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ABSTRACT
Abstract: Portfolio risk forecasts are often made by esti-
mating an asset or factor covariance matrix. Practitioners
commonly want to adjust a global covariance matrix en-
compassing several sub-markets by individually correcting
the sub-market diagonal blocks. Since this is likely to re-
sult in the loss of positive semi-definiteness of the overall
matrix, the off-diagonal blocks must then be adjusted to re-
store that property. Since there are many ways to do this
adjustment, this leads to an optimization problem of Pro-
crustes type. We discuss two solutions: a closed form so-
lution using an adapted norm, and a fast iterative approach
due to Koschat and Swayne.
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1 Introduction

Equity portfolio risk forecasts are typically derived from
a forecast of the asset or factor covariance matrix of re-
turns. The following risk model aggregation problem is
well-known to pension funds and mutual fund firms:

How can the firm evaluate the total risk of the combined
portfolios of many managers?

Assume that we have K > 1 managers, each respon-
sible for a portfolio in one of K markets. We also assume
that each of these managers is able to construct with con-
fidence a factor covariance matrix Ãk of size nk × nk,
(k = 1, . . . ,K), which successfully describes the risk of
portfolios in market k.

To understand the firmwide total risk of the union of
the K managers’ portfolios, we need a large covariance
matrix Ṽ of size N × N , where N = n1 + · · · + nk.
The matrix Ṽ must agree on its diagonal blocks with the
Ãk’s, and have meaningful information on the off-diagonal
blocks about correlations between factors in different mar-
kets. Unfortunately, while there may be enough histori-
cal data to estimate covariance matrices of size nk × nk,
there almost surely is not enough data to estimate directly
an N ×N covariance matrix.

Instead, the firm’s risk manager may do the following:

1. Develop a first-draft N×N covariance matrix V using
the available data history, in whatever way seems to
best capture cross-market correlations.

2. Replace the diagonal blocks Ak of V with the pre-
viously estimated market covariance matrices Ãk to
form a new matrix Ṽ .

3. Since this action is likely to spoil positive semi-
definiteness by creating negative eigenvalues, the off-
diagonal blocks of Ṽ must then be adjusted in some
minimal way to restore positive definiteness.

This becomes an optimization problem involving pos-
itive definite matrices, which is the focus of this paper.
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2 Simplifying the problem

In the most basic version of the problem, we are given a
positive definite matrix V , expressed in block form as

V =
(

A B
BT C

)
.

This is intended to be a first draft global covariance matrix.
Here A is a small diagonal block corresponding to covari-
ances of the factors in one of the individual markets. We’ll
say that A is n×n, V is N ×N , and for simplicity assume
n < N/2.

Independently, we are also given a better estimate Ã
for the factor covariance matrix of that market. We wish to
substitute Ã for A in V , without changing the other factors
described by C.

To avoid creating negative eigenvalues, this means
we need to allow freedom to adjust B to restore positive
semidefiniteness. The problem then becomes that of find-
ing B̃ such that

Ṽ (B̃) =
(

Ã B̃

B̃T C

)



is positive semidefinite and as close as possible, in some
suitable sense, to V .

3 Prior approaches

3.1 Rebonato and Jäckel

If we wish we can phrase this problem in terms of correla-
tion matrices instead of covariance matrices, simply by nor-
malizing the variables. In this context, Rebonato and Jäckel
(2000) considered the problem of the nearest n×n correla-
tion matrix to a given symmetric matrix with unit diagonal,
and proposed a solution involving minimizing a norm over
an n(n − 1) dimensional parameter space. It’s not diffi-
cult (Anderson and Kercheval, April, 2005) to improve this
dimension by a factor of 2, but one can’t avoid the prob-
lem that the solution will necessarily have zero eigenvalues.
Also the nonconvex optimization problem becomes rapidly
difficult as n grows.

3.2 Positive semidefinite programming

An improvement on the technique of Rebonato and Jäckel
makes use of the concept of positive semidefinite program-
ming, e.g. Higham (2002), Malick (2004). Here, one notes
that the space S of positive semidefinite matrices is a con-
vex cone in the set of all n × n matrices, and prescribing
diagonal blocks represents a simple linear constraint.

Hence the problem becomes a convex optimization
problem, which can be solved for quite large n.

While this approach is very powerful, there are two
difficulties in this context.

• Of necessity, if Ṽ (B) has negative eigenvalues, then
the optimum Ṽ (B̃) minimizing the norm

||Ṽ − V ||

will have zero eigenvalues, which is inconvenient for
risk management applications. (One could add a fur-
ther constraint that eigenvalues be larger than a certain
chosen lower bound, but this is ad hoc.)

• Worse, the solution to the problem posed this way will
always represent a change of the underlying variables
that mixes factors across markets, which is financially
undesirable. We explain this point in the next section.

