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Abstract

We continue our study on mathematical justification of the emer-
gence of large scale coherent structure in a two dimensional fluid sys-
tem under small scale random bombardments. We treat the case of
small scale random bombardments at discrete times which is different
from our earlier work [16] where we approximated the small scale ran-
dom kicks by a continuous in time random process. In the absence of
geophysical effects, the large scale structure emerging out of the small
scale random forcing is the same as the case of continuous in time
forcing that we studied before.

Keywords: One layer barotropic quasi-geostrophic equations, large coher-
ent structure, random small scale forcing, generalized Grashof number
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1 Introduction

We continue our investigation on the emergence and persistence of large scale
coherent structures in geophysical flows under small scale random bombard-
ments. In our previous work [16], we have demonstrated that large scale
coherent structures could emerge and persist under small scale forcing . Our
analysis shows that the large scale structure emerging out of the small scale
random forcing is not the one predicted by equilibrium statistical mechanics.
But the error is very small which explains earlier successful prediction of the
large scale structure based on equilibrium statistical mechanics. However,
the discrete in time random kicks was replaced by a continuous in time ran-
dom process in that work. The purpose of this note is to treat the case of
the original discrete in time random kick forcing as was used in the original
numerics [10, 11]. We will show that in the absence of geophysical effects,
the same kind of large scale coherent structure will emerge out of our anal-
ysis as suggested by robust numerical experiments. The main result here is
somewhat weaker than the corresponding part for the continuous case [16]
since stochastic calculus tools are not applicable here.

Here we consider an extremely simplified (idealized) situation of a one-
layer barotropic system without geophysical effects except Ekman damping
in a square under the influence of random small scale vortices in the presence
of a (small eddy) viscosity. The interested reader is referred to [9, 14, 17, 20]
for justifications of one-layer model in geophysical fluid dynamics. More
precisely, we consider the following one layer barotropic quasi-geostrophic
model with Ekman damping and eddy viscosity in a square with free-slip
boundary condition and impulse forcing of small scale

∂q

∂t
+∇⊥ψ · ∇q = −d q + ν∆q + F , (1)

q = ∆ψ (2)

equipped with initial condition

q|t=0 = q0 (3)

and no-penetration, free-slip boundary condition

ψ = q = 0, on ∂Q (4)

where the fluid occupies the square

Q = [0, π]× [0, π] (5)
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and d > 0 is the Ekman damping coefficient, ν > 0 is the eddy viscosity.
The random small scale kick forcing is given by

F =
∞∑

j=1

δ(t− jdt) Aωr(~x− ~xj)ξj (6)

where A is the amplitude of the small scale bombardment, ~xj is the (random)
center, the small scale vortex ωr takes the form,

ωr(~x) =

{
(1− |~x|2/r2)

2
, |~x|2 ≤ r2 ,

0, |~x|2 > r2 ,
(7)

and the center of the small vortices, ~xj, satisfies a distribution µ on Qr0 =
[r0, π − r0] × [r0, π − r0] where r0(≥ r) is a fixed constant (µ was taken as
the uniform distribution on Qr0 in our previous study [16]), while ξj are i.i.d.
(independent of ~xj) binomial random variable with

Prob(ξj = 1) = p >
1

2
, Prob(ξj = −1) = 1− p <

1

2
(8)

so that the flow is bombarded by predominantly positive vortices (p = 1 in
our previous work [16]).

The interested reader is referred to [16, 17] for the relevance and motiva-
tion of such small scale random bombardments.

Since ωr is piecewise smooth with compact support and C1, we see that

ωr(~x− ~xj) ∈ H2
0 (Q) (9)

with norm independent of j. In fact, ωr(~x− ~xj) ∈ W 2,∞(Q).
Here we have followed our earlier work [16] and used q for vorticity in-

stead of the standard ω. This is because ω is a standard notation for point
in probability space, and q is the standard notation for potential vorticity
in Geophysical Fluid Dynamics which reduces to the usual vorticity in our
specific setting.

