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Abstract

We study convolution and Fourier restriction estimates for some

degenerate curves in R2 .

Notational comment: This note concerns certain operators de�ned on

functions on R2 . Thus f will always denote an appropriate function on R2 ,

Lp will usually mean the Lp space constructed with Lebesgue measure m2

on R2 , and k � kp stands for the norm in Lp.

The following two theorems are well known and are prototypical for many

important results in harmonic analysis:

Theorem 1. Suppose a < b and write Tf(x) =
R b

a
f
�
x � (t; t2)

�
dt. Then

there is a constant C such that

kTfk3 � C kfk 3
2
:

Theorem 2. If 1 � p < 4

3
and 1

q
= 3(1� 1

p
), there is a constant C = C(p)

such that the estimate

�Z b

a

j bf(t; t2)jqdt
� 1

q

� C(p) kfkp

holds.

It is natural to wonder what happens to Theorems 1 and 2 when the curve

(t; t2) is replaced by a general
�
t; �(t)

�
. Since the curvature of the parabola

is key to the proofs of Theorems 1 and 2, a reasonable starting point for

generalization is the hypothesis �00 � Æ > 0. And it has been known for
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some time that this hypothesis is suÆcient to ensure that the analogs of

Theorems 1 and 2 hold. The next step is to investigate this situation when

�00 is allowed to vanish, and it is easy to see that one can no longer expect the

exact analogs of Theorems 1 and 2 to hold. There are then two possibilities.

The �rst is to \dampen" the measure dt by introducing a factor !(t) which

is small when �00(t) is small and then to attempt to obtain the exact analogs

of Theorems 1 and 2 with dt replaced by !(t) dt. The second is to keep the

dt and then to see how the conclusions of Theorems 1 and 2 change.

Concerning the �rst approach, there are the following results:

Theorem 1a. ([4]) Suppose �00 > 0 and �(3) � 0 on (a; b). De�ne the

operator T by Tf(x) =
R b

a
f
�
x� (t; �(t))

�
�00(t)1=3dt. Then

kTfk3 � 12
1
3 kfk 3

2

whenever f = �E and E is a Borel subset of R2 .

Theorem 2a. ([6], [5]) If 1 � p < 4

3
and 1

q
= 3(1� 1

p
), there is a constant

C = C(p) such that the estimate

�Z b

a

j bf�t; �(t)�jq�00(t) 13dt�
1
q

� C(p) kfkp

holds whenever � is as in Theorem 1a.

Here are some comments on Theorems 1a and 2a: (a)The measure �00(t)1=3dt

appearing in Theorems 1a and 2a is the so called aÆne arclength measure.

Its relevance to problems like these was advocated by Drury ([3]). It is the

optimal choice of a measure on the graph of � for these convolution and

restriction problems.

(b) The weakness of Theorem 1a is that the estimate it provides is not a

strong type (3=2; 3) estimate like the one in Theorem 1, but (equivalent to)

a weak type (3=2; 3) estimate. Whether the strong type estimate always

holds is, to my knowledge, an open problem.

(c) The most interesting feature of Theorems 1a and 2a is that the estimates

they contain are uniform in the sense that they are independent both of �

(subject to the monotonicity hypotheses imposed on �) and of the length of

the interval (a; b).

The purpose of this note, however, is to explore the approach second-

mentioned above (keep the dt) and, in particular, to prove Theorems 1b and

2b below. In what follows, d� will refer to the measure on R2 corresponding

to dt on the graph of a strictly convex function �. We will be interested in

estimates on � of the form

(1) �(P ) � c m2(P )
�;
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to hold for all parallelograms P � R2 and where 0 < � � 1=3.

Theorem 1b. De�ne the operator T by Tf(x) =
R b

a
f
�
x� (t; �(t))

�
dt and

suppose that (1) holds. Then the estimate

(2) kTfkq � 21+� c kfkp

holds for (1
p
; 1
q
) = (2�; �) whenever f = �E and E is a Borel subset of R2 .

On the other hand, if 1

p
� 1

q
= � and if (2) holds (for f = �E) without the

21+�, then (1) holds with c replaced by eC(p) � c.
Theorem 2b. Suppose that (1) holds. Then the estimate

(3)
�Z b

a

j bf�t; �(t)�jqdt�
1
q

� C(p) � c
1
q kfkp

holds whenever 1

q
= 1

�
(1� 1

p
) and 1 � p < 1 + �. If, on the other hand, (3)

holds without the C(p) for some p and q satisfying 1

q
= 1

�
(1 � 1

p
), then (1)

holds with c replaced by eC(p) � c.
Here are some remarks on these results: (d) If an estimate

(4) kTfkq � C(p; q) kfkp

is to hold even for f = �E, then the point (1=p; 1=q) must lie in the triangle

T which is the closed convex hull of the points (0; 0), (1; 1), and (2=3; 1=3).

