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Abstract 
 
The “equation-free” (EF) method is based on a procedure, which is often used in complex, 
multi-scale problems, given an initial macroscopic variable, by lifting, evolve in Direct Numerical 
Simulations (DNS), restriction, and projective integration. In this paper, we apply the  
Equation-free method to the reduced modeling of a large-scale upper ocean circulation in the 
tropic Pacific domain. We carry out a series of experiments to discuss its convergence and error, 
and we also discuss some factors that affect the results, such as the number of snapshots and basis 
functions based on proper orthogonal decomposition (POD) mode, large-scale time step, short 
time step and the number of iterations during the course of the DNS running in a large-scale time 
step. Compared with POD method, we do not need availability of explicit equation or 
right-hand-side (RHS), and we may obtain better results for horizontal velocity components of 
depth-averaged currents than those obtained in POD case. The results from the equation-free based 
on different POD modes are compared with results of POD and DNS. We also illustrate the 
convergence and error of the EF method. The main findings are: we reduce the computation work 
enormously in contrast to DNS, for instance, the computational cost of the equation-free 
POD-assisted method is less than 10% of that for DNS. The method can capture the main 
variability by a low dimensional system based on equation-free POD mode. We also attained a 
RMS error for the upper ocean layer thickness that is less than 1m i.e. less than 1% of the average 
thickness and the correlations between the upper layer thickness are around 0.99 based on 
equation-free POD method, while the convergence and the error are illustrated through numerical 
experiments. 
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1  Introduction 
 
