between β and γ in M. By general
position (transversality of maps between topological manifolds e.g. Theorem
1.1 of [KS]) we may assume that S = ϕ−1(F ) is a collection of simple closed
curves in int(S1 × I).

Let D1, . . . , Dt be 2-disks embedded in S1 × I such that ∂D1, . . . , ∂Dt are
components of S and all components of S − ∪m

j=1Dj are not null-homotopic in

S1 × I. Since the inclusion of F̂ in M̂ is π1-injective we can define a homotopy
ϕ̂ : S1 × I −→ M̂ such that ϕ̂ coincides with ϕ on S1 × I − ∪m

j=1 intDj and

ϕ̂
(
∪m

j=1Dj

)
⊂ F̂ . If the components of S − ∪m

j=1Dj are suitably indexed as

s1, s2, . . . , sr−1, and s0 = S1 × {0} , sr = S1 × {1} , then ϕ|si
(i = 0, . . . , r)

defines a loop β′
i in M with β′

i homotopic to β′
i+1 (i=0,. . . ,r) in Ŵ0 or Ŵ1.

The sequence of loops β′
0, β

′
1, . . . , β

′
r has the following properties

a) The first one is β and the last one is γ

b) Their images are contained in F, except the first one and the last one

c) Each loop in the sequence is homotopic to the next one in

Ŵ0 or in Ŵ1.

Now let β0, β1, . . . , βs be a sequence of loops satisfying a), b) and c), such
that s is minimal. We claim that s = m+ 1 and that 2) holds.

Let G be the graph of (M,F ) . Consider the path ∆ in G associated to the
sequence (β0, β1, . . . , βs) , that is, the sequence of edges (e1, . . . , es) such that,
for 0 < i < s, imβi is contained in the component of F associated to ei. The
loop β0 (resp. βs) is homotopic to β1 (resp. βs−1) in the component of Ŵ0 or

in Ŵ1 containing the component associated to u (resp. v) where u (resp. v) is
a vertex of e1 (resp. es−1). ∆ is a path from u to v in G. Suppose ∆ is not a
simple path. Then ei = ei+1 for some i and, by Lemma 5, βi is homotopic to
βi+1 in the component of F associated to ei; then, we omit βi+1 in the sequence
(β0, β1, . . . , βs) we still have a sequence satisfying a), b) and c) contradicting
the minimality of s. Hence ∆ is a simple path in G from u to v.

The map p also defines a path (e′1, . . . , e
′
s) of minimal length from u to v;

the component associated to e′j is the components of F containing p (tj) . This
path is also simple and, since G is a tree, we must have e′j = ej for all j. Hence
s = s′ = m + 1 and the component of F containing imβj is the one to which
p (tj) belongs (j = 1, . . . ,m).

In the following we wish to prove that in some cases the monomorphism
π1F̂

′ −→ π1Ŵ
′ is surjective, where F ′ is a component of F and W ′ is a com-

ponent of W0 or of W1 containing F ′. To do so it suffices to show that every
loop in W ′ is homotopic in Ŵ ′ to a loop in F ′; this implies that every element
of π1Ŵ

′ is conjugate to an element of the image of π1F̂
′ −→ π1Ŵ

′ but, since
π1Ŵ

′ is abelian, this image must be π1Ŵ
′.

Now, recall that, by Prop. 3, we may assume that the images of α0 and α1

do not intersect F.
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Figure 1: A schematic diagram of M̂

Lemma 7. Let W q
i be a component of Wi which does not contain αi

(
S1

)
.

for i = 0, 1 and let F ′
jk be the component of ∂W q

i separating intW q
i from

αi

(
S1

)
.Then π1F̂

′
jk −→ π1Ŵ

q
i is an isomorphism.

Proof. Since π1F̂
′
jk −→ π1Ŵ

q
i is injective we only need to prove surjectivity.

Let β be a loop in W q
i . Then β is homotopic in M to a power of αi. A map

p : [0, 1] −→ M with p (0) ∈ im β, p (1) ∈ imαi and
∣∣p−1 (F )

∣∣ minimal is
such that p (t1) ∈ F ′

jk where p−1 (F ) = {t1, . . . , tm} and t1 < t2 < · · · < tm.
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By Lemma 6, there is a sequence (β, β1, . . . , βm+1) where βm+1 is a power of

αi, β is homotopic to β1 in Ŵ q
i and im β1 ⊂ F ′

jk . Hence π1F̂
′
jk −→ π1Ŵ

q
i is

surjective.

