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Abstract

In this paper, the tropical Pacific Ocean reduced gravity model is studied using the proper
orthogonal decomposition (POD) technique of mixed finite element (MFE) method, which is a
model reduction technique for the simulation of physical processes governed by partial differential
equations, e.g. fluid flows or other complex flow phenomena, and an error estimate of POD
approximate solution based on MFE method is derived. It is shown by numerical examples that
the error between POD approximate solution and reference solution is consistent with theoretical
results, thus validating the feasibility and efficiency of POD method.

Keywords: Proper orthogonal decomposition technique; Mixed finite element method; Error
estimate; Numerical simulation

1. Introduction

The variability of fluid flow and fluid total layer thickness over tropical oceans is an
important question in studies of climate change and air—sea interaction. However, the accurate
assessment of fluid flow and fluid total layer thickness is greatly limited due to the lack of direct
measurements and the insufficient knowledge of air—sea exchange processes. The tropical Pacific
Ocean reduced gravity model is a useful model to simulate fluid flow and fluid total layer
thickness over tropical Pacific Ocean and it has been extensively applied to studying the ocean
dynamics in tropical regions (see, Cane 1979[1]; Seager et al. 1988[2]). The model consists of two
layers above the thermocline with the same constant density. The ocean below the thermocline,
with a higher density, is assumed to be sufficiently deep so that its velocity vanishes (Figure 1).
The upper of the two active layers is a fixed—depth surface layer in which the thermodynamics
are included. The surface layer communicates with the lower active layer through entrainment/
detrainment at their interface and through frictional horizontal shearing. We assume that there is
no density difference across the base of the surface layer; that is, the surface layer is treated as part
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of the upper layer.
Following Seager et al. (1988[2]), the equations for the depth—averaged currents are

N gD T avay (11)
ot oX p,H
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ot oy pH
DMy (1.3)
ot oxX oy

where (U, V) are the horizontal velocity components of the depth—averaged currents; h the total

layer thickness; f the Coriolis force; H the mean depth of the layer; p, the density of

water; g' Reduced gravity; and A the horizontal eddy viscosity coefficient, (7*,7) the
wind stress which is calculated by the aerodynamic bulk formula

(. 77) = PG IUI(U,V),

where p, is the density of the air; C, the wind stress drag coefficient; U =(U,V) the wind

speed vector; and (U,V) the components of the wind velocity. The seasonal net surface heat
flux over tropical oceans has been only simulated with the equations (1.1)~(1.3) to add to a
thermodynamics equation by Yu and O’Brien (see, [3]). However, since the computational field
over the tropical Pacific ocean is too extensive, and nets is too most and is difficult to compute,
fluid flow and fluid total layer thickness over tropical oceans is not simulated. Thus, an important
problem is how to simplify the computational load and save time—consuming calculations and
resource demands in the actual computational process in a sense that guarantees a sufficiently
accurate numerical solution. Proper orthogonal decomposition (POD), also known as Karhunen—
Loeéve expansions in signal analysis and pattern recognition (see [4]), or principal component
analysis in statistics (see [5]), or the method of empirical orthogonal functions in geophysical fluid
dynamics (see [6], [7]) or meteorology (see [8]), is a technique offering adequate approximate to
represent fluid flow with reduced number of degrees of freedom, i.e., with lower dimensional
models (see [9]) so as to simplify the computation and save CPU and memory requirements, and
has found widespread applications in problems related to the approximation of large—scale
models. Although the basic properties of POD method are well established and studies have been
conducted to evaluate the suitability of this technique for various fluid flows (see [10], [11], and
[12]), its applicability and limitations for actual fluid flow and fluid total layer thickness over the
tropical Pacific Ocean are not well documented.

The POD method mainly provides a useful tool for efficiently approximating a large amount
of data. The method essentially provides an orthogonal basis for representing the given data in a
certain least squares optimal sense, that is, it provides a way to find optimal lower dimensional
approximations of the given data. In addition to being optimal in a least squares sense, POD has



the property that it uses a modal decomposition that is completely data dependent and does not
assume any prior knowledge of the process used to generate the data. This property is
advantageous in situations where a priori knowledge of the underlying process is insufficient to
warrant a certain choice of basis. Combined with the Galerkin projection procedure, POD
provides a powerful method for generating lower dimensional models of dynamical systems that
have a very large or even infinite dimensional phase space. The fact that this method always
searches for linear (or affine) subspaces instead of curved submanifolds makes it computationally
tractable. In many cases, the behavior of a dynamic system is governed by characteristics or
related structures, even though the ensemble is formed by a large number of different
instantaneous solutions. POD method can capture these temporal and spatial structures by
applying a statistical analysis to the ensemble of data.