The Proper orthogonal decomposition (POD) is a methodology that constitutes a very efficient 
way to perform reduced modeling by identifying the few most energetic modes in a sequence of 
snapshots from a time-dependent system, and subsequently providing  a means of obtaining a 
low-dimensional description of the system’s dynamics [1]. The method of snapshots which is first 
proposed in [2] for flow system is a very effective and easy to carry out approach for obtaining 
POD basis sets. The proper orthogonal decomposition (POD) was originally introduced by 
Karhunen in 1946 (see [3]) and Loève in 1945 (see [4]), and the method has been extensively used 
in research in recent years and successfully applied to a variety of fields, such as in conjunction 
with experimental e.g.,[5,6,7,8]) and with numerical studies(e.g.,[9,10,11,12]) in thermal 
convection, shear layers, cavity flows and external flows, to mention just a few. In recent years, 
our understanding of the tropical ocean has increased. There is a vast and growing literature on the 
design of the ocean model based on partial differential equations (PDE) for physical systems. Such 
modes are often hard to solve because of the high order system that describe the state. Another 
obvious application of POD in weather forecasting and operational oceanography is the 
four-dimensional variational (4DVAR) data assimilation problem. However, a major difficulty in 
use of 4D-Var for realistic general circulation models is the dimension of the control space, 
generally equal to the size of the model state variable and typically of order . Current 
ways to obtain feasible implementations of 4D-VAR consist mainly of the incremental method 
(see [13]), check-pointing (see [14]) and parallelization. However, each of these three methods has 
their obvious shortcomings. The dimension of the control space remains very large in realistic 
applications for the incremental method (see [15, 16]). The size of assimilation studies is imposed 
a limitation for memory storage requirements, even on the largest computers. Check-pointing 
strategies (see [17]) have been developed to address the explosive growth in both on-line 
computer memory and remote storage requirements of computing the gradient by the 
forward/adjoint technique, which characterizes large-scale assimilation studies. POD provides a 
potential technique that can dramatically reduce computation and memory burdens of 4D-VAR. 
Cao et al (see [18]) made an initial effort to explore the feasibility of application of POD to 
4D-VAR. If someone was to apply the POD method to an ocean model, the feasibility and 
efficiency of the POD technique in ocean calculations are already demonstrated (e.g., [19]). In the 
aforementioned works, we can obtain low-dimensional system dynamics systems directly from the 
Galerkin projection of the governing equations on the POD modes. However, it is well known that 
the reduced systems resulting from truncated Galerkin projections may result in spurious 
asymptotic states (e.g., [20]), and it is difficult to obtain the explicit form of the right-hand-side 
(RHS) which consists of POD coefficients of the evolution equation. Thus, the Equation-free 
POD-assisted method is first used to resolve the question above in incompressible flows (see [21]). 
It is well know that the tropic Pacific Ocean model is more complicated than the molecular 
dynamics model, and it is very difficult to obtain accurate information due to the lack of direct 
measurements and insufficient knowledge of air-sea exchange processes. Since Ocean forecasting 
is very important to human activity, the topic we are investigating is more complicated and 
significant than the two-dimensional flow past a circular cylinder. Similarly, the Equation-free 
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method also can be used to resolve problems related to weather and land numerical simulation. 
In this paper, we apply the equation-free POD-assisted method to the simulation of the upper 
tropical Pacific Ocean model based on POD model. In this context, the role of the “detailed, 
microscopic” model is played by the numerical simulation (DNS) simulator, and the “unavailable 
coarse-grained” equations are the evolution equations about the coefficients of the projection of 
the full DNS solution on master POD modes. We often obtain these equations by performing a 
Galerkin projection of the original equations on the POD basis; to truncate this Galerkin projection 
would give an approximation of these equations. The equation-free method tries to resolve this 
model without deriving it in closed form. We use full DNS simulator to estimate the 
right-hand-side of this Galerkin model, and the equation-free acceleration technique we will 
illustrate is projective integration. 
In this paper, we make use of an Equation-free POD-assisted method, which use “equation-free” 
[22, 23, 24] projective integration [25, 26, 27]. The equation-free procedure is devised for the 
efficient computational study of complex, multi-scale problems. The basic process is as follows 
(two level)[21] (see Figure 1): (a) to devise and implement short-time numerical experiments with 
“the best available “ microscopic model, and subsequently (b) to estimate quantities (derivative) 
required in numerical computation of the (unavailable) macroscopic equations for the 
coarse-grained system behavior [28,29] by using the numerical results of such microscopic 
computations. Thus, we can estimate the closures that are required to obtain explicit macroscopic 
equations on demand; we can perform numerical analysis tasks by running the microscopic 
simulation directly. This framework has been applied to many types of problems, such as 
bifurcation analysis of complex systems and homogenization of random media [22, 23, 25, 28, 30, 
and 31]. 
The paper is organized as follows: In section 2 the upper tropical Pacific Ocean model is described. 
The POD technique and its mathematical properties and equation-free POD model are presented in 
section 3. In section 4, the numerical calculations using equation-free POD in the context of 
simulating the upper layer thickness and currents in this ocean model, and a comparison with DNS 
and POD are discussed. In section 5 we discuss the convergence and error of the method. We 
summarize the results in section 6. 
 
 

2      Reduced-gravity Model of Upper Tropic Pacific 
 
2.1 Description of the physical model 
A reduced-gravity model with a constant-depth surface layer is used in this paper (Cane 1979; 
Seager et al.1988), which is studying the ocean dynamics in tropical regions. 
The model is a reduced-gravity, linear transport model, consisting of two layers above the 
thermocline with the same constant density (Figure 2). It is assumed that below the thermocline, 
the ocean is of a higher density, which is sufficiently deep so that its velocity vanishes and there is 
not density difference across the base of the surface layer, that is, we regard the surface layer as 
part of the upper layer. The equations for the depth-averaged currents are 
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where  are the horizontal velocity components of the depth-averaged currents;  the total 

layer thickness;  the Coriolis force;  the mean depth of the layer; 
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Ĥf 0ρ the density of water; 

and  the horizontal eddy viscosity coefficient and αA  is the friction coefficient. The wind 
stress is calculated by the aerodynamic bulk formula  
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Where aρ  is the density of the air,  the wind stress drag coefficient; and  the 

components of the wind velocity. 