In the next lemma we refer to the graph G of (M,F ).

Lemma 8. There is an n-submanifold Qn of Mn with the following properties:
(∗) Qn is a union of components of W0 and W1 and the sub-graph GQ of G

corresponding to (Qn, Qn ∩ F ) is linear and connected;
(∗) αi

(
S1

)
, (i = 1, 2) lies in a component of W0 or W1 corresponding to a

vertice of degree 1 in GQ;

(∗) inclusion induces an isomorphism π1Q̂
n ∼= π1M̂

n.

For example, for the manifold pair (M,F ) represented in Figure 1, Q̂ =

Ŵ 1
0 ∪ Ŵ

1
1 ∪ Ŵ

2
0 ∪ Ŵ

2
1 ∪ Ŵ

3
0 ∪ Ŵ

3
1 .

Proof. Recalling that G is a finite tree, let W p be a component of W0 or W1

corresponding to a vertex of degree 1 in G and let Qn
1 = Mn −W p. If W p

does not contain αi

(
S1

)
for i = 1, 2 then by Lemma 7, π1F̂

′
jk −→ π1Ŵ

p
i is

an isomorphism, where F ′
jk = W p

i ∩ Q
n
1 . By Van Kampen’s Theorem inclusion

induces an isomorphism π1Q̂1

n ∼= π1M̂
n. We now obtain Qn by cutting off from

Mn all those components of W0 and W1 corresponding to vertices of degree 1
which do not contain αi

(
S1

)
for i = 1, 2 and repeating this process inductively.

Corollary 3. If α0

(
S1

)
and α1

(
S1

)
are contained in the same component of

M − F then π1M is cyclic.

Proof. By Lemma 8, π1M ≈ π1Q̂n where now Qn is equal to the component
W p of W0 or of W1 containing α0(S

1) and α1(S
1). Hence π1Q̂

n ∼= π1Ŵ
p is

cyclic and the result follows.

Proof of Theorem 2(a).

Suppose α1

(
S1

)
⊂ W0. We may assume α1

(
S1

)
⊂ intW0 and let f ′

1 =
f0α1f1. Then

W1 M

S1

-

@
@Rf ′

1
�

��
α0

is also homotopy commutative and we can take α′
1 = α0 instead of α1. By

Corollary 3, π1M is cyclic.
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Similarly, if α0

(
S1

)
⊂W1 then π1M is cyclic.

Proof of Theorem 2(b).

Assume αi

(
S1

)
⊂Wi (i = 1, 2). Let Qn be as in Lemma 8 and let W p

0 (resp.
W p

1 ) (p = 1, . . . , s) be the components of W0 ∩ Qn (resp. W1 ∩ Qn) indexed
such that intW 1

0 ⊃ α0

(
S1

)
, intW s

1 ⊃ α1

(
S1

)
and W p

0 ∩W
q
1 6= ∅ iff p = q or

p = q + 1. Write Fq,q = W q
0 ∩W

q
1 and Fq+1,q = W q+1

0 ∩W q
1 .

Claim 1. π1F̂q+1,q −→ π1Ŵ
q+1
0 and π1F̂q+1,q −→ π1Ŵ

q
1 are isomorphisms.

To see this, let β be any loop in W q+1
0 . Then β is homotopic, in M , to a loop

in W 1
0 (namely a power of α0). By Lemma 6, β is then homotopic, in Ŵ q+1

0 , to

a loop in F̂q+1,q . Hence π1F̂q+1,q −→ π1Ŵ
q+1
0 is an isomorphism.

In a similar way, using the fact that any loop in W q
1 is homotopic, in M, to

a loop in W s
1 , we see that π1F̂q+1,q −→ π1Ŵ

q
1 is an isomorphism.

Claim 2. If 1 < q < s then π1F̂q,q −→ π1Ŵ
q
0 and π1F̂q,q −→ π1Ŵ

q
1 are

isomorphisms.

