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Abstract

Portfolio credit derivatives, such as basket credit default swaps
(basket CDS), require for their pricing an estimation of the depen-
dence structure of defaults, which is known to exhibit tail dependence
as reflected in observed default contagion. A popular model with this
property is the (Student’s) t copula; unfortunately there is no fast
method to calibrate the degree of freedom parameter.

In this paper, within the framework of Schönbucher’s copula-based
trigger-variable model for basket CDS pricing, we propose instead to
calibrate the full multivariate t distribution. We describe a version of
the EM algorithm that provides very fast calibration speeds compared
to the current copula-based alternatives.

The algorithm generalizes easily to the more flexible skewed t dis-
tributions. To our knowledge, we are the first to use the skewed t
distribution in this context.
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1 Introduction

For portfolio risk modeling and basket derivative pricing, it is essential to

understand the dependence structure of prices, default times, or other asset-

related variables. This structure is completely described by the second mo-

ments (the covariance matrix) for jointly Normal variables, so practitioners

often use the covariance matrix as a simple proxy for multivariate depen-

dence.

However, it is widely acknowledged that prices, returns, and other finan-

cial variables are not Normally distributed. They have fat tails, and exhibit

“tail dependence” (see Section 4), in which correlations are observed to rise

during extreme events.

Therefore there is a need for practical uses of more general multivariate

distributions to model joint price behavior. This raises the question of how to

choose these distributions, and, once chosen, how to efficiently calibrate them

to data. In this paper we look at the multivariate (Student’s) t distribution,

which has become a popular choice because of its heavy tails and non-zero

tail dependence, and it’s generalization, the skewed t distribution, described,

for example, by Demarta and McNeil (2005) – see Section 2 below.

It has become popular and useful to isolate the dependence structure of

a distribution from the individual marginal distributions by looking at its

copula (see Section 3). Copulas that come from known distributions inherit

their names – e.g. we have the Gaussian copulas, the t copulas, etc.

There are now many financial applications of copulas. For example, Di

Clemente and Romano (2003b) used copulas to minimize expected shortfall

(ES) in modeling operational risk. Di Clemente and Romano (2004) applied

the same framework in the portfolio optimization of credit default swaps.

Masala et al. (working paper) used the t copula and a transition matrix

with a gamma-distributed hazard rate and a beta-distributed recovery rate

to compute the efficient frontier for credit portfolios by minimizing ES.

The success of copulas greatly depends both on good algorithms for cal-

ibrating the copula itself, and on the availability of a fast algorithm to cal-

culate the cumulative distribution functions (CDF ) and quantiles of the

corresponding one dimensional marginal distributions.
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The calibration of a t copula is very fast if we fix the degree of freedom

parameter ν, which in turn is optimized by maximizing a log likelihood.

However, the latter is slow. Detailed algorithms for calibrating t copulas

can be found in the work of many researchers, such as Di Clemente and

Romano (2003a), Demarta and McNeil (2005), Mashal and Naldi (2002),

and Galiani (2003).

The calibration of a t copula is (by definition) separate from the calibra-

tion of marginal distributions. It is generally suggested to use the empirical

distributions to fit the margins, but empirical distributions tend to have

poor performance in the tails. A hybrid of the parametric and non paramet-

ric method considers the use of the empirical distribution in the center and

a generalized Pareto distribution (GPD) in the tails. Some use a Gaussian

distribution in the center. To model multivariate losses, Di Clemente and

Romano (2003a) used a t copula and Gaussian distribution in the center and

left tail and a GPD in the right tail for the margins. We will be able to avoid

these issues because we can effectively calibrate the full distribution directly

by using t or skewed t distributions.

In this paper, the primary application we have in mind is portfolio credit

risk – specifically, the pricing of multiname credit derivatives such as kth-to-

default basket credit default swaps (basket CDS).

For this problem, the most important issue is the correlation structure

among the default obligors as described by the copula of their default times.

Unfortunately, defaults are rarely observed, so it is difficult to calibrate their

correlations directly. In this paper we follow Cherubini et al. (2004) and use

the distribution of daily equity prices to proxy the dependence structure of

default times. See Section 6.2 below.

Several groups have discussed the pricing of basket CDS and CDO via

copulas, such as Galiani (2003), Mashal and Naldi (2002), and Meneguzzo

and Vecchiato (2002), among others. However, in this paper, we find that cal-

ibrating the full joint distribution is much faster than calibrating the copula

separately, because of the availabilty of the EM algorithm discussed below.

In Hu (2005), we looked at the large family of generalized hyperbolic dis-

tributions to model multivariate equity returns by using the EM algorithm

(see Section 2). We showed that the skewed t has better performance and
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faster convergence than other generalized hyperbolic distributions. Further-

more, for the t distribution, we have greatly simplified formulas and an even

faster algorithm. For the t copula, there is still no good method to calibrate

the degree of freedom ν except to find it by direct search. The calibration

of a t copula takes days while the calibration of a skewed t or t distribution

via the EM algorithm takes minutes. To our knowledge, we are the first to

directly calibrate the skewed t or t distributions to price basket credit default

swaps.

This paper is organized as follows. In section 2, we introduce the skewed

t distribution from the normal mean variance mixture family and provide a

version of the EM algorithm to calibrate it, including the limiting t distri-

bution. We give an introduction to copulas in section 3, and review rank

correlation and tail dependence in section 4.

In section 5, we follow Rutkowski (1999) to review the reduced form

approach to single name credit risk. In section 6, we follow Schönbucher

(2003) to provide our model setup for calculating default probabilities for

the k-th to default using a copula-based trigger variable method. There we

also discuss the calibration problem.