In fluid dynamics, Lumley first employed the POD technique to capture the large eddy
coherent structures in a turbulent boundary layer (see [13]); this technique was further extended in
[14], where a link between the turbulent structure and dynamics of a chaotic system was
investigated. In Holmes et al [9], the overall properties of POD are reviewed and extended to
widen the applicability of the method. The method of snapshots was introduced by Sirovich [15],
and is widely used in applications to reduce the order of POD eigenvalue problem. Examples of
these are optimal flow control problems [16~18] and turbulence [9, 13, 14, 19, 20].

In many applications of POD, the method is used to generate basis functions for a Reduced
Order Model (ROM), which can simplify and provide quicker assessment of the major features of
the fluid dynamics for the purpose of flow control demonstrated by Kurdila et al [18] or design
optimization shown by Ly et al [17]. This application is used in a variety of other physical
applications, such as in [17], which demonstrates an effective use of POD for a chemical vapor
deposition (CVD) reactor.

In [21], though the tropical Pacific Ocean reduced gravity model is preliminarily dealt with
POD method, an exact theoretical analysis was not carried out, in particular an error estimate of
the POD approximate solution was not as yet derived. The objective of this paper is to investigate
in depth to what extent can POD be successfully used to approximate the mixed finite element
(MFE) solution for the tropical Pacific Ocean reduced gravity model . In particular we aim to
provide an error estimate of the approximate MFE solution so that one could determine the
number of required eigenmodes. Some numerical examples are provided for validating the
proposed theory.

2. Outline of proper orthogonal decomposition technique

The essential problem of POD is to identify the underlying, coherent structures of a collected
ensemble of data. This consists in finding the POD optimal bases and constructing a model of
reduced dimension to approximate the original ensemble. Originally POD was used as a data
representation technique. For model reduction of dynamical systems, POD may be used on data
points derived from system trajectories obtained via experiments, numerical simulations, or
analytical derivations.

2.1. Continuous case

Let U, (X)(i =1,2,...,n) denote the set of N observations (also called snapshots) of some



physical process taken at position X = (X, YY) . The average of the ensemble of snapshots is given
by

U =<U >=%§n:ui(7<). (2.1)
i=1

We form new ensemble by focusing on deviations from the mean as follows:
V., =U, -U. (2.2)

We wish to find an optimal compressed description of the sequence of data (2.2). One description
of the process is a series expansion in terms of a set of basis functions. Intuitively, the basis
functions should in some sense be representative of the members of the ensemble. Such a
coordinate system, which possesses several optimality properties (to be discussed in the sequel), is
provided by the Karhunen— Loéve expansion (see [4]), where the basis functions @ are, in fact,
admixtures of the snapshots and are given by

=3 aVv(x), (2.3)
i=1

where the coefficients @ are to be determined such that @ given by (2.3) will most resemble

the ensemble {\/i ()?)}ir':l. More specifically, POD seeks a function @ such that

1 n
2V )F (24)
i=1
subject to
(@,@) | @ |=1 (2.5)

is minimized, where (+ , ¢) and || || denote the usual L® —inner product and L?> —norm,

respectively.
It follows that (see, e.g., [22]) the basis functions are the eigenfunctions of the integral
equation

jQC(x, )D(X)dX = AD(X), (2.6)
where the kernel is given by
C(% %) == 3V, (M (7). @)

i=1

Substituting (2.3) into (2.6) yields the following eigenvalue problem:

D Lia; =24, 2.8)
i=1
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where L; = E(V' V), L=(L).., isasymmetric and nonnegative matrix. Thus we see that

our problem amounts to solving for the eigenvectors of an Nx N matrix where N is the size of
the ensemble of snapshots. Straightforward calculation (see also [22]) shows that the cost
functional