To see this let β be any loop in W q
0 . Then β is homotopic in M, to a loop

in W 1
0 and therefore, by Lemma 6, β is homotopic in Ŵ q

0 to a loop γ in Fq,q−1.

Let δ be a loop in intW q−1
1 homotopic to γ in W q−1

1 . Then δ is homotopic in

M to a loop in W s
1 and therefore, using Lemma 6, δ is homotopic in Ŵ q−1

1 to

a loop δ1 in Fq,q−1 and δ1 is homotopic in Ŵ q
0 to a loop δ2 in Fq,q . By Lemma

5 γ is homotopic to δ1 in F̂q,q−1. Hence, in Ŵ q
0 , β w γ w δ1 w δ2. Therefore

π1F̂q,q −→ π1Ŵ
q
0 is an isomorphism.

Similarly we show that if β is any loop in W q
1 , then, in Ŵ q

1 we have β w

γ w δ1 w δ2, where now γ and δ1 are loops in Fq+1,q and δ2 is a loop in Fq,q .

Therefore π1F̂q,q −→ π1Ŵ
q
1 is an isomorphism.

Now let F ′ be any component of W0 ∩W1 separating α0

(
S1

)
from α1

(
S1

)
,

that is, F ′ = Fq,q or F ′ = Fq+1,q for some q. Let Xi be the closure of the
component of M −F ′ containing αi

(
S1

)
. The argument in the proof of Lemma

8 shows that the inclusion of Ŵ 1
0 in X̂0 and the inclusion of Ŵ s

0 in X̂1 induce

isomorphisms of fundamental groups. Hence π1X̂0, π1X̂1 and π1F̂
′ are cyclic

and therefore A0, A1 and C are cyclic (see the remark before Lemma 5).

Since by Van Kampen’s Theorem we have π1M̂ = π1X̂0∗π1
bF ′
π1X̂1 it follows

that π1M = A0 ∗C A1.

This completes the proof of Theorem 3.

To complete the proof of the Main Theorem it remains to show that if π1M
n

is not trivial, then the amalgamating subgroup C is non-trivial.
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Lemma 9. Let W 0 and W 1 be disjoint compact n-submanifolds of Mn where
W 0 is S1-contractible in Mn and W 1 is connected and contractible in M. Let
T = Dn−1 × [0, 1] be a tube in Mn such that W i ∩ T = Dn−1 × {i} (i=0,1).
Then W 0 ∪ T ∪W 1 is S1-contractible in M.

Proof. Let a = {0} × [0, 1] be the core of T , p = (0, 0) and q = (0, 1) so
∂a = {p, q}. Then W 0 ∪ T ∪W 1 deformation retracts to W 0 ∪ a ∪W 1 in M so
it suffices to show that W 0 ∪ a ∪W 1 is S1-contractible in M. Since it is easy
to see that W 0 ∪ a is S1-contractible in M, it suffices to show that the diagram
below is homotopy commutative

W 0 ∪ a ∪W 1 M

W 0 ∪ a

-inclusion

HHHHjr ����*
inclusion

where r is the retraction with r
(
W 1

)
= q and the other two maps are inclusions.

To construct the homotopy H : (W 0 ∪ a ∪ W 1) × I −→ M we note that
since W 1 is contractible in M there is a map H : W 1 ×

[
0, 1

2

]
−→M such that

H (x, 0) = x and H
(
W 1 ×

{
1
2

})
is a point. Extend H to W 1× [0, 1] by defining

H (x, t) = H (q, 1− t) for 1
2 ≤ t 5 1. Since H |q×[0,1] defines a nullhomotopic

loop of the form γ · γ−1 we can extend H to
(
a ∪W 1

)
× [0, 1] in such way

that H (p, t) = p for t∈ [0, 1] and H (x, 1) = x if x ∈ a. Finally, extend H to(
W 0 ∪ a ∪W 1

)
× [0, 1] by defining H (x, t) = x for x ∈W 0, t ∈ [0, 1] .

We denote the number of components of a submanifold W of Mn by |W |.

Corollary 4. Suppose that Mn admits a decomposition Mn = W0 ∪W1 where
W0 and W1 are S1-contractible submanifolds of Mn with W0∩W1 = ∂W0 = ∂W1

and such that |W0|+ |W1| = c is minimal. If |W0| > 1 (resp. |W1| > 1) then no
component of W0 (resp. W1) is contractible in Mn.

