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Abstract  
 

In this paper, the tropical Pacific Ocean reduced gravity model is studied using the proper 
orthogonal decomposition (POD) technique of mixed finite element (MFE) method, which is a 
model reduction technique for the simulation of physical processes governed by partial differential 
equations, e.g. fluid flows or other complex flow phenomena, and an error estimate of POD 
approximate solution based on MFE method is derived. It is shown by numerical examples that 
the error between POD approximate solution and reference solution is consistent with theoretical 
results, thus validating the feasibility and efficiency of POD method. 
Keywords: Proper orthogonal decomposition technique; Mixed finite element method; Error 
estimate; Numerical simulation  
 
1. Introduction 
    

The variability of fluid flow and fluid total layer thickness over tropical oceans is an 
important question in studies of climate change and air－sea interaction. However, the accurate 
assessment of fluid flow and fluid total layer thickness is greatly limited due to the lack of direct 
measurements and the insufficient knowledge of air－sea exchange processes. The tropical Pacific 
Ocean reduced gravity model is a useful model to simulate fluid flow and fluid total layer 
thickness over tropical Pacific Ocean and it has been  extensively applied to studying the ocean 
dynamics in tropical regions (see, Cane 1979[1]; Seager et al. 1988[2]). The model consists of two 
layers above the thermocline with the same constant density. The ocean below the thermocline, 
with a higher density, is assumed to be sufficiently deep so that its velocity vanishes (Figure 1). 
The upper of the two active layers is a fixed－depth surface layer in which the thermodynamics 
are included. The surface layer communicates with the lower active layer through entrainment/ 
detrainment at their interface and through frictional horizontal shearing. We assume that there is 
no density difference across the base of the surface layer; that is, the surface layer is treated as part 
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of the upper layer. 
Following Seager et al. (1988[2]), the equations for the depth－averaged currents are 
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where are the horizontal velocity components of the depth－averaged currents;  the total 

layer thickness;  the Coriolis force; 

),( vu h

Hf 0ρ the mean depth of the layer;  the density of 

water;  Reduced gravity; and  the horizontal eddy viscosity coefficient,  the 

wind stress which is calculated by the aerodynamic bulk formula 
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where aρ  is the density of the air;  the wind stress drag coefficient; =  the wind 

speed vector; and the components of the wind velocity. The seasonal net surface heat 
flux over tropical o has been only simulated with the equations (1.1)~(1.3) to add to a 
thermodynamics equation by Yu and O’Brien (see, [3]). However, since the computational field 
over the tropical Pacific ocean is too extensive, and nets is too most and is difficult to compute, 
fluid flow and fluid total layer thickness over tropical oceans is not simulated. Thus, an important 
problem is how to simplify the computational load and save time－consuming calculations and 
resource demands in the actual computational process in a sense that guarantees a sufficiently 
accurate numerical solution. Proper orthogonal decomposition (POD), also known as Karhunen－ 
Loève expansions in signal analysis and pattern recognition (see [4]), or principal component 
analysis in statistics (see [5]), or the method of empirical orthogonal functions in geophysical fluid 
dynamics (see [6], [7]) or meteorology (see [8]), is a technique offering adequate approximate to 
represent fluid flow with reduced number of degrees of freedom, i.e., with lower dimensional 
models (see [9]) so as to simplify the computation and save CPU and memory requirements, and 
has found widespread applications in problems related to the approximation of large－scale 
models. Although the basic properties of POD method are well established and studies have been 
conducted to evaluate the suitability of this technique for various fluid flows (see [10], [11], and 
[12]), its applicability and limitations for actual fluid flow and fluid total layer thickness over the 
tropical Pacific Ocean are not well documented.  

The POD method mainly provides a useful to

UDc ),( VU

),( VU  
ceans 

ol for efficiently approximating a large amount 
of data. The method essentially provides an orthogonal basis for representing the given data in a 
certain least squares optimal sense, that is, it provides a way to find optimal lower dimensional 
approximations of the given data. In addition to being optimal in a least squares sense, POD has 
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the property that it uses a modal decomposition that is completely data dependent and does not 
assume any prior knowledge of the process used to generate the data. This property is 
advantageous in situations where a priori knowledge of the underlying process is insufficient to 
warrant a certain choice of basis. Combined with the Galerkin projection procedure, POD 
provides a powerful method for generating lower dimensional models of dynamical systems that 
have a very large or even infinite dimensional phase space. The fact that this method always 
searches for linear (or affine) subspaces instead of curved submanifolds makes it computationally 
tractable. In many cases, the behavior of a dynamic system is governed by characteristics or 
related structures, even though the ensemble is formed by a large number of different 
instantaneous solutions. POD method can capture these temporal and spatial structures by 
applying a statistical analysis to the ensemble of data.  