4 Changing covariance matrices means
changing variables

Notation. Let MN denote the vector space of N × N
real matrices, GL(N, R) the subset of invertible matrices,
and denote by COV (N) the subset of all possible N ×N
covariance matrices of some N -dimensional random vec-
tor. (In our application, the random vector will be the
vector of factor returns.) Equivalently, COV (N) is the

space of N × N positive semidefinite (symmetric) matri-
ces. The subset of positive definite matrices will be denoted
COV +(N).

The following fact is elementary:

Proposition 4.1 If V ∈ COV +(N), then

1. {LV LT : L ∈ MN} = COV (N), and

2. {LV LT : L ∈ GL(N, R)} = COV +(N).

Moreover, if V is the covariance matrix of a random
vector s, the matrix LV LT is the covariance matrix in-
duced by the linear change of variables

s̃ = Ls.

Therefore we may think of changing the covariance
matrix V to a new matrix Ṽ as equivalent to making a lin-
ear change of variables of the underlying factors s. Since
factors are determined via linear regression on the asset re-
turns, their identities are somewhat approximate in the first
place – financially we can tolerate a small change L close
to the identity as a correction in light of the exogenous in-
formation in Ã.

However, we need to preserve the identities of the in-
dividual markets corresponding to the diagonal blocks of
V , and furthermore we don’t want to touch factors outside
the A block when making the above correction.

This means our change of variables should be con-
strained to the following block diagonal form:

L =
(

L1 0
0 I

)
. (1)

It is now not difficult to show

Proposition 4.2 (Anderson, et. al. (2005)) With V , Ṽ ,
and L as above,

LV LT = Ṽ

if and only if
L1 = Ã1/2OA−1/2,

where O is orthogonal and the exponent 1/2 refers to the
unique positive definite square root.

Equivalently, the block diagonal constraint on L im-
plies that the rectangular block B̃ is constrained to be of
the form

B̃ = Ã1/2OA−1/2B

for some orthogonal matrix O.
Notice now that when, as we have assumed, V , A,

and Ã are positive definite, then any admissible revised co-
variance matrix

Ṽ (O) = LV LT

=
(

Ã Ã1/2OA−1/2B
BT A−1/2OT A1/2 C

)
(2)



is necessarily invertible, because

L =
(

Ã1/2OA−1/2 0
0 I

)
(3)

is invertible (and with condition number bounded uni-
formly in the choice of O).

This is a natural resolution to the difficulty of zero
eigenvalues when B̃ is unconstrained, as in the positive
semidefinite programming approach. Note also that, be-
cause we have characterized the solutions satisfying the
market integrity constraint (1), this means that any solution
having zero eigenvalues must necessary fail to satisfy (1),
and therefore represents a change of variables undesirably
mixing factors across markets.

5 The optimization problem

We now are searching for the admissible Ṽ closest to V ,
where “admissible” means Ṽ = LV LT for some L sat-
isfying (3). In terms of some suitable norm, we want to
minimize

||Ṽ − V ||.

If we take the norm to be the usual Frobenius norm
||X||F = tr(XXT ), this is equivalent to minimizing the
off-diagonal block norm:

||B̃ −B||F = ||Ã1/2OA−1/2B −B||F (4)

as O varies over the orthogonal group O(n). This is an
unconstrained but nonconvex problem of dimension n(n−
1)/2, see Anderson et al. (2005).

There is a related classical problem in numerical lin-
ear algebra, e.g. Golub and Van Loan (1989):

Orthogonal Procrustes Problem: Given m × n
matrices A and D, find O ∈ O(n) minimizing
‖AO −D‖F .

This has a closed form solution in terms of singular
value decompositions (described in Section 6), but unfor-
tunately there is no known exact solution to the problem
we are facing, which we call the

Double Orthogonal Procrustes Problem: Given
matrices A, B, and D of compatible sizes, find an
orthogonal matrix O minimizing ‖AOB−D‖F .

6 Choosing an adapted norm

Initial experiments in Anderson, et. al. (2005) show that
the numerical cost of minimizing the objective (4) over
the orthogonal group O(n), via the standard Levenberg-
Marquardt optimization routine, starts to become high once
n is larger than around 20. We need to find a faster solution
without giving up our constraint (1) on admissible changes
of variables L.

The idea in this section is to take advantage of the
freedom we have to choose our norm. By proper choice of
norm, we can provide an exact closed form solution of our
problem for which the only computation required is calcu-
lation of a single singular value decomposition.

Higham (2002) describes a common weighted variant
of the Frobenius norm:

||X||W = ||W 1/2XW 1/2||F

for some positive definite weighting matrix W . Often, W
is chosen to be diagonal, but it need not be.