It is then easy to see that there are two different stages in the dynamics,
a stage of pure decay from (jdt)

+ to ((j + 1)dt)
−, governed by the decaying

barotropic flow

∂q

∂t
+∇⊥ψ · ∇q = −d q + ν∆q, (10)

q = ∆ψ, (11)
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and a stage of instantaneous forcing

q((jdt)
+) = q((jdt)

−) + Aωr(~x− ~xj)ξj. (12)

Numerical simulation in the regime of weak forcing and weak damping
[10, 11, 16] indicates the emergence and persistence of a large coherent struc-
ture when µ is the uniform distribution, d = 0 and p = 1 (see also the contour
plot in figure 1). More precisely, numerical experiments demonstrate that the
flow field reaches a quasi-equilibrium state in terms of energy, enstrophy, cir-
culation etc, and the contour plot of the vorticity field looks like a large vortex
plus small (random) perturbation. For the special case of zero initial data
and uniform distribution µ as well as p = 1 and d = 0, such a phenomenon
is termed spin-up from rest [10, 17]. This large coherent structure resembles
very much the ground state mode of the Laplace operator, i.e., sin(x)sin(y),
with a correlation between the vorticity field q and sin(x)sin(y) above 0.97.
The interested reader is referred to [17, 15] for more on equilibrium statistical
theories for basic geophysical flows and large scale coherent structures.

The ground state mode is in fact the predicted most probable mean field
of equilibrium statistical mechanics theory utilizing energy and enstrophy as
conserved quantities (see for instance [17]). Thus the numerical evidence can
be viewed as evidence toward applicability of equilibrium statistical mechan-
ics in this damped driven case. If one applies a more sophisticated equilibrium
statistical theory such as the point vortex energy-circulation theory which
leads to a sinh-Poisson type mean field equation (see for instance [10, 17]
among others), one gets better prediction.

The purpose of this paper is to provide a rigorous theoretical under-
pinning of such success. More precisely, we will show, under appropriate
assumptions on the smallness of parameters (generalized Grashof number
defined in the next section and time step dt), that the long time dynamics
is that of a large coherent vortex q0. This large scale coherent structure is
close to (but not equal to) the ground state mode sin(x)sin(y), plus small
deterministic and random perturbations if µ is the uniform distribution and
d = 0. Such a result indicates that neither the energy-enstrophy statistical
theory (which predicts the ground state mode) nor the point vortex energy-
circulation statistical theory ( which predicts a sinh-Poisson type mean field
equation not satisfied by q0) predicts the exact statistical equilibrium. How-
ever the error is so small (less than 2%) which establishes the practical ap-
plicability of these equilibrium statistical mechanics theories to this damped
driven situation.
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The rest of the paper is organized as follows. In section 2 we state and
prove the main result of this note, i.e., the emergence and persistence of
suitable large scale coherent structure under appropriate assumptions on the
parameters. We provide concluding remarks at the end.

2 Main Result

Recall that the numerically observed emergence of large scale coherent struc-
ture is under the bombardment of random small scale forcing at discrete time.
Our earlier analysis [16] treated the case when the random bombardment was
replaced by the sum of a deterministic forcing and a small white in time noise.
Here we would like to study the original setting of random bombardments of
small scale vortices at discrete time.

Again, the observed large scale coherent structure is best explained by
the existence of a unique invariant measure whose support is concentrated
around the observed large scale coherent structure. However, it is easy to
see that there is no invariant measure for the whole system since the only
measure that is invariant in the freely decaying period is the delta measure
centered at the origin, and this measure is obviously not the right one for the
instantaneous bombardment. The remedy is to consider one of the following
two discrete time Markov processes based on the behavior of the system right
before or right after the bombardments:

ηj+1
− = S(dt)(η

j
− + Aωr(~x− ~xj)ξj), (13)

ηj+1
+ = S(dt)(η

j
+) + Aωr(~x− ~xj)ξj (14)

where S(t) denotes the solution semigroup of the freely decaying process
[18, 17, 13].

Apparently the process after the instantaneous bombardment (the η+s) is
less regular than the process before the instantaneous bombardment. There-
fore, we will focus on the η+s and drop the + from now on. Of course, we
may derive the same kind of result for the η−s as well.

Similar to the continuous case [16], it is useful to introduce the following
new parameter

cA =
A

dt

(15)

which is the ratio of the amplitude of the random vortices and the time step
between two consecutive bombardments.

5



It is easy to check that the Markov process possesses invariant measures.
Indeed, it is easy to verify, after utilizing the optimal decay rate of (d+λ1ν)dt

for the freely decaying period and the instantaneous forcing, that the vorticity
field q has an absorbing ball of radius R in L2 (the same as absorbing ball
for the velocity field in H1, or absorbing ball for the stream function in H2)
given by

R =
A|ωr|2

1− e−(d+λ1ν)dt
≤ A|ωr|2

(d + λ1ν)dt(1− (d + λ1ν)dt/2)
=

cA

(d + λ1ν)(1− (d + λ1ν)dt/2)
|ωr|2

(16)
where

|ωr|2 = max
~xj

|ωr(~x− ~xj)|L2(Q) = |ωr(~x− ~xj)|L2(Q) ' r. (17)

which is clear, thanks to the explicit form of ωr given in (7), and λ1 = 2 is
the first eigenvalue of −∆ with the given boundary condition.