Y1) = (10, 0) = 4

is maximized when the coefficients a (i=1,2,---,n) of (2.8) are the elements of the

eigenvector corresponding to the largest eigenvalue of L .
2.2. Discrete case

Alternatively, we also can consider the discrete Karhunen—Loéve expansion to find an

optimal representation of the ensemble of snapshots. In general, each sample of snapshots U, (X)

(defined on a set of M nodal points X) can be expressed as a m dimensional vector U, as

follows:

U :[uil’ Up, ooy uim]T’ (2.9)
where U denotes the j—th component of the vector U, . The mean vector is given by

Uk=%2uik,k:1,-~,m (2.10)

i=1
We also can form a new ensemble by focusing on deviations from the mean value as follows
Vi =Uy = U, k=1---,m. (2.12)

Let the matrix A denotes the new ensemble

Vit Voo ot Vg
Vip Vo ot Vo

A= .
Vlm VZm o Vnm mxn

where the discrete covariance matrix of the ensemble U may be written as

Cy, = AAT Yie =AY (212)

Thus, to compute the POD mode, one must solve a mxm eigenvalue problem. For a

discretization of an ocean problem, the dimension m often exceeds 10*, so that a direct

solution of this eigenvalue problem is often not feasible. We can transform the mxm
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eigenvalue problem into an nxn eigenvalue problem (see [23]). In the method of snapshots,
one then solves the Nx n eigenvalue problem

Dw, = ATAW, =4, w,, W, €R", (2.13)
where the eigenvalues A4, (1< k<n) are the same in (2.8). The eigenvectors W, may be

chosen to be orthonormal, and the POD modes are given by ¢, = AWk/qu . In matrix form,

with @ =[a,,...,4,],and W =[w,,...,w,], this becomes ® = AW .

The nxn eigenvalue problem (2.13) is more efficient than the mxm eigenvalue
problem (2.12) when the number of snapshots N is much smaller than the number of states m.

3. POD technique and error estimate of MFE method for tropical Pacific Ocean
reduced gravity model

In this section, we apply the POD technique and MFE method to the upper tropical Pacific Ocean
model described in Section 1. This method provides a systematic way of creating a reduced basis
space using the state of the system at n different time instances. As in the general reduced order
basis methods, the states could come from full order numerical computations (also obtained from
system trajectories obtained via experiments, or analytical derivations). Here, we apply the MFE
methods to the upper tropical Pacific ocean model for obtaining full order numerical solution, then
apply the POD technique to reconstruct the approximate solution and approximate the solution of
the reduced model. Finally, we compare the error of the accurate solution with that of the
approximate solution.

3.1. MFE method for the tropical Pacific Ocean reduced gravity model

The Sobolev spaces along with their properties used in this context are standard (cf. Ref. [24]).
Let L2(Q) = {q e *(Q); IQ qdx = 0}. For the sake of convenience, we consider the mixed
variational formulation for (1.1) ~ (1.3) with the boundary conditions

u(x, ¥,t) l.o=0,v(X ¥,t) |.,=0,h(x, y,t) | ,= 0,0 <t <t ,

and initial condition

u(x, y,0)=u’(x,y), v(xy.0)=v"(xy), h(xy0)=h"(xy), (xy)eQ.
Problem (I). Find (u,v,h) € H3(Q) x Hy(Q) x L2(Q) such that

(U,0) - f(v.0)—g'(h o)+ AVU, V) =(f,p), VeeH(Q),
Vo) + FUw)—g'(hy,) + AV, V) =(f,p), Vi e Hy(Q),
(h,g)+H(u,+v,,q) =0, Vge (),



X y
where f = ¢ , f,= ‘ . Using the same as approach in ref. [25], we could check that
PoH PoH

Problem (1) has a unique solution.
In order to find the numerical solution for Problem (1), it is necessary to discretize Problem (I).
We introduce a finite element approximation for spatial variable and finite difference scheme for

the time derivative. Let 3, be a uniform regular triangulation of Q (here € denotes the two

dimensional rectangular domain as depicted in Figure 1, is chosen from 30°S to 30°N in
latitude and from 130°E to 70°W in longitude in actual computation), i.e., for any K € 3, ,

put 7, =diam{K},7 = rKnalx{hK}, then Ch </ <Ch. Denote the time step increment by