In fluid dynamics, Lumley first employed the POD technique to capture the large eddy 
cohe

 a Reduced 
Orde

ical Pacific Ocean reduced gravity model is preliminarily dealt with 
POD

. Outline of proper orthogonal decomposition technique 

he essential problem of POD is to identify the underlying, coherent structures of a collected 
ens

.1. Continuous case 

,,… ) denote the set of observations (also called snapshots) of some 

rent structures in a turbulent boundary layer (see [13]); this technique was further extended in 
[14], where a link between the turbulent structure and dynamics of a chaotic system was 
investigated. In Holmes et al [9], the overall properties of POD are reviewed and extended to 
widen the applicability of the method. The method of snapshots was introduced by Sirovich [15], 
and is widely used in applications to reduce the order of POD eigenvalue problem. Examples of 
these are optimal flow control problems [16~18] and turbulence [9, 13, 14, 19, 20].   

In many applications of POD, the method is used to generate basis functions for
r Model (ROM), which can simplify and provide quicker assessment of the major features of 

the fluid dynamics for the purpose of flow control demonstrated by Kurdila et al [18] or design 
optimization shown by Ly et al [17]. This application is used in a variety of other physical 
applications, such as in [17], which demonstrates an effective use of POD for a chemical vapor 
deposition (CVD) reactor.  

In [21], though the trop
 method, an exact theoretical analysis was not carried out, in particular an error estimate of 

the POD approximate solution was not as yet derived. The objective of this paper is to investigate 
in depth to what extent can POD be successfully used to approximate the mixed finite element 
(MFE) solution for the tropical Pacific Ocean reduced gravity model . In particular we aim to 
provide an error estimate of the approximate MFE solution so that one could determine the 
number of required eigenmodes. Some numerical examples are provided for validating the 
proposed theory. 
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T
emble of data. This consists in finding the POD optimal bases and constructing a model of 

reduced dimension to approximate the original ensemble. Originally POD was used as a data 
representation technique. For model reduction of dynamical systems, POD may be used on data 
points derived from system trajectories obtained via experiments, numerical simulations, or 
analytical derivations.  
 
2

Let )(xU G
( i 2,1= n n  i

 3



phy ss taken at posisical proce tion ),( yxx =G . The verage of the ensemble of snapshots is given 

by 
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 compressed description of the sequence of data (2.2). One description 
ansion in terms of a set of basis functions. Intuitively, the basis 

functions should in some sense be representative of the members of the ensemble. Such a 
coordinate system, which possesses several optimality properties (to be discussed in the sequel), is 
provided by the Karhunen－Loève expansion (see [4]), where the basis functions Φ  are , in fact, 
admixtures of the snapshots and are given by 
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respectively. 
 the the i
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d ||·|| denote the usual 2L －inner product and 2L －norm, 

   It follows that (see, e.g., [22]) the basis functions are  eigenfunctions of ntegral 
equation 
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our problem amounts to solving for the eigenvectors of an 

nnijLL ×= )(

nn×  matrix where n  is the size of 
the ensemble of snapshots. Straightforward calculation (see also [22]) shows that the cost 
functional 
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eigenvector corresponding to the largest eigenvalue of . L

2.2. Discrete case 

Alternatively, we also can consider the discrete Karhunen－Loève expansion to find an 

optimal representation of the ensemble of snapshots. In general, each sample of snapshots )(xU i
G

 

(defined on a set of  nodal points iuGxGm ) can be expressed as a  dimensional vector m  as 

follows: 
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We also can form a new ensemble by focusing on deviations from the mean value as follows 
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mm×Thus, to compute the POD mode, one must solve a  eigenvalue problem. For a 

discretization of an ocean problem, the dimension m  often exceeds , so that a direct 

solution of this eigenvalue problem is often not feasible. We can transform the  
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eigenvalue problem into an  eigenvalue problem (see [23]). In the method of snapshots, 
one then solves the  eigenvalue problem 

nn×
nn×
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where the eigenvalues kλ ( ) are the same in (2.8). The eigenvectors  may be 

chosen to be orthonormal, and the POD modes are given by 

kwnk ≤≤1

kkk Aw λφ = . In matrix form, 

with ],,[ 1 nφφ …=Φ , and , this becomes ],,[ 1 nwwW …= AW=Φ . 