The existence of absorbing ball ensures the existence of invariant measure
for the velocity field ~v = ∇⊥ψ in L2(Q) and the stream function ψ in H1(Q)
by the usual tightness argument [18, 1].

It is also easy to check that the vorticity field q has an absorbing ball of
radius R4 in L4(Q) (the same as absorbing ball for the velocity field in W 1,4,
or absorbing ball for the stream function in W 2,4) given by

R4 =
A|ωr|4

1− e−(d+3λ1ν/4)dt

≤ A|ωr|4
(d + 3λ1ν/4)dt(1− (d + 3λ1ν/4)dt/2)

=
cA

(d + 3λ1ν/4)(1− (d + 3λ1ν/4)dt/2)
|ωr|4 (18)

where
|ωr|4 = max

~xj

|ωr(~x− ~xj)|L4(Q) = |ωr(~x− ~xj)|L4(Q) ∼ r
1
2 . (19)

The set of invariant measures will be unique if we have small enough
data (amplitude). Indeed, the freely decaying stage will be contractive with
a contraction constant κ = e−(d+λ1ν)dt/2 for the velocity field on the absorbing
ball provided that the generalized Grashof number (defined below) is small

Gr
def
=

A|ωr|4
dtλ

1/4
1 ν1/2(d + λ1ν)3/2

≤ c (20)
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where c is a generic constant originated in various Sobolev inequalities. This
is very much similar to the case of contraction of incompressible Navier-Stokes
flow with small Grashoff number [3, 4, 8, 23]. Of course, the same estimates
hold for the linearized flow bombarded with the same random forcing.

This small generalized Grashof number assumption is guaranteed if we
have

cAr1/2

λ
1/4
1 ν1/2(d + λ1ν)3/2

≤ c. (21)

This is a smallness assumption on cA and/or the radii r of the small scale
random vortices relative to the eddy viscosity ν and overall dissipation effect
d + λ1ν.

Our main goal is to show that the unique invariant measure is supported
around a large scale coherent structure.

In order to get info on the (potentially) large scale coherent structure, we
consider the linear regime of the parameters where we could approximate the
freely decaying flow by the linearized flow on the absorbing ball. Indeed, let
q(t) be the solution of the freely decaying flows and let qs(t) be the solution
of the linearized flow. Then the difference δq = q − qs satisfies the following
equation

∂δq

∂t
+ dδq − ν∆δq = −∇⊥ψ · ∇q. (22)

Multiplying this equation by −δψ and integration over the domain Q we
have

1

2

d

dt
|∇δψ|2L2 + d|q|2L2 + ν|δq|2L2 =

∫
∇⊥ψ · ∇q δψ

= −
∫
∇⊥ψ · ∇δψ q

≤ |∇ψ|L4|∇δψ|L2|q|L4

≤ cR R4|∇δψ|L2

This implies

|∇δψ(dt)|L2 ≤ cRR4
1− e−(d+λ1ν)dt

d + λ1ν
≤ cR R4 dt (23)

assuming q and qs satisfy the same initial data.
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Now we define η̃j as the process corresponding to the linearized dynamics,
i.e.,

η̃j+1 = e−(d−ν∆)dt η̃j + Aωr(~x− ~xj)ξj. (24)

We then have

ηj+1 − η̃j+1 = S(dt)η
j − e−(d−ν∆)dt η̃j

= S(dt)η
j − S(dt)η̃

j + S(dt)η̃
j − e−(d+ν∆)dt η̃j.

Therefore, in terms of the H−1(Q) norm of the vorticity which is the same
as the L2(Q) norm for the velocity, we have

|ηj+1 − η̃j+1|H−1 ≤ |S(dt)η
j − S(dt)η̃

j|H−1 + |S(dt)η̃
j − e−(d−ν∆)dt η̃j|H−1

≤ κ|ηj − η̃j|H−1 + cR R4 dt (25)

where we have used the contraction of S(dt) with Lipschitz constant κ and
the estimate on the difference between the freely decaying barotropic flow
and the linearized flow.