Proof. Suppose, say, that |W0| > 1 and W0 has a contractible (in Mn) compo-
nent W 1

0 . Let T = Dn−1 × [0, 1] be a tube in Mn joining W0 −W 1
0 to W 1

0 i.e.
T ∩ (W0 −W 1

0 ) = Dn−1 × {0} and T ∩W 1
0 = Dn−1 × {1} . Then by Lemma

9, W0 ∪ T = (W0 −W
1
0 ) ∪ T ∪W 1

0 is S1-contractible and, as a submanifold of
W1, cl (W1 − T ) is S1-contractible. This contradicts the minimality of c since
|W0 ∪ T |+ |cl (W1 − T )| = c− 1.

We now finish the proof of the Main Theorem.

We express Mn as the union of two S1-contractible submanifolds W0, W1

with W0 ∩W1 = ∂W0 = ∂W1 such that |W0|+ |W1| = c is minimal.
If c = 2 then π1M is cyclic by Theorem 1. Hence we can assume c > 2.

By Proposition 1 and Theorem 2 we can assume that αi

(
S1

)
⊂ intW 1

i (i =
0, 1) where W 1

i is a component of Wi. Furthermore for a component F ′ of
∂W 1

0 separating α0

(
S1

)
from α1

(
S1

)
and the closures Xi of the components
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of M − F ′ containing αi

(
S1

)
(i = 0, 1) we have π1M = A0 ∗C A1 where C =

im (π1F
′ −→ π1M) and Ai = im (π1Xi −→ π1M) are cyclic (i = 0, 1).

We now show that C is not trivial.

Suppose, on the contrary, that C is trivial. If W 2
0 (resp. W 2

1 ) is a component
of W0 (resp W1) contained in X1 (resp. X0) then every loop in W 2

0 (resp. W 2
1 )

is homotopic to a loop in W 1
0 (resp. W 1

1 ) and therefore, by Lemma 6, to a loop
in F ′. By assumption this loop is null homotopic in Mn and so, by Lemma 2,
W 2

0 (resp. W 2
1 ) is contractible in M, which is impossible by Corollary 4. Hence

there are no components of W0 (resp. W1) contained in X1 (resp. X0) and so
X1 = W 1

1 , X0 = W 1
0 and c = 2, a contradiction.

5 Closed 3-manifolds.

If the fundamental group of a closed 3-manifold M 3 is cyclic, then, by results of
Olum [9], M3 is homotopy equivalent to a lens space L(p, q) including S3 and
S1 × S2, or S1×̃S2. Since these spaces can be expressed as the union of two
solid tori or two solid Klein bottles and since catS1 is a homotopy-type invariant
it follows that catS1 M3 = 2.

This shows sufficiency for the following

Theorem 3. Let M3 be a closed 3-manifold. Then catS1 M3 = 2 if and only if
π1M

3 is cyclic.

Proof. By the Main Theorem, if π1M
3 is not cyclic then π1M

n = A ∗C B is
a non-trivial free product with amalgamation, with A,B and C cyclic. Hence
π1M

n is infinite with center C 6= 1 and so π1M
n is not a non-trivial free product

and it follows that every 2−sphere in M is homotopically trivial. Hence the
prime decomposition of M shows that π1M

n = π1M
′ where M ′ is a closed

irreducible 3-manifold.
First assume thatM is orientable or non-orientable but P 2-irreducible. Then

Waldhausen’s proof of Satz 1.2 [11], applies to show that M ′ contains a closed
surface, different from S2 or P 2, with fundamental group isomorphic to a sub-
group of C, which is impossible. Hence π1M

3 is cyclic.
If M ′ is non-orientable and contains a 2−sided P 2 then i∗π1P

2 ∼= Z2 is
conjugate to a subgroup of A,B, or C and it follows that A,B and C are finite
cyclic, hence H1(M

′) is finite, a contradiction, since M ′ is closed and non-
orientable.

Question: Suppose that Mn is closed and catS1 Mn = 2. Is π1M
n cyclic if

n > 3?
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