K=T,/n ( T, being the total time) and MFE approximation of (u,v,h) by
(u,vi,h)=(u,(t),v,t),h(t)), t=ik(0<i<n). Define the finite element subspaces
H,(Q) and L3(C) as follows, respectively,

{Xh = {¢h € Hé(Q); ®, lce P.(K), VK € Sh},
L =l € 5(©Q); g, lce P (K), VK €5,

where m>1 isinteger, P, (K) polynomial subspace of degrees <m on K .Then, the fully

discrete formulation for Problem (1) can be written as:

Problem (I1). Find (u,,v;,h) e X, x X, x L, (i =1,2,-+-,n) such that

Uy, 0,) — K (v, 0,) —kg'(h,, 0,) + KA(VU,, Vo,) =K(T,0,) + (U, 0,),
Vo, € X,
(V. w,) + KE (U, p,) —kg' (B, w,,) + KACYY,, Vi) = K(F, L p,) + (v, ),
. vy/h € xh.’ . .
(hi,0,) +kH (u, +V,,,q,)=(h".q,), Va,el,, i=12--n,

up =u’(x, ), v; =V°(x,y), h? =h°(x y),

where f = f,(t), f, = f,(t). Using the same as approach as in [26], we could check that
Problem (I1) has unique solution (u,,v,,h ) eX,xX,xL,, and if solution (u,v,h)

e H™(Q)x H™(Q)xH™(Q) of Problem (1), the following error estimates hold



hut) )l +K2 Y0Vt - ) o= (™ + K),

V() V] [l +K2 S V() V) [l c(h™ + K), (31)

j=1

Iht)—h l,<c(™+k), i=12-n,

where C isa constant independent of 7 and Kk, but dependent of (u,v,h).

3.2. POD technique for the tropical Pacific Ocean reduced gravity model

In the construction described above Section 2, the number n may be large, depending on the

complexity of the dynamics represented in the “snapshots” U, (X,y)= (u,,v,,h)(1<i<n).
In general, one should take N sufficiently large so that the snapshots U,(X,y) contain all

salient features of the dynamics being investigated. Thus, the POD basis functions @, (1<i <n),

used with the original dynamics in a Galerkin procedure, offer the possibilities of achieving a high
fidelity model albeit with perhaps a large dimensionn.

To apply the POD techniques to the upper tropical Pacific ocean model in Section 1, we first

solve Problem (Il) at n (for example, N=30) time steps and obtain the snapshots for the

solutions of upper layer thickness and velocity field in the following (u,,V,,h) (i =1,2,---,n)
at an increment of T,/n (for example, T, =1 year) day for (X,Yy) € (2. These snapshots are
discrete data over €2. Using (2.10), (2.11), and (2.13) yields covariance matrix D, = ATA”

D,=A A, D, = A A associated with (u,,v;,h) (i=12,---,n). Since D,, D,, D, are
all nonnegative Hermitian matrices, they all have a complete set of orthogonal eigenvectors with

. . . . h h h .
the corresponding eigenvalues arranged in ascending order as 4, 24, 2---> A 2>0;
N2A> 2 >0 >4, >---> A >0, respectively. Then we construct POD basis

elements ®"(X,y),®" (X, y),®'(X y) such that

Xy 2P = span{®; (X, ¥), @5 (X, y), -, P (X, Y)},
X% = span{®; (x, y), @5 (X ), -, @p(x )}, (3.2)
XpP = span{®; (x, y), D5 (X, y), -+, @n(X, )}

are defined as



o =Y alu; @' =Yalv; @)=Yald,. 33
i=1 i=1 i=1
Where agi,aji,a\fi (1<i<n) are the components of the eigenvectors Ah\/,f/ Ay

AV /\/Z, AV, 1|/ corresponding to the eigenvalues /”t‘j,/”t‘j,/i'; (1< j £n), respectively.