Iterating in j and noting that the two processes share identical initial
value, we have

|ηj+1 − η̃j+1|H−1 ≤ cR R4 dt
1− κj+1

1− κ
≤ c

1− κ
(

cA

d + λ1ν
)2dt|ωr|2|ωr|4. (26)

This tells us that the process would be close to the linearized process provided
that the freely decaying process is contractive on the absorbing ball with

Lipschitz constant κ = e−
(d+λ1ν)dt

2 < 1 and the time interval dt between two
consecutive bombardments is small.

Next we consider the linearized flow under small scale bombardments,
i.e., η̃j.

For this purpose we decompose the random kick into a mean part and a
random fluctuation part as in our previous work [16]

ωr(~x− ~xj)ξj = ω̄r + ω′r(j), (27)

where the mean part is defined as

ω̄r = E(ωr(~x− ~xj)ξj) = (2p− 1)E(ωr(~x− ~xj)) (28)
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with E being the mathematical expectation operator. It is easy to see that,
thanks to (9),

ω̄r ∈ H2
0 (Q), ω′r(j) ∈ H2

0 (Q). (29)

E(ω′r(j)) = 0, (30)

E(‖∆ω′r(j)‖2
L2) = E(‖∆ωr(~x− ~xj)‖2

L2) + E(‖∆ω̄r‖2
L2)

−2

∫

Q

∆ω̄rE(∆ωr(~x− ~xj)) < ∞ (31)

This means that the {ω′r(j)}s are H2
0 (Q) valued i.i.d. random variables.

We now have

η̃j+1 = e−(d−ν∆)dt η̃j + Aωr(~x− ~xj)ξj

= e−(d−ν∆)dt η̃j + Aω̄r + Aω′r(j)

= e−(j+1)(d−ν∆)dtη0 + A

j∑

l=0

e−l(d−ν∆)dtω̄r + A

j∑

l=0

e−l(d−ν∆)dtω′r(l)(32)

It is easy to check that

|e−(j+1)(d−ν∆)dtη0|H−1 ≤ e−(j+1)(d+λ1ν)dt |η0|H−1 → 0, as j →∞. (33)

As for the deterministic part, we have

A

j∑

l=0

e−l(d−ν∆)dtω̄r =
A

dt

(d− ν∆)−1ω̄r − A

dt

e−(j+1)(d−ν∆)dt(d− ν∆)−1ω̄r

→ A

dt

(d− ν∆)−1ω̄r as j →∞
= cA(d− ν∆)−1ω̄r

= q0. (34)

We then speculate that the large scale coherent structure may resemble
(d−ν∆)−1ω̄r which is very close to (−ν∆)−1(1) just as in the continuous case
[16] if µ is the uniform distribution on Qr0 and d = 0. Although this predicted
flow field is not the one predicted by equilibrium statistical mechanics theory,
the error is very small (less than 10% [16]) and thus this can be viewed as
supporting evidence on the applicability of equilibrium statistical theory in
this weakly damped driven environment.

9



We still need to show that the pure fluctuation part is small enough.
For this purpose we decompose the pure fluctuation in terms of the Fourier
modes as

ω′r(j) =
∑

~k

ω̂~kζ~k,j (35)

where ω̂~k = 1
π
ei~k·~x form an orthonormal basis for L2(Q), and the random

coefficients {ζ~k,j} are i.i.d. random variables with mean zero for each fixed
~k.

We now look at the variance of the purely fluctuation part (the mean is
zero by our decomposition of mean and fluctuation).

E(|A
j∑

l=0

e−l(d−ν∆)dtω′r(l)|2L2(Q)) = A2
∑

~k

j∑

l1=0,l2=0

e−(l1+l2)(d+ν|~k|2)dtE(ζ~k,l1
ζ∗~k,l2

)

= A2
∑

~k

j∑

l=0

e−2l(d+ν|~k|2)dtVar(ζ~k,l)

= A2
∑

~k

1− e−2(j+1)(d+ν|~k|2)dt

1− e−2(d+ν|~k|2)dt

Var(ζ~k)

≤ A2 1

1− e−2(d+λ1ν)dt

∑

~k

Var(ζ~k)

=
A2

1− e−2(d+νλ1)dt
E(|ω′r|2L2)

≤ A2

2(d + λ1ν)dt(1− (d + λ1ν)dt)
|ω′r|22

=
c2
A

2(d + λ1ν)(1− (d + λ1ν)dt)
dt|ω′r|22

∼ c2
A

2(d + λ1ν)
dtr

2 (36)

where
|ω′r|2 = max

~xj

|ω′r(j)|L2 ∼ r. (37)