In section 7 we apply all the previous ideas to describe a method for pric-

ing basket credit default swaps. We illustrate how selecting model copulas

with different tail dependence coefficients influences the relative probabilities

of first and last to default. We then argue that calibrating the skewed t dis-

tribution is the best and fastest approach, among the common alternatives.

2 Skewed t distributions and the EM algo-

rithm

2.1 Skewed t and t distributions

Definition 2.1 Inverse Gamma Distribution. The random variable X

has an inverse gamma distribution, written X ∼ InverseGamma(α, β), if

its probability density function is

(2.1) f(x) = βαx−α−1e−β/x/Γ(α), x > 0, α > 0, β > 0,
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where Γ is the usual gamma function.

We have the following standard formulas:

(2.2) E(X) =
β

α− 1
, if α > 1

(2.3) V ar(X) =
β2

(α− 1)2(α− 2)
, if α > 2

(2.4) E(log(x)) = log(β)− ψ(α),

where

(2.5) ψ(x) = d log(Γ(x))/dx

is the digamma function.

The skewed t distribution is a subfamily of the generalized hyperbolic

distributions – see McNeil et al. (2005), who suggested the name “skewed t”.

It can be represented as a normal mean-variance mixture, where the mixture

variable is inverse gamma distributed.

Definition 2.2 Normal Mean-Variance Mixture Representation of

Skewed t Distribution. Let µ and γ be parameter vectors in Rd, Σ a d×d
real positive semidefinite matrix, and ν > 2. The d dimensional skewed t

distributed random vector X, which is denoted by

X ∼ SkewedTd(ν,µ,Σ,γ),

is a multivariate normal mean-variance mixture variable with distribution

given by

(2.6) X
d
= µ +Wγ +

√
WZ,

where

1. Z ∼ Nd(0,Σ), the multivariate normal with mean 0 and covariance Σ,
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2. W ∼ InverseGamma(ν/2, ν/2), and

3. W is independent of Z.

Here, µ are location parameters, γ are skewness parameters and ν is the

degree of freedom.

From the definition, we can see that

(2.7) X | W ∼ Nd(µ +Wγ,WΣ).

This is also why it is called a normal mean-variance mixture distribution. We

can get the following moment formulas easily from the mixture definition:

(2.8) E(X) = µ + E(W )γ,

(2.9) COV (X) = E(W )Σ + var(W )γγ ′,

when the mixture variable W has finite variance var(W ).

Definition 2.3 Setting γ equal to zero in Definition 2.2 defines the multi-

variate t distribution,

(2.10) X
d
= µ +

√
WZ.

For convenience we next give the density functions of these distributions.

Denote by Kλ(x), x > 0, the modified Bessel function of the third kind, with

index λ:

Kλ(x) =
1

2

∫ ∞

0

yλ−1e−
x
2
(y+y−1) dy.

The following formula may be computed using (2.7), and is given in Mc-

Neil et al. (2005).

Proposition 2.4 Skewed t Distribution. Let X be skewed t distributed,

and define

(2.11) ρ(x) = (x − µ)′Σ−1(x − µ).

Then the joint density function of X is given by
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(2.12) f(x) = c
K ν+d

2

(√
(ν + ρ(x)) (γ′Σ−1γ)

)
e(x − µ)′

Σ−1γ(√
(ν + ρ(x)) (γ′Σ−1γ)

)− ν+d
2

(1 + ρ(x)
ν

)
ν+d
2

,

where the normalizing constant is

c =
21− ν+d

2

Γ(ν
2
)(πν)

d
2 |Σ| 12

.

The mean and covariance of a skewed t distributed random vector X are

(2.13) E(X) = µ + γ
ν

ν − 2
,

(2.14) COV (X) =
ν

ν − 2
Σ + γγ ′ 2ν2

(ν − 2)2(ν − 4)
,

where the covariance matrix is only defined when ν > 4, and the expectation

only when ν > 2.

Furthermore, in the limit as γ → 0, we get the joint density function of

the t distribution:

(2.15) f(x) =
Γ(ν+d

2
)

Γ(ν
2
)(πν)

d
2 |Σ| 12

(1 +
ρ(x)

ν
)−

ν+d
2 .

The mean and covariance of a t distributed random vector X are

(2.16) E(X) = µ,

(2.17) COV (X) =
ν

ν − 2
Σ.
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2.2 Calibration of t and Skewed t Distributions Using
the EM Algorithm

The mean-variance representation of skewed t distribution has a great ad-

vantage: the EM algorithm can be applied to such a representation. See

McNeil et al. (2005) for a general discussion of this algorithm for calibrating

generalized hyperbolic distributions.

The EM (expectation-maximization) algorithm is a two-step iterative pro-

cess in which (the E-step) an expected log likelihood function is calculated

using current parameter values, and then (the M-step) this function is max-

imized to produce updated parameter values. After each E and M step,

the log likelihood is increased, and the method converges to a maximum log

likelihood estimate of the distribution parameters.

What helps this along is that the skewed t distribution can be represented

as a conditional normal distribution, so most of the parameters (Σ,µ,γ) can

be calibrated, conditional on W , like a Gaussian distribution. We give a brief

summary of our version of the EM algorithms for skewed t and t distributions

here. Detailed derivations, along with comparisons to other versions, can be

found in Hu (2005).

We will use a superscript in square brackets to denote the iteration

counter. Suppose we have d-dimensional sample data Xi, i = 1, . . . , n.

Given, at the kth step, parameter estimates ν [k], Σ[k], µ[k], and γ [k], let,

for i = 1, . . . , n,

ρ
[k]
i = (X i − µ[k])′(Σ[k])−1(X i − µ[k]).