Since ®'(X); D" (X);®Y(X)(i=1,2,---,n) are three groups of basic functions, the

solution of Problem (11) could be uniquely written as
s =T(x,y)+ > B (t) @5 (% y),
j=1

Ve =V(X,Y)+ Zn:ﬂjv(ts)d)vj(x, y), 1<s<n, (3.4)
=1

e =R(xy)+ 3 AP (x ),

where (i =1,---,n) , B'(i=1---,n), and ,6}“(i=1,---,n) are uniquely determined
coefficients; T(X,Y), V(X y), and W(X,y) are the mean values of (u,,v;,h) (i=1

2,--+, N), respectively. Since the scales in model variables u,v and h are not uniform, one

may employ different modes to reconstruct the solutions. In order to reduce order for Problem (I1),
we apply the POD approximate solution

U, =T00Y) + LA 1) (x )

M,y
Vi, YO0 Y) + DB ()DL (X Y), 1<s<n, (35)
j=1

SRLICV IS WARLHCR)

where A" (i=1,---,M,) , ,ij(j:l,---,Ml), ,6'|h(|=1,---,M2), u(xy), V(xy), and

W(X,y) are the same as equations (3.6). Substituting the solutions (uj,V,,h') of Problem (11)
with (3.4) and (3.5), respectively, we could obtain the following equations, respectively.

Problem (111). Find ( 8" (t.), 8" (t.), B"(t.)) (r =1, 2, ---, n) such that



A KD B0 —kg S AT 08) + KAY, ALV, Vo)
OB

) +K Y B @00 kg Y AN (L)@, D)+ KAY B L)V, Vo))
e

PASEEOWAGICHUARTY gﬁf(ts)(q)v-,q)t’y) BI(,),

r:1l2l...lnl S:152)...’n’

along with the initial condition

A(0) = (u(x, ¥,0) ~ T(x y), ! (x, ),
£(0) = (V(x ,0) ~7(x ), @} (x y)), 1<i<n (37)
A"(0) = (v(x, .0) ~ V(x, ), ®" (X, Y)),

Problem (1V). Find (8" (t.), B’ (t.), B (t)) (r =1,2,+--,M,, £ =1,2,---, M,) such that

UL Y BIL)@00) kg Y AIL)(@], L)+ KA. AL (LT DY, V)
:k(f;l,cl)‘rj)+ﬁr”(ts_l), r =]|.,=12,---, M, B

FA)HIE Y B0 - kg Y AT 9) + KA, B ()T Vo)
KON B, L2 M, J_

P+ X ALY D) + ki iﬂr(ts)(cbz,cbzfy) BI(t.),

0=1,2 M, s=12,-,n,

along with the initial condition

£7(0) = (u(x y,0) —U(x, ), @ (X, Y)), 1<i<M;
B(0) = (V(x, ¥,0) =V(X,¥), ®{(X,y)), 1<i<My; (38)
7 (0) = (v(x, y,.0) =V(x, ), @7 (X, ¥)), 1<L<M,.

Solving the above Problem (V) we can obtain the reconstructed solutions for the reduced model
of Problem (l11).

3.3. Error estimate of POD approximate solutions for tropical Pacific Ocean reduced gravity
model

In the following, we derive the error estimate between the solutions for Problem (l11) and the

solutions for Problem (1V). To this end, subtracting Problem (IV) and (3.8) from Problem (111) and
(3.7) yields the following error equations.
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prt) - K S AIE)@Y, 0N —kg' Y B (L)(@F, @)

j=M;+1 =M, +1

FKA Y BUL)(VOL VDY) = K(f2 00+ AUt ), T =M, +1 0,

i=M;+1

FULY+K Y B0 —kg' D AN (®], DY)

i=M,+1 =M, +1

+KA D BIANVOT VDY) =k(f,@7)+ B7(t), r=M+1-,n,

j=M;+1

BIt)+KkH Y BIEN(@F @Y +kH Y BI(L)(@F, L) =AM (L, ),

I=M,+1 =M, +1

t=M,+1--,ns=12,.-,n,

along with the initial condition
B1(0) = (u(x, y,0) - T(x, y), D} (x,y)), M, <i<n,
BY(0) = (v(x,y,0) -V(x,y),®{(x,y)), M, <i<n,
B0) = (V(x,y,0) —V(x, y),®!(X,y)), M,</<n.