Consider now the following specific choice of W :

W =
(

Ã−1 0
0 I

)
.

We denote by ||.||∗ the norm ||.||W for this choice of W .
Our problem now is to minimize

||Ṽ (O)− V ||∗ (5)

as O ranges over O(n), and where Ṽ (O) is given by (2).
Substituting our choice of W , this is equivalent to minimiz-
ing the quantity

||Ã−1/2(B̃ −B)||F = ||OA−1/2B − Ã−1/2B||F .

This is now subject to exact solution via the usual orthogo-
nal procrustes method, as we now describe.

For convenience let X = A−1/2B and Y = Ã−1/2B.
We are minimizing

tr((OX − Y )(OX − Y )T )

= tr(XXT ) + tr(Y Y T )− 2tr(OXY T )

as O varies over O(n). Since the first two terms don’t de-
pend on O, we are equivalently maximizing tr(OXY T ).

Let UDV T be the singular value decomposition of
XY T = A−1/2BBT Ã−1/2. We want to find O maximiz-
ing

tr(OXY T ) = tr(OUDV T ) = tr(V T OUD).

Notice V T OU is orthogonal, D is diagonal with non-
negative entries. Some thought will convince the reader
that the maximum occurs when V T OU = I , or O = V UT .
This now minimizes the objective (6). The solution Ṽ may
thus be computed easily for any dimension for which the
singular value decomposition is available.

The choice of the norm ||.||∗ roughly amounts to giv-
ing equal weight to the principal components of the covari-
ance block Ã. This is fine when the precise weightings are
not too important in the application. However, the user may
need to keep the Frobenius norm, or substitute some other
specific weighting W . In this case, we have to address the
full Double Orthogonal Procrustes Problem, as in the next
section.



7 Koschat-Swayne iteration

The Double Orthogonal Procrustes Problem is difficult be-
cause it is a nonconvex, high-dimensional problem. How-
ever, Koschat and Swayne (1991) (See also Gower and Di-
jksterhuis (2004)) have proposed an effective iterative al-
gorithm, along with some conjectures about its behavior.
We describe a version of it here, establish some of its prop-
erties, and report on speed experiments with realistic data
for our application.

7.1 A mapping T on O(n)

Let A,B,C now denote arbitrary real matrices, with A
square n×n, B,C rectangular, with compatible sizes so the
expressions below make sense. We now drop the subscript
F on the Frobenius norm ||.||F . Our optimization problem
is equivalent to a minimizing a function of the form

G(O) = ||AOB − C||2 (6)

as O ranges over the orthogonal group. The Koschat-
Swayne idea is to examine the augmented matrices∥∥∥∥(

A
Ar

)
OB −

(
C
C∗

)∥∥∥∥2

(7)

where Ar and C∗ will be specified later.
This is equal to

||AOB − C||2 + ||ArOB − C∗||2,

and, expanding via the trace, the terms quadratic in O are

tr(AOBBT OT AT ) + tr(ArOBBT OT AT
r )

= tr(BT OT (AT A + AT
r Ar)OB).

The quadratic dependence on O will drop out if
AT A + AT

r Ar = rI , for some scalar r. If so, the prob-
lem can then be solved by the usual orthogonal procrustes
method described in Section 6.

So for any r larger than the square of the largest eigen-
value of A, we let

A2
r = rI −A2,

and then we can minimize, in terms of one singular value
decomposition, the objective∥∥∥∥(

A
Ar

)
OB −

(
C
C∗

)∥∥∥∥2

for any fixed choice of C∗, which is still at our disposal.
Note that the minimizing O is a unique global minimum
when the matrices involved have maximum rank, which we
assume from now on.

The idea of Koschat and Swayne is to fix some r as
above, choose O0 ∈ O(n) at random, and define the se-
quence {Oi} in O(n) such that Oi+1 is the unique mini-
mizer of (7) when C∗ = ArOiB.

We can express this in terms of a mapping T as fol-
lows.

Definition 7.1 Choose r as above. Define T : O(n) →
O(n) by

T (O) = argminQ(||AQB−C||2 + ||ArQB−ArOB||2).

That is, for any O ∈ O(n), T (O) is the unique global
minimizer of the function FO : O(n) → R defined by

FO(Q) = ||AQB − C||2 + ||ArQB −ArOB||2.

Using the method described in Section 6, it is straight-
forward to justify the following formula for T .

Lemma 7.2 For T as defined above, and O ∈ O(n), let
UDV T be the singular value decomposition of

B(CT + BT OT (rI −A2)).

Then
T (O) = V UT .

7.2 Properties of T

Lemma 7.3 T decreases the objective (6). Away from fixed
points, T strictly decreases the objective.