Define the auxiliary variables θ
[k]
i , η

[k]
i , and ξ

[k]
i by

(2.18) θ
[k]
i =

(
ρ

[k]
i + ν [k]

γ [k]′Σ[k]−1γ [k]

)− 1
2 K ν+d+2

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

)
K ν+d

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

)

(2.19) η
[k]
i =

(
ρ

[k]
i + ν [k]

γ [k]′Σ[k]−1γ [k]

) 1
2 K ν+d−2

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

)
K ν+d

2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

)
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ξ
[k]
i =

1

2
log

(
ρ

[k]
i + ν [k]

γ [k]′Σ[k]−1γ [k]

)
+(2.20)

∂K
− ν+d

2 +α

„q
(ρ

[k]
i +ν[k])(γ [k]′Σ[k]−1γ [k])

«
∂α

|α=0

K ν+d
2

(√
(ρ

[k]
i + ν [k])(γ [k]′Σ[k]−1γ [k])

) .

In the special case of the multivariate t distributions, we have simpler

forms for above formulas:

(2.21) θ
[k]
i =

ν [k] + d

ρ
[k]
i + ν [k]

(2.22) η
[k]
i =

ρ
[k]
i + ν [k]

ν [k] + d− 2

(2.23) ξ
[k]
i = log(

ρ
[k]
i + ν [k]

2
)− ψ(

d+ ν [k]

2
).

Let us denote

(2.24) θ̄ =
1

n

n∑
1

θi, η̄ =
1

n

n∑
1

ηi, ξ̄ =
1

n

n∑
1

ξi.

Algorithm 2.5 EM algorithm for calibrating the t and skewed t distributions

1. Set the iteration counter k=1. Select staring values for ν [1], γ [1], µ[1]

and Σ[1]. Reasonable starting value for mean and dispersion matrix are

the sample mean and sample covariance matrix.

2. Calculate θ
[k]
i , η

[k]
i , and ξ

[k]
i and their averages θ̄, η̄ and ξ̄.

8



3. Update γ, µ and Σ according to

γ [k+1] =
n−1

∑n
i=1 θ

[k]
i (x̄− xi)

θ̄[k]η̄[k] − 1
(2.25)

µ[k+1] =
n−1

∑n
i=1 θ

[k]
i xi − γ [k+1]

θ̄[k]
(2.26)

Σ[k+1] =
1

n

n∑
i=1

θ
[k]
i (xi − µ[k+1])(xi − µ[k+1])′ − η̄[k]γ [k+1]γ [k+1]′ .(2.27)

4. Compute ν [k+1] by numerically solving the equation

(2.28) −ψ(
ν

2
) + log(ν/2) + 1− ξ̄[k] − θ̄[k] = 0.

5. Set counter k := k+1 and go back to step 2 unless the relative increment

of log likelihood is small and in this case, we terminate the iteration.

The result of this algorithm is an estimate of the maximum likelihood

parameter values for the given data.

3 Copulas

Copulas are used to describe the dependence structure of a multivariate dis-

tribution. A good general reference is Nelsen (1999). One of the definitions

can be found in Li (1999), the first one to use copulas to price portfolio credit

risk.

Definition 3.1 Copula Functions. U is a uniform random variable if it

has a uniform distribution on the interval [0, 1].

For d uniform random variables U1, U2, · · · , Ud, the joint distribution

function C,defined as

C(u1, u2, · · · , ud) = P [U1 ≤ u1, U2 ≤ u2, · · · , Ud ≤ ud],

is called a copula function.
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Proposition 3.2 Sklar’s Theorem. Let F be a joint distribution function

with margins F1, F2, · · · , Fd, then there exists a copula C such that for all

(x1, x2, · · · , xd) ∈ Rd,

(3.1) F (x1, x2, · · · , xd) = C(F1(x1), F2(x2), · · · , Fd(xd)).

If F1, F2, · · · , Fd are continuous, then C is unique. Conversely, if C is a cop-

ula and F1, F2, · · · , Fd are distribution functions, then the function F defined

by equation 3.1 is a joint distribution function with margins F1, F2, · · · , Fd.

Corollary 3.3 If F1, F2, · · · , Fm are continuous, then, for any (u1, · · · , um) ∈
[0, 1]m, we have

(3.2) C(u1, u2, · · · , um) = F (F−1
1 (u1), F

−1
2 (u2), · · · , F−1

m (um)),

where F−1
i (ui) denotes the inverse of the cumulative distribution function,

namely, for ui ∈ [0, 1], F−1
i (ui) = inf{x : Fi(x) ≥ ui}.

The name copula means a function that couples a joint distribution func-

tion to its marginal distributions. If X1, X2, · · · , Xd are random variables

with distributions F1, F2, · · · , Fd, respectively, and a joint distribution F ,

then the corresponding copula C is also called the copula of X1, X2, · · · , Xd,

and (U1, U2, · · · , Ud) = (F1(X1), F2(X2), · · · , Fd(Xd)) also has copula C. We

will use this property to price basket credit default swaps later.

We often assume the marginal distributions to be empirical distributions.

Suppose that the sample data is xi = (xi,1, · · · , xi,d), where i = 1, · · · , n, then

we may take the empirical estimator of jth marginal distribution function to

be

(3.3) F̂j(x) =

∑n
i=1 I{xi,j≤x}

n+ 1
.

(Demarta and McNeil (2005) suggested dividing by n+1 to keep the estima-

tion away from the boundary 1.) By using different copulas and empirical or

other margins, we can create a rich family of multivariate distributions. It

is not required that the margins and joint distribution be the same type of

distribution.
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Two types of copulas are widely used: Archimedean copulas and ellipti-

cal copulas. Archimedean copulas form a rich family of examples of bivari-

ate copulas, including the well-known Frank, Gumbel and Clayton copulas.