( ,wind windU VDc )

 
2.2 Numerical Scheme 
The dynamical model equations (2.1a)-(2.1c) are governed by wave dynamics. In addition, the 

chosen model domain ranges from S ~ N, E ~ W. This chosen model domain 

allows all possible equatorially trapped waves, to be excited by the applied wind forcing (Moore 
and Philander 1978). We choose the spatial interval for the dynamical model to be  

 and the time step to be 

D29 D29 D120 D70

D5.0=Δ=Δ yx 100=Δt s. This temporal-spatial resolution well 

allows resolving all possible waves and to render the model integration numerically stable. The 
model (2.1a)-(2.1c) is driven by the FSU (Florida State University) climatological monthly mean 
winds (Stricherz et al.1992). By a linear interpolation, the data are projected onto each time step 
and into each grid point. In Table 1, the values of the numerical parameters used in the model 
integration are listed. It takes about 20 years for the model to reach a periodic constant seasonal 
cycle; at that time, it has successfully captured the main seasonal variability of dynamical fields. 
The currents and the upper layer thickness of the 21-st year are saved for the process. 
The model is discretized on the Arakawa C-grid, and all the model boundaries are closed.  At 
these solid boundaries, we apply the no-normal flow and no-slip conditions. The time integration 
uses a leapfrog scheme, with a forward scheme every 10th time step to eliminate the 
computational mode. Every integration day a mass-compensation is carried out. 
 

3.  Computational Formulation of Equation-free Method 
 
A Simple Introduction to Proper Orthogonal Decomposition 
In order to illuminate the idea of the proper orthogonal decomposition method, we will introduce 
the POD method in continuous case. Because the main idea for both continuous and discrete cases 
is same, we carry out the numerical experiments in the discrete case. 



Let ( ) denote the set of  observations (also called snapshots) of some 

physical process taken at position
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We form new ensemble by focusing on deviations from the mean as follows: 
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We wish to find an optimal compressed description of the sequence of data (3.2). One description 
of the process is a series expansion in terms of a set of basis functions. Intuitively, the basis 
functions should in some sense be representative of the members of the ensemble. Such a 
coordinate system, which possesses several optimality properties (to be discussed in the sequel), is 
provided by the Karhunen-Loève expansion (see [35]), where the basis functions  are, in fact, 
admixtures of the snapshots and are given by 
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subject to  
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is minimized, where (• ，•) and ||·|| denote the usual -inner product and -norm, respectively. 2L 2L

   It follows that (see, [36]) the basis functions are the eigenfunctions of the integral equation 
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Substituting (3.3) into (3.6) yields the following eigenvalue problem: 
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our problem amounts to solving for the eigenvectors of a 
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the ensemble of snapshots. A straightforward calculation (see also [36]) shows that the cost 
functional 

n

,),(|),(|1 2

1

λλ =ΦΦ=Φ∑
=

n

i
iV

n
                                 (3.9) 

ni ,,2,1 "=iηwhich is maximized when the coefficients ( ) of (3.8) are the elements of the 

eigenvector corresponding to the largest eigenvalue of . L
 

0λ ≥The non-negative definiteness of correlation (3.9) assures that  and we order the 

eigenvalues by 1,2, ,k n= "1i iλ λ +≥ kΦ. After determining the POD basis , , the POD expansion 

coefficients can be determined by 
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By denoting a(t)={ ( (see [21]), we define a restriction operator )}ka t ϒ  such that 
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Clearly, both  and  are linear operators, and ϒ Ψ ϒ Ψ ≡a=Ia a, where I is unit operator. The 
evolution of the POD coefficients a( ) is governed by a process t

a ( )d t
dt
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Where the explicit form of right-hand-side (RHS) terms are unknown. In the normal truncated 
POD-Galerkin procedure, the RHS terms are derived form the equation (2.1a)-(2.1c) by a Galerkin 
approach, resulting in a (possibly large) set of coupled ODEs. 
In this section, in order to perform the numerical experiments, we consider the discrete 
Karhunen-Loève expansion to find an optimal representation of the ensemble of snapshots (e.g., 
[1], [10], [19], and [37]).  
 