Equations (3.9) can be written as in the following vector format

ﬂus - ADl fB g'Cl ﬂus Fls :Bus -
Bi|l=kl —fB" —AD, gC,| S5 |+k FS |+ A" 1<s<n,
By -HC| -HC; O )\4; 0 A

where O isa (N—M,)x(n—M,) zero matrix, and
B2 = (Ba @)y By B = (B a )y Bat))
By =Bt Br)) (1<s<n),
D, = | (YO}, 1o, V)T (VDY -, VDR )dxdly,
D, = [ (VO 11+, VL) (VO} -+, VO )dxdly
B= [ (@)1, D3) (@, 1, Dh) Xl
C= [ (@ s DD (D)oo, (@), )y
C, = | (@i PN (D), (@), )Xl
R = (15 @ o), (B2 O0)T

Fzs = (( fzs’q)\l\l/l1+1)! T (fzs’q)\rlm))T :

Since it is well known (see [9]) that

(3.9)

(3.10)

(3.11)

11



(@2 @ @y DD, Oy By Do O] By )

_(q)f,...,q)l'\*/ll,(),...o;q)lf,...1q)‘l(nl,0,...0;q)?,...,q)*'\‘AZ,O,...o)||(2) (3.12)
n n n
= DA+ DA+ DA,
i=M;+1 i=M;+1 i=M,+1
we obtain

1505 =, ), (06 ) I O 2 AT, JZ ZEEED P RS WP ANCEE)

where S=1, 2,---, n. From the inverse inequality (see [27] or [28]) and matrix normal property,

we obtain
IC L@y g @) ol (D1 D), Ml

i . ) a . (314)
< (@0 @) ol (@, 1+, @) o< € 1\/ Zﬂ».h\/ DA

i=M,+1 i=M+1

G, L (@R @) ol (@ @), o

] L[ n (3.15)
<O | (@0 ) ol @y O o= 0™ | S S A,
i=M,+1 i=M+1
n n
1Bl (@0, @) ||o||(®‘&1+1,~",<1>,”1)||o=\/ Z/l.v\/ XA (3.16)
i=M;+1 i=M;+1
n
IR Il 10 (@R, o - @) o=l £ | DA (3.17)
i=M;+1
n
TR oIl 57 10 (@R, o - @) o=l 57 | DA (3.18)
i=M;+1

Then, multiplying (3.11) by ((85)",(83)",(BM"), one could get

s\' s s\' 1 s s\' s s\' S
ﬂu ﬁu IBU _ADl fB g Cl ﬂu ﬁu Fl ﬁu ﬂu '
BB |=K B || -fB" —AD, gC, |G [+K B || F [+ B || A7 | (319)
B )\ By g )\-HC -HCG O )4 g 0) \B)\ B

Noting that A(B°)"D,4S >0and A(8S)'D,55 >0, if max(\/ > A \/ > Ay<nlc

i=M;+1 i=M;+1

(which is reasonable), by using matrix normal property, and (3.11), (3.14)~(3.19), one can obtain

GBS B2, B < ke 1185, 85, B Nl +KCo+ 1 (B3 BT B ) e (3:20)

where o, 21| 312 | S arezg | Saeam [ S0 G Sae)

i=M+1 i=M;+1 i=M,+1 i=M;+1 i=M;+1

12



Summing (3.20) from1to S, if k is sufficiently small such that 1—c,k <1/2, yields

A2 B7 BT 1< kCoZII(ﬁuyﬂwﬂh) ||2+C1\/ A +C\/ Zn‘,ﬂ%ll(ﬂf,ﬂf,ﬂﬁf I (321)

where (B2, 8%, B2) = (B, (0),-++ BE(0), By (0),-++, BL(0), By (0),--, B2(0))
=2k £7 1, C, =2k | 7, - Noting tha

1B B BT 1< ATuCx y.0) llg + 11T ll) (@R, @) 1,
+ (VO Y.0) llo + TV Hlo) 11 (D@0 PR I
+ (0% y.0) o + 1A T 1 (@, @) I (322)

s@(\/ Zn:/1$+\/ i,ziu\/ Zn:/lih),
i=M;+1 i=M;+1 =M, +1

where G, = maxg1u(x y,0) ll + 11 [l VX, %,0) lly + 117, 111X, y,0) fl, + 1 [} Using

discrete Growall inequality for (3.21), one could obtain

182,52, B < C‘J S J anﬂh\/ S, (329

i=M;+1 i=M;+1 i=M,+1

where C, = exp(nkc,) max{C, +C,, C, + C,, C,}. Combining (3.13) with (3.23) and using

Cauchy inequality yields the following result.