These have only one parameter and are easy to calibrate. However, the use-

fulness of Archimedean copulas of more than two variables is quite limited:

they have only one or two parameters, and enforce a lot of symmetry in the

dependence structure, such as bivariate exchangeability, that is unrealistic

for a portfolio of heterogeneous firms.

Therefore we now restrict attention to the elliptical copulas, which are

created from multivariate elliptical distributions, such as the Gaussian and

t distributions, and their immediate generalizations, such as the skewed t

copula.

Definition 3.4 Multivariate Gaussian Copula. Let R be a positive

semidefinite matrix with diag(R) = 1 and let ΦR be the standardized mul-

tivariate normal distribution function with correlation matrix R. Then the

multivariate Gaussian copula is defined as

(3.4) C(u1, u2, · · · , um;R) = ΦR(Φ−1(u1),Φ
−1(u2), · · · ,Φ−1(um)),

where Φ−1(u) denotes the inverse of the standard univariate normal cumula-

tive distribution function.

Definition 3.5 Multivariate t Copula. Let R be a positive semidefinite

matrix with diag(R) = 1 and let TR,ν be the standardized multivariate t

distribution function with correlation matrix R and ν degrees of freedom.

Then the multivariate t copula is defined as

(3.5) C(u1, u2, · · · , um;R, ν) = TR,ν(T
−1
ν (u1), T

−1
ν (u2), · · · , T−1

ν (um)),

where T−1
ν (u) denotes the inverse of standard univariate t cumulative distri-

bution function.

4 Measures of Dependence

All dependence information is contained in the copula of a distribution. How-

ever, it is helpful to have real-valued measures of the dependence of two
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variables. The most familiar example of this is Pearson’s linear correlation

coefficient; however, this does not have the nice properties we will see below.

4.1 Rank Correlation

Definition 4.1 Kendall’s Tau. Kendall’s tau rank correlation for the bi-

variate random vector (X, Y ) is defined as

(4.1) τ(X, Y ) = P ((X − X̂)(Y − Ŷ ) > 0)− P ((X − X̂)(Y − Ŷ ) < 0),

where (X̂, Ŷ ) is an independent copy of (X, Y ).

As suggested by Meneguzzo and Vecciato (2002), the sample consistent esti-

mator of Kendall’s tau is given by

(4.2) τ̂ =

∑n
i,j=1,i<j sign[(xi − xj)(yi − yj)]

n(n− 1)/2
,

where sign(x) = 1 if x ≥ 0, otherwise sign(x) = 0, and n is the number of

observations.

In the case of elliptical distributions, Lindskog et al. (2003) showed that

(4.3) τ(X, Y ) =
2

π
arcsin(ρ),

where ρ is Pearson’s linear correlation coefficient between random variable X

and Y . However, Kendall’s tau is more useful in discussions of dependence

structure because it depends in general only on the copula of (X, Y ) (Nelsen,

1999):

(4.4) τ(X, Y ) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1.

It has nothing to do with the marginal distributions. Sometimes, we may

need the following formula

(4.5) τ(X, Y ) = 1− 4

∫ ∫
[0,1]2

Cu(u, v)Cv(u, v)dudv,

where Cu denotes the partial derivative of C(u, v) with respect to u and Cv

denotes the partial derivative of C(u, v) with respect to v.
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Proposition 4.2 Copula of Transformations (Nelsen, 1999). Let X and

Y be continuous random variables with copula CXY . If both α(X) and β(Y )

are strictly increasing on RanX and RanY respectively, then Cα(X)β(Y ) =

CXY . If both α(X) and β(Y ) are strictly decreasing on RanX and RanY

respectively, then Cα(X)β(Y )(u, v) = u+ v − 1 + CXY (1− u, 1− v).

Corollary 4.3 Invariance of Kendall’s Tau Under Monotone Trans-

formation . Let X and Y be continuous random variables with copula CXY .

If both α(X) and β(Y ) are strictly increasing or strictly decreasing on RanX

and RanY respectively, then τα(X)β(Y ) = τXY .

Proof: we just need to show the second part. If both α(X) and β(Y ) are

strictly decreasing, then Cα(X)β(Y )(u, v) = u+v−1+CXY (1−u, 1−v). From

equation 4.5, we have

τα(X)β(Y ) = 1− 4

∫ ∫
[0,1]2

(1− C1(1− u, 1− v))(1− C2(1− u, 1− v))dudv

where Ci denotes the partial derivative with respect to ith variable to avoid

confusion. By replacing 1− u by x and 1− v by y, we have

τα(X)β(Y ) = 1− 4

∫ ∫
[0,1]2

(1− C1(x, y))(1− C2(x, y))dxdy.

Since ∫ ∫
[0,1]2

C1(x, y)dxdy =

∫
[0,1]

ydy = 0.5,

we have τα(X)β(Y ) = τXY .

These results are the foundation of modeling of default correlation in the

pricing of portfolio credit risk. From now on, when we talk about correlation,

we will mean Kendall’s tau rank correlation.

4.2 Tail Dependence

Corresponding to the heavy tail property in univariate distributions, tail

dependence is used to model the co-occurrence of extreme events. For credit

risk, this is the phenomenon of default contagion. Realistic portfolio credit

risk models should exhibit positive tail dependence, as defined next.
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Definition 4.4 Tail Dependence Coefficient(TDC). Let (X1, X2) be a

bivariate vector of continuous random variables with marginal distribution

functions F1 and F2. The level of upper tail dependence λU and lower tail

dependence λL are given, respectively, by

(4.6) λU = lim
u↑1

P [X2 > F−1
2 (u)|X1 > F−1

1 (u)],

(4.7) λL = lim
u↓0

P [X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)].