3.1 The Equation-free POD Model 
Equation-free method is usually used to resolve different scale problems between the macroscopic 
level and microscopic level. The whole method is often made of two levels, that is, “inner” 
simulator and “outer” simulator. The “inner” simulator is micro direct numerical simulation, and 
the “outer” simulator consists of many types of continuous mathematic methods at macro level, 
such as finite difference, finite element, finite volume element, optimization. How to link between 
macro scale and micro scale is the key problem. Here, we often have some steps as described 
below. 



Full DNS is used to estimate the right hand side (RHS) of these Galerkin ODEs on demand in our 
approach, and we can accelerate their numerical integration, without approximating them in closed 
form. In this paper, the equation-free implementation of a numerical task is illustrated: numerical 
integration, which is called “projective integration” in an equation-free context. We will provide a 
detailed description for every step of the method. 
Equation-free single step projective integration consists of the following main components, from 
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(a)  steps of micro level (short time step) computation (at time step  where 

 and ). 
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(b) Restriction to macro variables and estimation of the time-derivatives of their evolution; 

cTΔ ; (c) One step of macro level projective integration with step size

(d) Lifting from the projected values of the macro variables to consistent micro level initial 
conditions. 

The large (coarse) step  will be usually chosen to be cTΔ ≥ cTΔtΔ =  where . 

The global time step is . Figure 2 presents a 

graphical illustration of the notation. 

cm tΔ 1cm ≥

1 (n n
f c f cT T T T T m m t+Δ = )− = Δ + Δ = + Δ

In our case, the “inner” simulator is the fully resolved DNS discretization for tropic Pacific 
model. The “outer” (coarse) model is the unavailable in closed form Galerkin sets of ODEs that 
are made up of coefficients of the evolution equations based on the first few low-POD modes. 
Specially, the process of POD-assisted projective integration is made up of the following steps 

(see Figure 2): Given a a( ), n nT≡

1. Lifting: at , obtain =nT T= ( , )nV T X Ψ a( ). nT

2.  Micro scale computation: Resolve the equations (2.1a)-(2.1c) by DNS for a short period of 

time, for . We can compute this by appropriate difference scheme with 

a small time step . 
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5. Return to step 1 until the final integration time is reached. 
Remark: As discussed above, we can obtained the right-hand-side Y( t ;a( t )) of equations (3.12) 
from the equations (2.1a)-(2.1c) by a Galerkin projection. This procedure may result in rather 
intricate forms and often suffers long-term dynamics, (see [20, 32]). This “equation-free” 
approach can avoid these difficulties by using “just enough” full DNS simulation due to its not 



requiring the explicit form of the RHS of (3.12). After having already performed a short DNS run, 
the procedure is as follows: 
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Once the RHS of (3.12) is estimated numerically, one can integrate it through Euler difference 
scheme. 
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1aN+ , repeatedly. Therefore, after the steps above, we obtain what we want, that is,

 
 

4     Numerical Results 
 
In this section, we present numerical results of the equation-free POD model for the upper tropical 
Pacific Ocean model. Here we select the three sets of different snapshots for discussing the effect 
of the number of snapshots and basis functions, that is n=20, n=36, and n=60. For all of them, the 
first seven POD modes can capture about 99% energy. It can also be clearly seen, that for the 
upper layer thickness h , the same modes capture the most energy, followed next by  and last 
by . Thus, different POD modes may be used to reconstruct  respectively. To quantify the 
performance of the reduced basis method, we use two metrics, namely the root mean square error 
(RMSE) and the correlation of the difference between the full order and the reduced order 
simulation. We can obtain it by first taking twelve-month’s full order results and the corresponding 
twelve-month’s reduced order results. We made a comparison between POD, equation-free POD 
and full DNS simulation by RMSE. The formulation of computing the error is as follows: 
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where M  is the number of nodal points, the index  denotes the month,  is the full order 