Proof: For any O,

||AT (O)B−C||2 ≤ ||AT (O)B−C||2+||ArT (O)B−ArOB||2

≤ ||AOB−C||2 + ||ArOB−ArOB||2 = ||AOB−C||2,

with the inequality strict when T (O) 6= O.

The numerical approach of Koschat and Swayne is
then equivalent to iteration of this mapping T until the ob-
jective no longer decreases by more than a preselected tol-
erance. In fact, the sequence must converge in O(n).

Lemma 7.4 For any O ∈ O(n), the sequence {T i(O)}
converges to a limit in O(n).

Proof: As in the proof of Lemma 7.3, we have

||AT (O)B−C||2+||ArT (O)B−ArOB||2 ≤ ||AOB−C||2,

and hence

||ArT (O)B−ArOB||2 ≤ ||AOB−C||2−||AT (O)B−C||2.

Therefore, for all n,

n∑
i=0

||ArT
i+1(O)B −ArT

i(O)B||2

≤
n∑

i=0

(||AT i(O)B − C||2 − ||AT i+1(O)B − C||2)

= ||AOB − C||2 − ||ATn+1(O)B − C||2

≤ ||AOB − C||2.



Therefore the infinite sum is convergent. Under our as-
sumption that Ar and B have full rank, this implies also

∞∑
i=0

||T i+1(O)− T i(O)||2 < ∞. (8)

By compactness, the sequence {T i(O)} must have a limit
point O∗ ∈ O(n). By (8) and the triangle inequality, this
limit point must be unique; hence O∗ must be the limit of
the convergent sequence {T i(O)}.

The mapping T is not continuous because the singular
value decomposition is not continuous in the data. How-
ever, it is continuous except on a set of codimension 1, and
hence almost everywhere. Thus, with probability one, the
limit O∗ will be a point of continuity of T , in which case it
must then be a fixed point of T .

Lemma 7.5 Any fixed point Q∗ of T is a critical point of
the objective G(O) = ||AOB − C||2.

Proof: Let Q∗ be a fixed point of T . With the previous
notation

FO(Q) = ||AQB − C||2 + ||ArQB −ArOB||2,

this means that FQ∗(Q) is minimized by Q = Q∗.
Let M be a skew-symmetric matrix representing a

tangent vector to O(n), and let Qt = Q∗ exp(I + tM)
represent a path in O(n) through Q∗ in the direction M .

Then
FQ∗(Qt) ≥ FQ∗(Q∗),

or

||AQtB−C||2+||ArQtB−ArQ
∗B||2 ≥ ||AQ∗B−C||2.

This means

||AQtB−C||2−||AQ∗B−C||2 ≥ −||ArQtB−ArQ
∗B||2

or

G(Qt)−G(Q∗) ≥ −||ArQ
∗(exp(I + tM)− I)B||2.

Since, exp(I+tM) = I+tM+O(t2), for small t, the
right hand side is of order t2, and this means all directional
derivatives of G at Q∗ are non-negative. Hence they must
be zero and Q∗ must be a critical point of G.

The limiting fixed point is not necessarily the global
minimum. If, as we tend to observe, the sequence does not
land on the fixed point limit in a finite number of steps, then
this fixed point cannot be a local maximum, and so will be
either a saddle point, or, generically, a local minimum. Dif-
ferent starting values of O can be expected to lead to differ-
ent local minima of the objective. Our approach is then to
choose a collection of different starting values, perhaps at
random, iterate to local minima of the objective, and then

choose the smallest of the minima found. Experimentally,
we tend to find, with our data, that the different starting
values usually lead to the same or similar objective values.
Therefore we need not be too concerned with the starting
values, since the global minimum has no special advantage
for the problem.

7.3 Numerical experiments

We looked at covariance data coming from actual equity
risk factors, as described in Anderson et al. (2005), taken
from the MSCIBarra equity risk model as of April 2001.
The largest problem corresponds to the 65 × 65 US eq-
uity block, in a 730 × 730 global covariance matrix. This
corresponds to n = 65 and B,C of size 65 × 665, and
an optimization over O(65) of dimension 2080. A sim-
ple MATLAB implementation of the iteration on an inex-
pensive laptop (circa 2005) took about 5 minutes for each
starting value of O. For the 27×27 Singapore equity block,
the process converged to within 2e-6 after 2200 iterations
in about 42 seconds.

By comparison, with the previous Levenberg-
Marquardt implementation in C++ on a unix workstation
(circa 2000), 20 × 20 blocks took over an hour and the
65×65 problem did not converge before the experimenters
gave up after several hours.

Clearly the Koschat-Swayne approach more effi-
ciently takes advantage of the special algebraic structure
of our high-dimensional nonconvex problem, and is good
enough for commercial implementation.
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