Theorem 1. If max{ z Z A'}<hlc and Kk issufficiently small, then

i=M;+1 i=M;+1

the error estimate between the solutions for full basic Problem (1I) and the solutions for the
reduced order basic Problem (1V) is

D) e ) (R <G (Y 4+ Y 4+ Y A 1<s2n,C, =3C,. (3.24)

i=M,;+1 i=M,;+1 i=M,+1

Combining (3.1) with (3.21) could yield in the following result.

Theorem 2. If max Z/l:‘\/ z/llv}éhlc and k is sufficiently small, then the

i=M;+1 i=M;+1

error estimate between the solutions for Problem (I1) and the solutions for the reduced order basic
Problem (IV) is
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lut) —ug, lo<c(™ +k)+C5| X 4+ 24+ XA,
i=M;+1 i=M;+1 i=M,+1

[Iv(ts) - Via, IIOSC(h’“+k)+55[ A+ DA+ Z&h} 1<s<n (325
i=M;+1 i=M;+1 i=M,+1

Iht) =1, h<c™ +k)+Cy DA+ DA+ DA
i=M;+1 i=M;+1 i=M,+1

Remark. In general, G, :Zf\/ A \/ DA +2g | DA +2H | D Ais a very

i=M;+1 i=M;+1 i=M,+1 i=M,+1

small value so that exp(kc,s) (1< s<n) approaches 1, and taking m=21o0r 2 is sufficient in

actual numerical simulation. In this paper, our reduced order basis methods come from the full
order numerical computations, therefore, our aim is to start from Problem (1), then to analyze the
error of Problem (V). However, actual numerical computation should directly solve Problem (IV)

getting (B°,5°, B;)" 1<s<n,1<i<M;, 1< j<M,) such that (3.24) is satisfied if the
reduced order basis is obtained from system trajectories obtained via experiments, or analytical
derivations. Since, in general, M, and M, <<n, it is only necessary to solve Problem (V)
with very few freedom degrees. In next section, we employ some examples to validate Theorem 1

and Theorem 2.

4. Some numerical examples

In this section we present numerical computations related to the approaches presented in the
previous paragraphs. We first solve Problem (I1) and Problem (1V) taking parameters as displayed

in Table 1, and taking T, =1 years, Q varying from 30°S to 30° N in latitude and from

130°E to 70°W in longitude, time step is k=1/n, and we obtain the results which are

depicted graphically in Figure 3 and Figure 5 when n=25, 20, and 30, respectively. In order to
obtain the POD approximate solutions for an error of less than 0.0007 which is used with (3.24),

it is necessary to take M;=M,>3 if n=5, M, =M,27 if n=20, and

M, =M, =29 if n=30. However, we have the results of numerical simulations which are also

depicted from Figure 3 to Figure 4, where Figure 2 displays profiles of the error and Figure 3 to
Figure 4 exhibit profiles of the upper layer water thickness, and current velocity

taking M, =M, =3 if n=5, M,=M,=7 if n=20, and M,=M,=9 if n=30,

respectively. These profiles demonstrate that the results of the numerical simulations coincide with

14



the theory and the actual cases. Especially, when n =230, it is necessary to solve the POD
reduced Problem (IV) with equation numbers 30% less than required by the full order Problem (11).
Therefore, the POD reduced method is very suitable for dealing with large—scale science
engineering computations, and could simplify computing and reduce both CPU and memory
requirements in the actual computational process in a sense that guarantees a sufficiently accurate
numerical solution.
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Fig 3. Upper layer thickness in June and December in case of 5 snapshots, 20 snapshots, 30

snapshots, the full model approximation and the reduced order approximation. The dark: full order

approximation, the green: 5 snapshots, the red: 20 snapshots, the purple: 30 snapshots.
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Fig 4. Profiles of currents in June and December with 20 snapshots. The blue vector: full order

approximation; the red vector: reduced order approximation.

Parameter Value Remarks

g' 3.7x1072 Reduced gravity
CD 1.5%x102 Wind stress drag coefficient

H 150 m Mean depth of upper layer

P 1.2kgm -3 Density of air

a .
Do 1025 kg m -3 Density of seawater
A 750 m?sec * | Coefficient of horizontal viscosity

Table 1. parameters of Problem (1) and Problem (1V)
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