The  eigenvalue problem (2.13) is more efficient than the  eigenvalue 
problem (2.12) when the number of snapshots  is much smaller than the number of states . 
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3. POD technique and error estimate of MFE method for tropical Pacific Ocean 
reduced gravity model 
 
In this section, we apply the POD technique and MFE method to the upper tropical Pacific Ocean 
model described in Section 1. This method provides a systematic way of creating a reduced basis 
space using the state of the system at  different time instances. As in the general reduced order 
basis methods, the states could come from full order numerical computations (also obtained from 
system trajectories obtained via experiments, or analytical derivations). Here, we apply the MFE 
methods to the upper tropical Pacific ocean model for obtaining full order numerical solution, then 
apply the POD technique to reconstruct the approximate solution and approximate the solution of 
the reduced model. Finally, we compare the error of the accurate solution with that of the 
approximate solution.  

n

 
3.1. MFE method for the tropical Pacific Ocean reduced gravity model 

 
The Sobolev spaces along with their properties used in this context are standard (cf. Ref. [24]). 
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Problem (I) has a unique solution. 
  In order to find the numerical solution for Problem (I), it is necessary to discretize Problem (I). 

We introduce a finite element approximation for spatial variable and finite difference scheme for 
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3.2. POD technique for the tropical Pacific Ocean reduced gravity model 
 

In the construction described above Section 2, the number  may be large, depending on the 

complexity of the dynamics represented in the “snapshots” = ( ). 
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Solving the above Problem (IV) we can obtain the reconstructed solutions for the reduced model 
of Problem (III). 
 
3.3. Error estimate of POD approximate solutions for tropical Pacific Ocean reduced gravity 
model 
 
 In the following, we derive the error estimate between the solutions for Problem (III) and the 
solutions for Problem (IV). To this end, subtracting Problem (IV) and (3.8) from Problem (III) and 
(3.7) yields the following error equations. 
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Equations (3.9) can be written as in the following vector format 
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Cauchy inequality yields the following result.  
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222 λλλλRemark. In general, is a very 

small value so that )1( ns ≤≤ 2or1=m)exp( 0skc  approaches 1, and taking  is sufficient in 

actual numerical simulation. In this paper, our reduced order basis methods come from the full 
order numerical computations, therefore, our aim is to start from Problem (II), then to analyze the 
error of Problem (IV). However, actual numerical computation should directly solve Problem (IV) 

getting Ts
j

s
i

s
i ),,( βββ )1,1,1( 21 MjMins ≤≤≤≤≤≤  such that (3.24) is satisfied if the 

reduced order basis is obtained from system trajectories obtained via experiments, or analytical 

derivations. Since, in general,  and 1M nM <<2 , it is only necessary to solve Problem (IV) 

with very few freedom degrees. In next section, we employ some examples to validate Theorem 1 
and Theorem 2. 
 
4. Some numerical examples 
 
 In this section we present numerical computations related to the approaches presented in the 
previous paragraphs. We first solve Problem (II) and Problem (IV) taking parameters as displayed 

in Table 1, and taking  years, 11 =T Ω  varying from S to N in latitude and from 

E to W in longitude, time step is 

D30 D30

nk /1=D130 D70 , and we obtain the results which are 

depicted graphically in Figure 3 and Figure 5 when ,20,5=n and 30, respectively. In order to 

obtain the POD approximate solutions for an  error of less than 0.0007 which is used with (3.24), 

it is necessary to take if 1 = MM 5=n 721 ≥= MM32 ≥ , if , and 

if 

20=n

921 ≥= MM 30=n . However, we have the results of numerical simulations which are also 

depicted from Figure 3 to Figure 4, where Figure 2 displays profiles of the error and Figure 3 to 
Figure 4 exhibit profiles of the upper layer water thickness, and current velocity 

taking if , 321 ==MM 5=n 721 ==MM 20=n 921 == MM if , and if , 

respectively. These profiles demonstrate that the results of the numerical simulations coincide with 

30=n

 14



30=nthe theory and the actual cases. Especially, when , it is necessary to solve the POD 
reduced Problem (IV) with equation numbers 30% less than required by the full order Problem (II). 
Therefore, the POD reduced method is very suitable for dealing with large－scale science 
engineering computations, and could simplify computing and reduce both CPU and memory 
requirements in the actual computational process in a sense that guarantees a sufficiently accurate 
numerical solution.  
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Fig. 1 
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,20,5=nFig2. Error profiles of and   30
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(a) June 

 
(b) December 

Fig 3. Upper layer thickness in June and December in case of 5 snapshots, 20 snapshots, 30 
snapshots, the full model approximation and the reduced order approximation. The dark: full order 
approximation, the green: 5 snapshots, the red: 20 snapshots, the purple: 30 snapshots. 
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(a) June 
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(b) December 

Fig 4. Profiles of currents in June and December with 20 snapshots. The blue vector: full order 
approximation; the red vector: reduced order approximation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value Remarks 

'g Reduced gravity 2107.3 −×  

Wind stress drag coefficient 
DC 3105.1 −×  

H 150 m Mean depth of upper layer  

Density of air 
aρ 3−   1.2 kg m

Density of seawater 
0ρ  1025 kg m  3−

A  750 m2 －1 Coefficient of horizontal viscosity sec

Table 1. parameters of Problem (II) and Problem (IV) 
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