approximation and  is the reduced order approximation. The average RMS error is defined as: 
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And the correlation is defined as: 
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h� hwhere  and  is the average of full order approximation and reduced order approximation 

respectively. The RMS error and the correlation for the other model variables  and u  are 
computed similarly. Table 2 presents the average RMSE in reduced order approximations using 
different modes namely n = 20, n = 36, and n = 60 snapshots. Note that from these simulations, 
with the span of the reduced basis space increasing, the RMSE decreases as long as the same 
number snapshots are used.  Compared with POD, equation-free POD results in a bit of 
improvement, especially for v  by capturing 60% energy. We also find that the RMSE continues to 
decreases with more energy being captured in equation-free POD than in POD. The correlation for 
twelve months is displayed in Table 3. Clearly, when increasing the POD mode, the correlation 
also increases for the same number of snapshots. We find that the results from equation-free POD 
are almost the same as those of POD. (Figure 3)-(Figure 5) present some comparisons made 
(among DNS, POD and equation-free POD ) under the different scenarios. 
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                          5    Convergence and Error 
 
In the problem we investigate, we also need to pay attention to the issues of convergence and error.  
Before we consider the convergence, we first prove the consistency of the EF method. Let 
equations (2.1a)-(2.1c) be rewritten in vector form. The equation is as follows: 
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interval, and we apply a numerical scheme that is consistent and stable. Let ( , )H t x  be the 
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Where ||·|| is -norm,  is the EF method solution,  2L ( , )H t x ( , )H t x  is full DNS solution , 

and  is the true solution of original problem. The convergence of the method is thus 

proved. 

( , )tp x

The relative error is used to highlight the convergence and error in numerical experiments. 

|| ||
|| ||

H H
H
− ,H HThe relative error can be expressed by , where  are the EF method solution and 

full DNS solution, respectively, and ||·|| denotes the Euclidian-norm. The results of analysis of the 
numerical experiments are following. 
We discuss the factors that affect the results of convergence and error, including time step and the 
number of iterations. In our case, due to the different magnitude, we choose the relative error, and 
we think that it can reflect the convergence truly. We select the case of n=36, and we first discuss 
the difference between large-scale time step and short time step results. One factor is number of 
iterations during the course of the DNS running in a large-scale time step, and we also select 
several sets of experiments. We give the error fold line figure when we select the number of 
iterations to be 2, 10, 20, 40, 100, respectively, see figure 6. We find that the results are much 
improved when we increase the number of iterations, and the error is much smaller. Similarly, we 
decided to choose the number of iterations 20 for the sake of saving computational time. The other 
factor is the time step, which in the case of short time step is tΔ =100 seconds, We select the 
large-scale time step size as =6 hours, 1 day, 5 days and  10 days respectively. We can 
illustrate that the method is convergent by providing a numerical example, see figure 7. In addition 
to the RMS error, we compute the relative error between reduced solution and full solution for , 
and we attained a relative error of below 

TΔ

h
310−  of the magnitude of the average height , that is 

about 150 meters. The results indicate that the smaller the large time step is, the smaller the error 
for , with a reverse effect foru . Generally speaking  we conclude that the result is better 

when a large-scale time step of =1 day is used, in particular when we consider computation 
time savings. The relative error is presented to show the convergence of the method, see figure 8. 
Here, we also consider another issue related to scheme of time derivative estimation. In our case, 
we use the Forward Euler Projection to discretize the time derivative. The polynomial 
extrapolation approximation is another way to estimate the time derivative. In our case, we find 
that the Forward Euler Projection yields the same result as obtained with polynomial extrapolation 
when we use 1-th order polynomial. However, the result is unbelievably improved when we 

h

,h v
TΔ



choose the 2-th order polynomial, and this result may be related to our specific problem. 
 