If λU > 0, then the two random variables (X1, X2) are said to be asymptoti-

cally dependent in the upper tail. If λU = 0, then (X1, X2) are asymptotically

independent in the upper tail. Similarly for λL and the lower tail.

Joe (1997) gave the copula version of TDC,

(4.8) λU = lim
u↑1

[1− 2u+ C(u, u)]

1− u
,

(4.9) λL = lim
u↓0

C(u, u)

u
.

For elliptical copulas, λU = λL, denoted simply by λ. Embrechts et al. (2001)

showed that for a Gaussian copula, λ = 0, and for a t copula,

(4.10) λ = 2− 2tν+1

(√
ν + 1

√
1− ρ√
1 + ρ

)
,

where ρ is the Pearson correlation coefficient. We can see that λ is an in-

creasing function of ρ and a decreasing function of the degree of freedom ν.

The t copula is a tail dependent copula. We can see the difference of the tail

dependence between Gaussian copulas and t copulas from figure 1.

5 Single Name Credit Risk

Before looking at the dependence structure of defaults for a portfolio, we

first review the so-called reduced form approach to single firm credit risk,

sometimes called stochastic intensity modeling. We follow the approach of

Rutkowski (1999).
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Figure 1: 1000 samples of Gaussian and t copula with Kendall’s τ = 0.5.
There are more points in both corners for t copula.

5.1 Defaultable Bond Pricing

Suppose that τ is the default time of a firm. Let Ht = Iτ≤t, and Ht = σ(Hs :

s ≤ t) denote the default time information filtration. We denote by F the

right-continuous cumulative distribution function of τ , i.e., F (t) = P (τ ≤ t).

Definition 5.1 Hazard Function. The function Γ : R+ → R+ given by

(5.1) Γ(t) = − log (1− F (t)),∀t ∈ R+

is called the hazard function. If F is absolutely continuous, i.e., F (t) =∫ t

0
f(u)du, where f is the probability density function of τ , then so is Γ(t),

and we define the intensity function

λ(t) = Γ′(t).

It is easy to check that

(5.2) F (t) = 1− e−
R t
0 λ(u)du,
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and

(5.3) f(t) = λ(t)S(t),

where S(t) = 1− F (t) = e−
R t
0 λ(u)du is called the survival function.

For simplicity, we suppose the risk free short interest rate r(t) is a non-

negative deterministic function, so that the price at time t of a unit of default

free zero coupon bond with maturity T equals B(t, T ) = e−
R T

t r(u)du.

Suppose now we have a defaultable zero-coupon bond that pays c at

maturity T if there is no default, or pays a recovery amount h(τ) if there is

a default at time τ < T . The time-t present value of the bond’s payoff is

therefore

Yt = I{t<τ≤T}h(τ)e
−

R τ
t r(u)du + I{τ>T}ce

−
R T

t r(u)du.

When the only information is contained in the default filtration Ht, we have

the following pricing formula.

Proposition 5.2 Rutkowski (1999). Assume that t ≤ T , and Yt is defined

as above. If Γ(t) is absolutely continuous, then

(5.4) E(Yt|Ht) = I{τ>t}

(∫ T

t

h(u)λ(u)e−
R u

t r̂(v)dvdu+ ce−
R T

t r̂(u)du

)
,

where r̂(v) = r(v) + λ(v).

The first term is the price of the default payment, the second is the price

of the survival payment. Note that in the first term we have used equation

5.3 to express the probability density function of τ . In the case of zero

recovery, the formula tells us that a defaultable bond can be valued as if it

were default free by replacing the interest rate by the sum of the interest rate

and a default intensity, which can be interpreted as a credit spread. We use

this proposition to price basket credit default swaps.

5.2 Credit Default Swaps

A credit default swap (CDS) is a contract that provides insurance against

the risk of default of a particular company. The buyer of a CDS contract
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obtains the right to sell a particular bond issued by the company for its

par value once a default occurs. The buyer pays to the seller a periodic

payment, at time t1, · · · , tn, as a fraction q of the nominal value M , until the

maturity of the contract T = tn or until a default at time τ < T occurs. If

a default occurs, the buyer still needs to pay the accrued payment from the

last payment time to the default time. There are 1/θ payments a year (for

semiannual payments, θ = 1/2), and every payment is θqM .

5.3 Valuation of Credit Default Swaps

Set the current time t0 = 0. Let us suppose the only information available is

the default information, interest rates are deterministic, the recovery rate R

is a constant, and the expectation operator E(·) is relative to a risk neutral

measure. We use Proposition 5.2 to get the premium leg PL, accrued pay-

ment AC, and default leg DL. PL is the present value of periodic payments

and AP is the present value of the accumulated amount from last payment

to default time. The default leg DL is the present value of the net gain to

the buyer in case of default. We have

PL = Mθq
n∑

i=1

E(B(0, ti)I{τ > ti})(5.5)

= Mθq
n∑

i=1

B(0, ti)e
−

R ti
0 λ(u)du,

AP = Mθq

n∑
i=1

E

(
τ − ti−1

ti − ti−1

B(0, τ)I{ti−1 < τ ≤ ti}
)

(5.6)

= Mθq

n∑
i=1

∫ ti

ti−1

u− ti−1

ti − ti−1

B(0, u)λ(u)e−
R u
0 λ(s)dsdu,

DL = M(1−R)E
(
B(0, τ)I{τ≤T}

)
(5.7)

= M(1−R)

∫ T

0

B(0, u)λ(u)e−
R u
0 λ(s)dsdu.
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The spread price q∗ is the value of q such that the value of the credit

default swap is zero,

(5.8) PL(q∗) + AP (q∗) = DL.