This is just a consequence of the fact that the dimension of the graph of

� is one. The point (1=p; 1=q) = (2�; �) is a point of intersection of the

line 1=p � 1=q = � with the boundary of this triangle. If (4) holds for

f = �E when (1=p; 1=q) = (2�; �) and if � < 1=3, then standard arguments

show that (4) must hold, for all measurable f , whenever 1=p � 1=q = �

and (1=p; 1=q) is in the interior of the triangle T . Thus the following are

equivalent: (1); (4) for f = �E and (1=p; 1=q) = (2�; �); (4) for all (1=p; 1=q)

in the interior of T satisfying 1=p � 1=q = �; (3) for any (1=p; 1=q) with

1=q = (1 � 1=p)=�; and (3) for all (1=p; 1=q) with 1=q = (1 � 1=p)=� with

1 � p < 1 + �. The �rst three of these equivalences can be viewed as a

partial response to an old problem of Stein [7], pp. 122-123: \characterize

(if possible, in terms of the size of the measure d�, whatever that means)

the condition of f ! f � d� yielding a bounded operator from an Lp space

to an Lr space".

(e) Theorem 1b is sharp up to the fact that (2) is proven only for f = �E.

(f) Although the relation 1=q = (1�1=p)=� in Theorem 2c is also sharp, the

range 1 � p < 1 + � may not be best possible if � < 1=3. The fact that the
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dimension of the graph of � is one can be used to show that if the restriction

estimate (3) holds, then p � 4=3. Also, when � � 1=4 the condition p �

1=(1� �) is necessary to keep q � 1 in 1=q = (1� 1=p)=�. When � = 1=3,

1 + � = 4=3, but when � < 1=3 we have 1 + � < min
�
4=3; 1=(1 � �)

�
.

If �(t) = t1=��1 on (0;1) then it will be shown below (Theorem 3) that,

for this �, (3) actually holds whenever 1=q = (1 � 1=p)=� and 1 � p <

min
�
4=3; 1=(1� �)

�
. It is conceivable that the condition 1 � p < 1 + � in

Theorem 2b can be replaced by 1 � p < min
�
4=3; 1=(1� �)

�
, but we have

no idea how to prove this.

The remainder of this note consists of the proofs of Theorems 1b and 2b

and of the statement and proof of Theorem 3.

Proof of Theorem 1b: Suppose that � is a strictly convex function de�ned on

(a; b) for which (1) holds and assume (for the moment) the following result:

Lemma. If (1) holds and A is a Borel subset of (a; b), then

m1(A)
1
�
�1 � c

1
�21+

1
�

Z b

a

�A(s) j�
0(t)� �0(s)j ds

for any t 2 (a; b).

Modifying the proof from [4], we begin by observing that

(5)Z
R2

�
T�E(x)

� 1
�dx =

Z
R2

�E(x)

Z b

a

�Z b

a

�E

�
x+(t�s; �(t)��(s) )

�
ds
� 1

�
�1

dt dx:

Applying the lemma to the inside integral,
Z b

a

�Z b

a

�E

�
x+ (t� s; �(t)� �(s) )

�
ds
� 1

�
�1

dt �

c
1
� 21+

1
�

Z b

a

Z b

a

�E

�
x+ (t� s; �(t)� �(s) )

�
j�0(t)� �0(s)j ds dt:

The fact that the Jacobian of the mapping

(t; s)!
�
t� s; �(t)� �(s)

�
is j�0(t)� �0(s)j yields

Z b

a

Z b

a

�E

�
x + (t� s; �(t)� �(s) )

�
j�0(t)� �0(s)j ds dt � m2(E):

(The strict convexity of � assures that this mapping is one-to-one.) It follows

that Z b

a

�Z b

a

�E

�
x + (t� s; �(t)� �(s) )

�
ds
� 1

�
�1

dt � c
1
�21+

1
�m2(E):
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Thus, from (5), Z
R2

�
T�E(x)

� 1
�dx � c

1
�21+

1
�m2(E)

2

as desired.

The reverse implication of Theorem 1b follows easily by taking f = �P+P

in (2). Thus the proof of Theorem 1b will be complete after the proof of the

lemma.

