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Error estimation of goal oriented functional arising from an iteration stopping criterion is 

considered for solution of the steady Euler problem. The functional error is calculated using an iteration 
residual and adjoint parameters. Numerical tests demonstrate the applicability of this approach for the 
steady 2-D Euler equations.  

Keywords: steady Euler equations, iteration error, adjoint equations. 
 

1. INTRODUCTION 
The quantitative evaluation of errors caused by different components of a numerical 

algorithm including approximation error and iteration error are of significant current interest [1-
3]. Iterative methods are commonly used for solving steady CFD problems. The simplest 
technique involves the temporal evolution from an initial guess to obtain the steady solution.  
This approach implies iterations along the time or a certain pseudo-temporal variable [4-5]. 
Different variants of preconditioning [6-10] are used to improve the relaxation rate. Commonly 
used a priori estimates of iteration convergence [5] linking the error with iteration residual in 
some norms, contain constants that are in general case (for nonlinear non self-adjoint operators) 
unknown. Usually, iterations are terminated when some convergence criterion (for example, 

mn
i

n
ii

10max 1 ≤−+ ρρ  , [4])  is satisfied. This provides for a decrease the of iteration error, 

however the magnitude of this error remains unknown. When the problem under the 
consideration is characterized by an important functional, it is natural to observe the error of this 
functional. This error may be calculated using adjoint equations [11-12].  In the present paper we 
estimate the error in the goal functional via iteration residual and adjoint parameters.  The flow 
density at a certain reference point is chosen here as the goal functional. From another viewpoint, 
the approach used here may be considered as ‘a posteriori’ estimation of error caused by 
variation of the physical model [13-19] using adjoint equations. The results provided by coarse 
and fine mesh physical models are compared in [13, 14] for several problems including the 
viscous incompressible fluid governed by Navier-Stokes or Stokes models. The influence of a 
coefficient’s oscillations and nonlinearity for the Poisson and convection-diffusion-reaction 
equations is estimated in [17]. The deviation of solutions governed by Helmholtz and Poisson 
models is considered in [18].  Ref. [19] discusses the impact of viscosity on the flow parameters 
comparing the Euler and parabolized Navier-Stokes equations. In present paper we address the 
issue of comparing steady and unsteady inviscid gas flows. This approach was employed for the  
heat transfer equation in [20]. 

 
2. Algorithm outline 

Let us consider the formal scheme of the considered algorithm. We solve a steady 
nonlinear equation by time iterations. 

wfN =~  in nR⊂Ω , );()(~)(~
2 Ω∂∈=Ω∂ Lxff B   (1) 

Herein - is the nonlinear differential operator ( ).  N )()( 2 Ω→Ω LH k

The time iterations mean solving the equation 
wNftf =−∂∂ /  in  ),,0( ftQ ×Ω= );()()( 2 Ω∂∈=Ω∂ Lxff B  (2) 

with an initial guess );()()0,( 20 Ω∈=Ω Lxff  

The iteration residual is equal to   
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Consider wfN =~  as an exact equation while wNftf =−∂∂ /  is considered as a  
disturbed one.  The exact and disturbed solutions are related by  

),()(~),( xtfxfxtf Δ+= .  
The operator   is considered to be Frechet differentiable, the corresponding derivative is 
denoted as . Then the following relation holds  

N
fN

fNfNffN f Δ+=Δ+ )~()~(  with the error of )( 2fO Δ , (3) 

To the first order of accuracy the disturbance for time instant t is governed by the steady 
equation 

0=Δ−=Δ− fNqfN
t
f

ff∂
∂  in nR⊂Ω , ;0)( =Ω∂Δf  

 
(4) 

 

where ),( xtq
t
f

=
∂
∂ is considered as source-like term. 

Let us use a Frechet differentiable goal functional . The variation of 
this functional is linear continuous functional and may be represented according to Riesz 
theorem using inner product in 

1)(:)( RH k →Ω⋅ε

)(2 ΩL as 

2
),( Lf fΔ=Δ εε . (5) 

Using (4) this expression may be rewritten as  

2222
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LLffLffLf qNqqNf Ψ===Δ=Δ −− εεεε  (6) 

where  is a formal solution of adjoint problem: ffN ε*1−=Ψ

ffN ε=Ψ*  (7) 

The detailed form of adjoint problem may be obtained from the bilinear identity 

22
),(),( *

LfLf fNfN Ψ=Ψ using integration by parts [12]. 
Thus, the goal functional variation caused by the iteration residual may be expressed as  

ΩΨ=Δ ∫
Ω

dxtq ),(ε   
(8) 

where  is the solution of adjoint problem Ψ

0* =−Ψ ffN ε  in nR⊂Ω  with boundary conditions 0)( =Ω∂Ψ . (9) 

 
The adjoint problem can be solved using some iterative method, herein the time relaxation of the 
following form was used.   

0/ * =+Ψ−∂Ψ∂ ffN ετ  in ),,0( fQ τ×Ω=  0)( =Ω∂Ψ , ;0)0,( =ΩΨ  (10) 

 
It should be noted that problem (10) is not connected with (2) neither by a single 

temporal interval nor by the form of iterations, which is unusual for adjoint problems. 
 
 
 

3. TEST PROBLEM 
Let us consider the approach described above for a steady two-dimensional compressible 

inviscid flow. The iterations are based on temporal relaxation using the unsteady form of Euler 
equations. 
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eP ργ )1( −= ; ,hVUh ++= 2/)( 22
0 ePh γρ =),( , )(

2
1 22 VU +=θ  

 (X,Y)∈Ω=(0<X< Xmax; 0<Y<Ymax), 0<t<tmax); 

 

 
The boundary conditions were considered as steady ones. The calculation of the steady flow-

field was performed using time evolution starting from a spatially uniform initial guess.  