5.4 Calibration of Default Intensity: Illustration

As Hull (2002) points out, the credit default swap market is so liquid that

we can use credit default swap spread data to calibrate the default intensity

using equation (5.8).

In table 1, we have credit default spread prices for five companies on

07/02/2004 fromGFI (http://www.gfigroup.com). The spread price is quoted

in basis points. It is the annualized payment made by the buyer of the CDS

per dollar of nominal value. The mid price is the average of bid price and

ask price.

Company Year 1 Year 2 Year 3 Year 4 year 5
AT&T 144 144 208 272 330

Bell South 12 18 24 33 43
Century Tel 59 76 92 108 136

SBC 15 23 31 39 47.5
Sprint 57 61 66 83 100

Table 1: Credit default swap mid price quote, where year1, · · · , year5 mean
maturities.

We denote the maturities of the CDS contracts as (T1, · · · , T5) = (1, 2, 3, 4, 5).

It is usually assumed that the default intensity is a step function, with step

size of 1 year, expressed in the following form (where T0 = 0),

(5.9) λ(t) =
5∑

i=1

ciI(Ti−1,Ti](t).

We can get c1 by using the 1 year CDS spread price first. Knowing c1, we

can estimate c2 using the 2 year CDS spread price. Following this procedure,

we can estimate all the constants ci for the default intensity.
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In our calibration, we assume a recovery rate R of 0.4, a constant risk free

interest rate of 0.045, and semiannual payments (θ = 1/2). In this setting,

we can get PL, AP and DL explicitly. The calibrated default intensity is

shown in table 2.

Company Year 1 Year 2 Year 3 Year 4 year 5
AT&T 0.0237 0.0237 0.0599 0.0893 0.1198

Bell South 0.0020 0.0040 0.0061 0.0105 0.0149
Century Tel 0.0097 0.0155 0.0210 0.0271 0.0469

SBC 0.0025 0.0052 0.0080 0.0109 0.0144
Sprint 0.0094 0.0108 0.0127 0.0235 0.0304

Table 2: Calibrated default intensity

6 Portfolio Credit Risk

6.1 Setup

Our setup for portfolio credit risk is to use default trigger variables for the

survival functions (Schönbucher and Schubert, 2001), as a means of intro-

ducing default dependencies through a specified copula.

Suppose we are standing at time t=0.

Model Setup and Assumptions. Suppose there are d firms. For each

obligor 1 ≤ i ≤ d, we define

1. The default intensity λi(t): a deterministic function. We usually as-

sume it to be a step function.

2. The survival function Si(t):

(6.1) Si(t) := exp

(
−
∫ t

0

λi(u)du

)
.

3. The default trigger variables Ui: uniform random variables on [0, 1].

The d-dimensional vector U = (U1, U2, · · · , Ud) is distributed according

to the d-dimensional copula C (see Definition 3.1).

19



4. The time of default τi of obligor i, where i = 1, · · · , d,

(6.2) τi := inf{t : Si(t) ≤ 1− Ui}.

The copula C of U is also called the survival copula of 1−U. (See

Georges et al. (2001) for more details about survival copulas.)

From equation (6.2), we can see that the default time τi is a increasing

function of the uniform random variable Ui, so the rank correlation Kendall’s

tau between default times is the same as the Kendall’s tau between the uni-

form random variables, and the copula of τ equals the copula of U. Equiv-

alently, the copula of 1−U, is the survival copula of τ .

Define the default function, F i(t) = 1− Si(t).

Theorem 6.1 Joint Default Probabilities. The joint default probabili-

ties of (τ1, τ2, · · · , τd) are given by

(6.3) P [τ1 ≤ T1, τ2 ≤ T2, · · · , τd ≤ Td] = C(F 1(T1), · · · , F d(Td)).

Proof: From the definition of default in equation (6.2), we have

P [τ1 ≤ T1, · · · , τd ≤ Td] = P [1− U1 ≥ S1(T1), · · · , 1− Ud ≥ Sd(Td)].

By the definition of the copula C of U we have

P [τ1 ≤ T1, · · · , τd ≤ Td] = C
(
F 1(T1), · · · , F d(Td)

)
.

6.2 Calibration

In the preceding setup, two kinds of quantities need to be calibrated: the

default intensities λi(t), and the default time copula C. Calibration of the

default intensities can be accomplished using the single name credit default

spreads visible in the market, as described below in Section 7.

However, calibration of the default time copula C is difficult. Indeed, it is

a central and fundamental problem for portfolio credit risk modeling to prop-

erly calibrate correlations of default times. The trouble is that data is scarce
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– for example, a given basket of blue chips may not have any defaults at all in

recent history. On the other hand, calibration using market prices of basket

CDS is hampered by the lack of a liquid market with observable prices. Even

if frequently traded basket CDS prices were observable, we would need many

different basket combinations in order to extract full correlation information

among all the names.

Therefore in the modeling process we need to choose some way of proxying

the required data. McNeil et al. (2005) report that asset price correlations are

commonly used as a proxy for default time correlations. This is the also the

approach taken by Cherubini et al. (2004), who remark that it is consistent

with most market practice.

From the perspective of Merton-style value threshold models of default,

it makes sense to use firm value correlations, since downward value co-

movements will be associated with co-defaults. However, firm values are

frequently not available, so asset prices can be used instead — even if, as

Schönbucher (2003) points out, liquidity effects may lead to higher correla-

tions for asset prices than for firm values.