Combining all the results we have the following theorem
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Theorem 1 The Markov process ηj enjoys a unique invariant measure pro-
vided the small generalized Grashof number assumption (20) or (21) is sat-
isfied. Moreover, it has the following asymptotic expansion

ηj+1 = cA(d− ν∆)−1ω̄r + errd(j) + errr(j) (38)

where the deterministic error errd(j) and the random fluctuation error errr(j)
are bounded by

|errd(j)|H−1(Q) ≤ e−(j+1)(d+λ1ν)dt|η0|H−1 +
cA

d + λ1ν
e−(j+1)(d+λ1ν)dt|ω̄r|L2

+
c

1− κ
(

cA

d + λ1ν
)2dt|ωr|2|ωr|4, (39)

E(|errr(j)|2H−1) ≤ c2
A

2(d + λ1ν)
dt|ω′r|22 (40)

Hence the unique invariant measure is supported around the large scale co-
herent structure cA(d− ν∆)−1(ω̄r).

We would like to remark here that the asymptotics above shows that the
asymptotic behavior of the Markov process is close to a large scale coherent
structure cA(d−ν∆)−1ω̄r (∼ (2p−1)cAr2(d−ν∆)−1(1) in the case of uniform
distribution µ). Indeed, the first two terms in the deterministic error are
exponentially small for large j (time), while the last term in the deterministic

error is of the order of r3/2

d+λ1ν
( cA

d+λ1ν
)2 which is smaller than the order of the

large scale structure ( cAr2

d+λ1ν
) for small cA. The random error is at most of the

order of cAr
√

dt√
d+λ1ν

which is also of lower order to the large scale structure for
small dt.

3 Concluding remarks

We have demonstrated that small scale random bombardments at discrete
time may induce large scale coherent structure in two dimension flow prob-
lems. Moreover, the large scale coherent structure is well predicted by equi-
librium statistical theory utilizing energy-enstrophy as conserved quantities
or energy-circulation as conserved quantities [17] although the mean field
predicted by the rigorous theory is different from the mean field predicted
by the equilibrium statistical theory.
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There have been many works on the existence and uniqueness of invariant
measures for systems with random kick forcing (see for instance [5, 13, 18, 19]
and the references therein). However, we are not aware of any work that
demonstrate the support of the unique invariant measure is around a large
scale coherent structure except our earlier work [16].

As for many rigorous results, our analytical results are not as sharp as
the numerics have suggested. Namely, the rigorous results here imposes quite
severe restrictions on the generalized Grashof number Gr and dt although
our numerical experiments suggest that such restrictions are not necessary.
It would be interesting to see rigorous results without stringent restriction
as those imposed here. Even the continuous case where tools of stochastic
calculus are applicable is very difficult [5, 6, 7, 12, 19] in the case of degenerate
noise as we have here. The discrete case also suffers another technical setback
since stochastic calculus is not available and hence our result here in the
discrete case is somewhat weaker than our earlier result in the continuous
case [16].

The main result can be generalized in some straightforward fashion to
include more geophysical effects such as β-plane, F-plane, topography, hyper-
viscosity etc. The large scale coherent structure predicted would depend on
the geophysical effects and the probability distributions µ for the center ~xj

of the random small scale forcing (see figure 1 for the influence of µ).
Lastly, we treated both the continuous and discrete kicking problems.

We may then naturally ponder the relationship between the two. It is easy
to see that the discrete one converges to the continuous one in the limit so
long as various smallness assumptions here for the discrete case and those
for the continuous case imposed in [16] are satisfied. Notice that the discrete
random kicking only approximate the continuous random forcing process in
the weak sense as in the invariance principle [16, 2]. Therefore we may only
anticipate that the statistics of the continuous process be close to those of
the discrete in time Markov process. Indeed, this is a somewhat universal
issue related to models of stochastic differential equations with white in time
noise if we interpret white noise as cumulative effect of i.i.d. random kicks
via the invariance principle. This is similar to the issue of strong versus
weak schemes for stochastic differential equations [21, 22]. We will provide
detailed analysis to this and some other related problems in the near future
in a separate manuscript.
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Figure 1: Contour plot of the vorticity field with initial data 0.1 sin x sin(3y) +
0.15 sin(2x) sin(2y), d = 0, p = 3

4 , and dµ = 2(x−r0)
(π−2r0)3

dxdy.
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