The pointwise density estimation was used as the goal functional .  ),( estest YXρ

dXdYXXYYYX estestest )()(),(~ −−== ∫
Ω

δδρερ  
(14)

The corresponding adjoint problem may be obtained by standard means [12- 22 ]  and assumes 
the form   
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The δ - form source in equation for ρΨ  corresponds to the location of the reference point.  
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The parameters ),,,( EVU ΨΨΨΨρ  are the adjoint analogues of density, velocity components 
and energy, respectively. 

Initial conditions: ;0
0,,, =Ψ

=τρ eVU   (19) 

 
Boundary conditions (Y=0; Y=Ymax): 0, =Ψ Ω∂f   

(20) 
The mollification of the δ - form source term was used according to [23-24]. 
The convergence error estimate (analogue of Eq. (8)) has a form: 



 4

dXdY
t
e

t
V

t
U

t
YXt eVU ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

Ψ+
∂
∂

Ψ+
∂
∂

Ψ+
∂
∂

Ψ= ∫∫
Ω

ρδε ρ ),,(  
 
(21) 

 
This expression quantitatively determines the deviation of the calculation from the exact 

steady value due to interruption of iterations (evolution at moment t).  

4. Numerical tests 
 

A first order finite-difference scheme (donor cells [4, 19]) was used in the numerical tests. The 
flowfield engendered by two crossing shock waves ( , M=4) was calculated. Fig. 1 
illustrates the isolines of the density in flowfield and Fig. 2 illustrates the isolines of the adjoint 
density (a concentration of isolines corresponds to a reference point).  
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Fig. 1 Isolines of density Fig. 2 Isolines of adjoint density 
 

The time evolution starts from a spatially uniform initial guess. During the  time relaxation (past every 
50 steps)  the adjoint problem was solved and the value of (21) was estimated. Fig. 3 presents the 
history of the density past crossing shocks at reference point as a function of time. The difference 
between  calculation and analytic solution, the convergence error estimated via adjoint 
parameters and the convergence indicator n

ij
n
ijji

ρρ −+1

,
max  (multiplied by a coefficient 200 for 

better display visibility) may be compared. The convergence indicator n
ij

n
ijji

ρρ −+1

,
max   provides 

qualitatively the correct pattern of time evolution but it does not involve quantitative information 
on the distance from the exact solution. The adjoint estimation of the convergence error at the 
initial stage of relaxation deviates significantly from the exact value due to the nonlinearity of 
the problem (terms marked in Eq. (2) as )( 2fO Δ are rather large).  
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Fig. 3. The history of density relaxation as a function of number of time steps.  

1- deviation of numerical solution from analytic one,  2- adjoint estimation of convergence error, 
3-convergence indicator 200*max 1

,

n
ij

n
ijji

ρρ −+  

Fig. 4  provides the final part of the temporal evolution. Curve 1 presents the deviation of the 
numerical solution from analytic one (shifted by the value of error caused by the spatial 
approximation). Line 2 presents the error estimation using iteration residual and adjoint 
parameters. The error of the spatial approximation at the final iterative stage is marked by 3. 
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Fig. 4. The history of density relaxation (continuation of Fig. 3).  

1- deviation of numerical solution from analytic one,  2- adjoint estimation of convergence error,  3-the 
error of spatial approximation  
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For the final stage of time relaxation the adjoint estimation (21) is close to the convergence error.  
 
 

5. DISCUSSION 
 

The present paper considers the convergence error estimate  for the simplest form of iterations 
(time relaxation). The analysis presented is also valid for cases when iterations occur along some 
pseudo-time with use of preconditioning.  This approach may also be applied for discrete 
iterations if a discrete statement of the adjoint problem is used.  

At the beginning stage of the time relaxation the adjoint error estimation significantly deviates 
from exact error due to nonlinearity (this effect is considered also in [20]). At the  final stage the 
adjoint error estimation is quite close to the exact error (if the spatial approximation error is 
taken into account). 

In general, the considered estimate may serve for checking the convergence stopping criterion, 
if one considers the necessary tolerance of the goal functional as a stopping criterion.  However, 
this involves a rather large computational effort due to elliptic nature of the corresponding 
adjoint problem. If we need to track the iterations by estimating the convergence quality 
according to (21) we should solve the adjoint problem at every check point which implies a large 
computational burden. Thus, the number of time points where estimation is performed should be 
limited. 

The widely used convergence indicator n
ij

n
ijji

ρρ −+1

,
max   [4] qualitatively correctly reflects the 

convergence but does not provide a quantitative estimation of the deviation from the steady state. 
Fig. 3 presents a comparison between the  adjoint estimation and the value n

ij
n
ijji

ρρ −+1

,
max , 

multiplied by coefficient 200, chosen for the purpose of visual presentation. The adjoint error 
estimate at initial stage of iterations exhibits a large deviation from the exact values due to 
nonlinearity. At the final stage the adjoint estimate is precise enough. Unfortunately, if the exact 
solution is unknown, it is difficult to determine when the adjoint estimate  approaches the true 
error. An estimation of  the spatial approximation error [15,16,19 and 21] may serve as an 
auxiliary criterion aimed at  determining applicability of the adjoint estimation of convergence 
error.  
 

6. CONCLUSIONS 
 

The error in the  goal functional caused by truncating the number of  iterations required  
for solving the steady problem may be calculated using adjoint variables and the value of 
iteration residual.  
Numerical tests demonstrate that for 2-D Euler equations use of this approach enables us to 
calculate the error of the goal functional (density at a checkpoint) caused by the time iterations. 
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