Another way to simplify this calibration problem is to restrict to a family

of copulas with only a small number of parameters, such as Archimedean

copulas. Because this introduces too much symmetry among the assets,

we choose instead to use asset price correlations as a proxy for default time

correlations in this paper. This specific choice does not affect our conclusions,

which apply to calibrating the copula of any asset-specific data set chosen to

represent default time dependence.

A good choice of copula family for calibration is the t-copula, because

it naturally incorporates default contagion through tail dependence, which

is not present in the Gaussian copula. An even better choice is the skewed

t-copula, for which the upper and lower tail dependence need not be equal.

When applying this copula approach, a direct calibration of the t-copula

or skewed t-copula is time-consuming because there is no fast method of find-

ing the degree of freedom ν except by looping. Instead, we will show that

it is much faster to find the copula by calibrating the full multivariate dis-

tribution and extracting the implied copula, as in equation (3.5). This may

seem counterintuitive, since the full distribution also contains the marginals
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as well as the dependence structure. However, for calibrating the full distri-

bution function, we have at our disposal the fast EM algorithm; we know of

no corresponding algorithm for the copula alone. Moreover, we will see that

the marginals are needed anyway to contruct uniform variates. If they are

not provided as a by-product of calibrating the full distribution, they need

to be separately estimated.

7 Pricing of Basket Credit Default Swaps:

Elliptical Copulas vs the Skewed t Distri-

bution

7.1 Basket CDS contracts

We now address the problem of basket CDS pricing. For ease of illustration

we will look at a 5 year basket CDS, where the basket contains the five firms

used in section 5.4; other maturities and basket sizes are treated in the same

way.

All the settings are the same as the single CDS except that the default

event is triggered by the k-th default in the basket, where k is the seniority

level of this structure, specified in the contract. The seller of the basket

CDS will face the default payment upon the k-th default, and the buyer will

pay the spread price until k-th default or until maturity T . Let (τ 1, · · · , τ 5)

denote the default order.

The premium leg, accrued payment, and default leg are

(7.1) PL = Mθq
n∑

i=1

E(B(0, ti)I{τ k > ti}),

(7.2) AP = Mθq
n∑

i=1

E

(
τk − ti−1

ti − ti−1

B(0, τ k)I{ti−1 < τ k ≤ ti}
)
,

(7.3) DL = M(1−R)E
(
B(0, τ)I{τk≤T}

)
.
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The spread price q∗ is the q such that the value of credit default swap is

zero, i.e.,

(7.4) PL(q∗) + AP (q∗) = DL.

7.2 Pricing Method

To solve this equation, we now need the the distribution of τ k, the time of the

k-th default in the basket, so that we can evaluate the foregoing expectations.

To do this, we need all the preceding tools of this paper. Here is a summary

of the steps.

1. Select firm-specific critical variables X whose dependence structure will

proxy for the dependence structure of default times. (In the study

below we use equity prices.)

2. Calibrate the copula C of X from a selected parametric family of cop-

ulas or distributions, such as the t copula or the skewed t distribution.

In the distribution case, use the EM algorithm.

3. Separately, calibrate deterministic default intensities from single name

CDS spread quotes, as in section 5.

4. Use the default intensities to calculate survival functions Si(t) for each

of the firms, using equation (6.1).

5. Using the copula C, develop the distribution of kth-to-default times by

monte carlo sampling of many scenarios, as follows. In each scenario,

choose a sample value of U from the copula C. Use equation (6.2) to

determine the default time for each firm in this scenario. Order these

times from first to last to define τ 1, . . . , τ 5. By repeating this simu-

lation over many scenarios, we can develop a simulated unconditional

distribution of each of the kth-to-default times τ k.

6. Use these distributions to compute the expectations in equation (7.4)

in order to solve for the basket CDS spread price q∗.
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7.3 The distribution of kth-to-default times

Before describing our empirical results for this basket CDS pricing method,

we elaborate a little on item 5 above, and examine via some experiments how

the distributions depend on the choice of copula, comparing four different

commonly used bivariate copulas: Gaussian, t, Clayton, and Gumbel.

To simplify the picture, we assume there are two idealized firms, with

Kendall’s τ = 0.5 for all copulas. We take a five year horizon and set the

default intensity of the first firm to be a constant 0.05, and 0.03 for the second

firm. We want to look at the first to default (FTD) and last to default (LTD)

probabilities at different times before maturity.

7.3.1 Algorithm

We calculated the k-th to default probabilities using the following procedure.

1. Use Matlab(TM) copula toolbox 1.0 to simulate Gaussian, t, Clayton

and Gumbel copulas uniform variables ui,jwith the same Kendall’s tau

correlation, where i = 1, 2, j = 1, · · · , n and n is the number of samples.

2. From equation (6.2), we get τi,j and sort according to column. The

k-th row is a series of k-th to default times τ k
i .

3. Divide the interval from year 0 to year 5 into 500 small sub-intervals.

Count the number of τ k
i values that fall into each sub-interval and

divide by the number of samples to get the default probabilities for

each small sub interval, and hence an approximate probability density

function.

In the following, we illustrate results for FTD and LTD using n = 1, 000, 000

samples.

7.3.2 Empirical Probabilities of Last to Default (LTD) and First
to Default (FTD)

First, we recall that the t-copula is both upper and lower tail dependent,

the Clayton copula is lower tail dependent, but upper tail independent, the
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Gumbel copula is the reverse, and the Gaussian copula is tail independent

in both tails.
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Figure 2: Default probabilities of LTD.

We can see from Figure 2 that a copula function with lower tail depen-

dence (Clayton copula) leads to the highest default probabilities for LTD,

while a copula function with upper tail dependence (Gumbel copula) leads to

the lowest default probabilities. The tail dependent t-copula leads to higher

default probabilities than tail independent Gaussian copula.