Proof of the lemma: Let I be an interval such that

m1(I) = m1(A); t 2 I � (a; b);

and Z
I

j�0(t)� �0(s)j ds �

Z
A

j�0(t)� �0(s)j ds:

(To see that I exists, let J(t; s) be an interval with endpoints t and s,

de�ne � : A ! (a; b) by �(s) = t � m1

�
A \ J(t; s)

�
with the choice of +

or � depending on whether s > t or s < t. Note that � is a measure-

preserving map of A onto some interval I containing t, and observe that

j�(s)� tj � js� tj implies that j�0
�
�(s)

�
� �0(t)j � j�0(s)� �0(t)j.) Suppose

that ea and eb are the endpoints of I. Then either eb � t � m1(A)=2 or

t� ea � m1(A)=2. In the �rst case let P be the parallelogram with one side

the tangent to the graph of � at
�
t; �(t)

�
, with one side vertical through�eb; �(eb)�, and with the points

�
t; �(t)

�
,
�eb; �(eb)� as two of its vertices. Then

m2(P )

2
�

Z
eb

t

�
�(eb)��0(t)(eb� v)��(v)

�
dv =

Z
eb

t

Z
eb

v

�
�0(s)��0(t)

�
ds dv =

Z
eb

t

�
�0(s)� �0(t)

�
(s� t) ds � m1(A)

Z
eb

ea

j�0(t)� �0(s)j ds:

So, recalling (1),

�m1(A)

2c

� 1
� �

�eb� t

c

� 1
� =

��(P )
c

� 1
� � m2(P ) � 2m1(A)

Z
eb

ea

j�0(t)��0(s)j ds:

Thus
m1(A)

1
�
�1

(2c)
1
�

� 2

Z
A

j�0(t)� �0(s)j ds;

completing the proof if eb � t � m1(A)=2. The proof if t � ea � m1(A)=2 is

analogous.
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Proof of Theorem 2b: Assume that � is such that (1) holds for some � 2

(0; 1=3). The proof relies on Drury's idea [2] of establishing the dual estimate

(6) kdgd�ks � C(c; r) kgkLr(�) if 1�
1

r
=

1

�s
; 1 � r <

1 + �

�

by using induction on r. (We recall that d� is dt on the curve (t) =�
t; �(t)

�
. The function g is de�ned on the curve .) To state the inductive

hypothesis precisely, we recall Drury's notion of \o�spring curves": suppose

's domain of de�nition is the interval I. Let h0 = 0 and suppose that

h1; : : : ; hN are nonnegative numbers. De�ne the (possibly empty) interval

I0 by I0
:
= \n(I � hn). Then the curve �(t) =

P
n (t+ hn) de�ned on I0 is

called an o�spring curve of . Our inductive hypothesis on r0 � 1 is that if

d� is dt on some o�spring curve �, then

(7) kdgd�ks � C(r)c1�
1
r kgkLr(�) if 1�

1

r
=

1

�s
; 1 � r � r0:

Here c is the constant in (1). As the induction may be started with r0 = 1, as-

sume that (7) holds for some r0. We adopt the convention that
R R

� � � dt dh

means
R1
0

R
Ih
� � � dt dh where Ih = I0 \ (I0 � h). Drury's idea is to observe

that

(8) kdgd�k2s � 2 �

Z

t1<t2

g
�
�(t1)

�
g
�
�(t2)

�
e�2�i

�
�(t1)+�(t2)

�
�� dt1 dt2


Ls=2(�)

and then to proceed by interpolating two estimates. The �rst of these es-

timates, which follows from (7) and in which s0 is the s corresponding to

r = r0 in (7), is


Z Z

F
�
�(t) + �(t+ h)

�
e�2�i

�
�(t)+�(t+h)

�
�� dt dh


Ls0 (�)

�

(9) C(r0)c
1� 1

r0

Z � Z
jF
�
�(t) + �(t+ h)

�
jr0 dt

� 1
r0

dh;

where F is an appropriate function on R2 . The second, a consequence of the

Plancherel theorem, is


Z Z

F
�
�(t) + �(t + h)

�
e�2�i

�
�(t)+�(t+h)

�
�� dt dh


L2(�)

�

(10)
�Z Z ��F ��(t) + �(t+ h)

�
J(t; t+ h)�

1
2

��2dt dh�
1
2

;
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where J(t; t + h) is the Jacobian of the mapping (t; h) 7! �(t) + �(t + h).

(The strict convexity of � again assures that this mapping is one-to-one.)