 
 
 

6   Summary  
 

We applied the equation-free POD method to reduced modeling of a large-scale upper ocean 
circulation in the tropic Pacific domain. Three sets of snapshots are chosen to analyze the 
difference between POD and equation-free POD, and we found that some results of the equation- 
free POD were the same as those of POD, while other were slightly better than those of POD. By 
numerical experimentation, we analyzed the factors that affected the results, and some 
improvements were obtained in resolving the POD related problems. Generally speaking, the 
number of snapshots was found to have little influence on results beyond a certain threshold 
number. Certainly, increasing the number of snapshots is good for us.  Here, we often choose the 
number of basis functions that capture 99% energy. We found that it was not always the case that 
the larger the number of basis functions we choose, the better the results obtained. For a given 
number of snapshots and basis functions, we also discussed the effect induced by a large-scale 
time step and by the number of iterations. The results indicated that the ratio between large time 
step and short time step should be confined to a certain range, here, the result is acceptable when 
the large time is equal to 1 day. 
We also think it appropriate to take the number of iterations to be equal to 20 for saving 
computation time, though a larger number of iterations is beneficial for our problem. The 
convergence and error between approximate solution and full solution were also discussed, and we 
provided an illustration of convergence and error by calculating relative error and RMS error. 

From the results, we can find that the magnitude of the error is below 310− . However the most 

obvious advantage of using the equation-fee POD is that we can solve problems for which the 
corresponding equations are unavailable or without closed form. Although the results of using 
equation-free POD are not obviously better (they are the same as POD in cases) than those of POD, 
we are still satisfied with them for our applying the new method to the  tropic Pacific Ocean 
simulation due to its enormous decrease in computation work compared with DNS. For instance, 
the computational cost of the equation-free POD-assisted method is less than 10% that required by 
DNS. In our case, we think it important that the lifting step-given the accurate initial values of 
macro variables (here, low-POD coefficients) be implemented. Projective integration is one of the 
traditional continuum numerical procedures implemented in an equation-free frame. Certainly, we 
must further investigate the issues that emerge in the process of using equation-free POD method, 
for instance, the computational cost is not less than that of POD. 
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Parameter Value Remarks 

Reduced gravity 2107.3 −×'g   

Wind stress drag coefficient 
DC 3105.1 −×  

Ĥ 150 m Mean depth of upper layer  

Density of air 
aρ 1.2 kg m  3− 

Density of seawater 
0ρ 3− 1025 kg m

A  750 m2 -1sec Coefficient of horizontal viscosity

α  Coefficient of bottom friction 5105.2 −×  

 
Table 1   The values of the model parameters used in the model 

 
 

Ĥ  

h 
Upper Layer 

Density ρ  

Deep Ocean Density 

ρρ Δ+  u=v=0

Upper Layer Density  

ρ  

),( yx ττWind Stress

 
 
      Figure 1   The vertical structure of the reduced-gravity model 
 
 



 
 
 
 
 