Default events tend happen when the uniform random variables U are

small (close to 0). Since the LTD requires that both uniform variables in

the basket are small, a lower tail dependent copula will lead to higher LTD

probalities than a copula without lower tail dependence.

In Figure 3, we see that the Clayton copula with only lower tail depen-

dence leads to the lowest FTD probabilities, while the Gumbel copula with

only upper tail dependence leads to the highest FTD probabilities. These

results illustrate the sometimes unexpected relationships between tail depen-

dence and FTD probabilities.
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Figure 3: Default probabilities of FTD.

7.4 Empirical Basket CDS Pricing Comparison

We now use the method of Section 7.2 to compare two approaches to the

calibration of the copula C. The first approach, popular in the literature, is to

directly calibrate a t copula. Since this copula has tail dependence, it provides

a way to introduce default contagion explicitly into the model. In order to get

uniform variates, we will still need to specify marginal distributions, which

we will take to be the empirical distributions.

The second approach is to calibrate the skewed t distribution using the

EM algorithm described earlier. Calibrating the full distribution frees us

from the need to separately estimate the marginals. Also, the skewed t

distribution, has heavier tails than the t distribution, and does not suffer

from the bivariate exchangeability of the t copula, which some argue is an

unrealistic symmetry in the dependence structure of defaults.

In this experiment we use for our critical variables the equity prices for

the same five underlying stocks as used above: AT&T, Bell South, Cen-

tury Tel, SBC, Sprint. We obtained the adjusted daily closing prices from
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finance.yahoo.com for the period 07/02/1998 to 07/02/2004.

7.4.1 Copula approach

We first use the empirical distribution to model the marginal distributions

and transform the equity prices into uniform variables. Then we can cali-

brate the t copula using those variates. For comparison, we also calibrate a

Gaussian copula.

If we fix in advance the degree of freedom ν, the calibration of the t copula

is fast — see Di Clemente and Romano (2003a), Demarta and McNeil (2005),

and Galiani (2003). However, we know of no good method to calibrate the

degree of freedom ν. With this data, we find the degree of freedom to be

7.406, which is found by maximizing the log likelihood using direct search,

looping ν from 2.001 to 20 with step size 0.001. Each step takes about 5

seconds, and the full calibration takes about 24 hours (2005 vintage laptop

running Windows XP).

The maximum log likelihood for the Gaussian copula was 936.90, while

for the t copula it was 1043.94, substantially better. After calibration, we

follow the remaining steps of section 7.2 and report the results in the table

below.

Demarta and McNeil (2005) also suggest using the skewed t copula, but

we were not able to calibrate it directly for this study.

7.4.2 Distribution approach

We calibrate the multivariate t and skewed t distributions using the EM

algorithm described in Section 2. The calibration is fast compared to the

copula calibration: with the same data and equipment, it takes less than one

minute, compared to 24 hours for the looping search of ν. The calibrated

degree of freedom for both t and skewed t is 4.31. The log likelihood for

skewed t and t are almost the same: 18420.58 and 18420.20, respectively.

Spread prices for the k-th to default basket CDS are reported in Table 3.

We can see that lower tail dependent t copula, compared to the Gaussian,

leads to higher default probability for LTD and lower probability for FTD,

thus leads to higher spread price for LTD and lower spread price for FTD.
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The t distribution has almost the same log likelihood and almost the same

spread price of k-th to default as the skewed t distribution. Both distributions

lead to higher spread price for LTD and lower spread price for FTD.

The calibration of the t distribution is a superior approach, both because

there is no extra requirement to assume a form for the marginals, and be-

cause the EM algorithm has tremendous speed advantages. Basket credit

default swaps or collateralized debt obligations usually have a large number

of securities. For example, a synthetic CDO called EuroStoxx50 issued on

May 18, 2001 has 50 single name credit default swaps on 50 credits that

belong to the DJ EuroStoxx50 equity index. In this case, the calibration of

a t copula will be extremely slow.

Model FTD 2TD 3TD 4TD LTD
Gaussian copula 525.6 141.7 40.4 10.9 2.2

t copula 506.1 143.2 46.9 15.1 3.9
t distribution 498.4 143.2 48.7 16.8 4.5

Skewed t distribution 499.5 143.9 49.3 16.8 4.5

Table 3: Spread price for k-th to default using different models

8 Summary and Concluding Remarks

We follow Rukowski’s single name credit risk modeling and Schönbucher and

Schubert’s portfolio credit risk copula approach to price basket credit default

swaps.

The t copula is widely used in the pricing of basket credit default swaps

for its lower tail dependence. However, we need to specify the marginal distri-

butions first and calibrate the marginal distributions and copula separately.

In addition, there is no good (fast) method to calibrate the degree of freedom

ν.

Instead, we suggest using the fast EM algorithm for t distribution and

skewed t distribution calibration, where all the parameters are calibrated to-

gether. To our knowledge, we are the first to suggest calibrating the full mul-
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tivariate distribution to price basket credit default swaps with this trigger-

variable approach.

As compared to the Gaussian copula, the t copula leads to higher default

probabilities and spread prices of basket LTD credit default swaps, and lower

default probabilities and spread prices for FTD, because of the introduction

of tail dependence to model default contagion.

Both the t distribution and the skewed t distribution lead to yet higher

spread prices of basket LTD credit default swaps and lower spread prices

for FTD than the t copula. This is suggestive of a higher tail dependence

of default times than is reflected in the pure copula approach. Because

default contagion has shown itself to be pronounced during extreme events,

we suspect that this is a more useful model of real default outcomes.

We feel the skewed t distribution has potential to become a powerful tool

for quantitative analysts doing rich-cheap analysis of credit derivatives.
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