POD 
RMSE of h 60% 95% 99% 

20 snapshots 2.76744771 1.25615931 0.60962808

36 snapshots 2.76414776 1.24391854 0.59819734

60 snapshots 2.68031812 1.24963772 0.62677878

 
Equation-free POD 

RMSE of h 60% 95% 99% 

20snapshots 2.41852546 1.12094295 0.51566243

36snapshots 2.41472030 1.11343133 0.48440239

60snapshots 2.41544986 1.11462390 0.48794851

 
POD 

RMSE of u 60% 95% 99% 

20snapshots 0.01915840 0.00635201 0.00546203

36snapshots 0.01916046 0.00411278 0.00509165

60snapshots 0.01926533 0.00524721 0.00656431

 
Equation-free POD 

RMSE of u 60% 95% 99% 

20snapshots 0.01127066 0.00545016 0.00348107

36snapshots 0.01115794 0.00487991 0.00250289

60snapshots 0.01116655 0.00493398 0.00261936

 
POD 

RMSE of v 60% 95% 99% 

20snapshots 0.01203851 0.00397984 0.00547067

36snapshots 0.01194210 0.00426739 0.00512042

60snapshots 0.01091984 0.00378621 0.00410236

 
Equation-free POD 

RMSE of v 60% 95% 99% 

20snapshots 0.00531464 0.00207548 0.00154492



36snapshots 0.00529146 0.00176191 0.00101180 

60snapshots 0.00530750 0.00181613 0.00111099 

Table 2   RMSE of , and a comparison between POD and equation-free POD for different 
t percentages of captured energy, here, snapshots is n=20, 36, 60  

vuh ,,

 
POD 

 h (99%) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

20 snapshots 0.992 0.991 0.995 0.992 0.992 0.983 0.985 0.991 0.995 0.994 0.992 0.991 

36 snapshots 0.992 0.993 0.995 0.993 0.992 0.984 0.985 0.990 0.994 0.994 0.993 0.990 

60 snapshots 0.992 0.996 0.994 0.992 0.993 0.983 0.986 0.991 0.992 0.994 0.993 0.990 

 
Equation-free POD 

 h (99%) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

20 snapshots 0.992 0.996 0.996 0.993 0.993 0.986 0.986 0.991 0.995 0.994 0.993 0.991 

36 snapshots 0.994 0.997 0.996 0.994 0.994 0.985 0.987 0.992 0.995 0.995 0.994 0.991 

60 snapshots 0.994 0.996 0.996 0.994 0.994 0.985 0.987 0.992 0.995 0.995 0.994 0.990 

 
POD 

 u (99%) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

20 snapshots 0.776 0.883 0.950 0.890 0.872 0.897 0.910 0.945 0.940 0.920 0.920 0.861 

36 snapshots 0.791 0.889 0.949 0.900 0.885 0.885 0.916 0.949 0.934 0.922 0.925 0.858 

60 snapshots 0.794 0.898 0.950 0.898 0.878 0.884 0.919 0.951 0.937 0.928 0.925 0.852 

 
Equation-free POD 

 u (99%) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

20 snapshots 0.974 0.989 0.993 0.952 0.975 0.989 0.990 0.992 0.996 0.951 0.956 0.992 

36 snapshots 0.990 0.995 0.992 0.990 0.990 0.989 0.996 0.995 0.993 0.987 0.973 0.990 

60 snapshots 0.989 0.994 0.992 0.988 0.989 0.989 0.995 0.995 0.993 0.986 0.970 0.989 

Table 3   Correlation as to 20 snapshots, 36 snapshots, and 60 snapshots for upper layer 
thickness (unit: m), zonal current velocity v (unit: m/s) a comparison between POD and 
equation-free POD in energy percentage of 99% 
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Figure 2   Sketch of POD-assisted projective integration 

 
 

 

 

 

 

 

 



 

 
Figure 3 Upper layer thickness in February, May, August and November in the case of 20 snapshots. 
The number of POD basis is determined by capturing 99% of energy produced by the full model 
approximation. Blue: full order approximation; red: equation-free POD; green : POD 

 

 

 

 

 

 



 

 
Figure 4    The same as figure 3, but for the case of 36 snapshots. 

 

 

 

 

 

 



 

 
Figure 5   The same as figure 3, but for the case of 60snapshots. 
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Figure 6   Root mean square error of the equation-free POD as a function of the number of 
iterations. 
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Figure 7   Root mean square error of the equation-free POD as a function of the large-scale time 
step. 
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Figure 8   Relative error of the equation-free POD as a function of the number of iterations and 
large-scale time step, respectively. 