As in [1] we regard both (9) and (10) as estimates of the form


Z Z

F
�
�(t) + �(t+ h)

�
e�2�i

�
�(t)+�(t+h)

�
�� dt dh


Ld(�)

�

(11) C(a)c
1
a
� 1

b

�Z � Z ��F ��(t) + �(t+ h)
�
J(t; t+ h)�

��b dt
�a

b

dh
� 1

a

:

Thus (9) is the estimate (11) at the endpoint

�1
a
;
1

b
; �;

1

d

�
=
�
1;

1

r0
; 0; �(1�

1

r0
)
�

while (10) gives the endpoint

�1
a
;
1

b
; �;

1

d

�
=
�1
2
;
1

2
;�

1

2
;
1

2

�
:

Interpolating, it follows that (11) holds if

(12) 1 � a � 2; (1�
2

r0
)
1

a
+
1

b
= 1�

1

r0
;
1� �

a
+
�

b
+

1

d
= 1; � =

1

a
� 1:

With (8) in mind we will take d = s=2. For appropriate E � �, we put

F
�
�(t) + �(t + h)

�
= �E

�
�(t)

�
�E

�
�(t + h)

�
to deduce from (11) that if a,

b, and � satisfy (12) with d = s=2, then

(13)

k\�Ed�k
2
s � C(a)�c

1
a
� 1

b

� Z � Z �
�E

�
�(t)

�
�E

�
�(t+h)

�
J(t; t+h)�

�b
dt
� a

b

dh
� 1

a

:

To estimate the right hand side of (13) we will need the inequality

(14) J(t; t+ h) � c�
1
� h

1
�
�2:

Since �(t) is an o�spring curve of (t) =
�
t; �(t)

�
, a calculation shows that

(14) will follow from

(15) �0(t+ h)� �0(t) � c�
1
� h

1
�
�2;

and this can be deduced from (1): let P be the parallelogram with
�
t; �(t)

�
and

�
t + h; �(t + h)

�
as two of its vertices, with one side vertical through
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�
t; �(t)

�
and with one side the tangent at

�
t + h; �(t + h)

�
to the graph of

�. Then

m2(P ) � 2

Z t+h

t

�
�(t)+�0(t+h)(s�t)��(s)

�
ds = 2

Z t+h

t

Z s

t

�
�0(t+h)��0(u)

�
du ds �

2

Z t+h

t

Z s

t

�
�0(t+ h)� �0(t)

�
du ds = h2

�
�0(t+ h)� �0(t)

�
:

Thus it follows from (1) that

h = �(P ) � c m2(P )
� � c

�
h2
�
�0(t+ h)� �0(t)

���
;

and this gives (15). Using (14) and recalling that � = 1=a � 1, the right

hand side of (13) is bounded by

(16) C(a) c
1
a
� 1

b
+ 1

�
a�1
a

�Z � Z
�E

�
�(t)

�
�E

�
�(t+h)

�
dt
�a

b

h( 1
�
�2)(1�a) dh

� 1
a

:

Continuing to follow Drury, we write

�(h) =

Z
�E

�
�(t)

�
�E

�
�(t+ h)

�
dt:

Abusing notation by identifying a set E � � with its preimage ��1(E) � R,

we have

k�kL1(R) = m1(E)
2; k�kL1(R) � m1(E):

Set 1=� = (1=�� 2)(a� 1), so that

(17) jhj(
1
�
�2)(1�a) 2 L�;1(R);

and let � 0 be the index conjugate to � . If a� 0=b � 1, we may estimate

k�k
L
a� 0

b
;1
(R)
. m1(E)

b
a� 0

�2+(1� b
a� 0

)�1 = m1(E)
1+ b

a� 0 ;

where the implicit constant depends only on a, b, and �. Thus

�
k�

a
b kL� 0;1(R)

� 1
a

. m1(E)
1
b
+ 1

a� 0 :

With (17) it follows from (16) and (13) that

(18)

k\�Ed�k
2
s � C(a)�c

1
a
� 1

b
+ 1

�
a�1
a m1(E)

1
b
+ 1

a� 0 = C(a)�c
1
a
� 1

b
+ 1

�
a�1
a m1(E)

1
b
+2� 1

�
+

1��
�

1
a :
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If we de�ne r by

(19)
2

r
=

1

b
+ 2�

1

�
+

1� �

�

1

a
;

then we have
1

a
�

1

b
+

1

�

a� 1

a
= 2�

2

r
:

Also, the equations

1� �

a
+

�

b
+

1

d
= 1;

1

d
=

2

s
;

the �rst coming from (12), show that

1�
1

r
=

1

�s
:

Thus, formally, (18) gives an estimate (7) for g = �E. We want to conclude

that (7) implies

(20) k\�Ed�ks � C(r) � c1�
1
r m1(E)

1
r if 1�

1

r
=

1

�s
; 1 � r < r1

where

(21)
2

r1
=

�

1� �
+

1

r0

1� 3�

1� �
:

From this (6) will follow by iteration and interpolation.

To deduce (20) from (18), we begin by noting that the argument which

yields (18) runs only if the parameter � satis�es the inequalites 0 < 1=� < 1

and a� 0=b > 1. The �rst of these inequalities imposes the restriction 1 <

a < (1� �)=(1� 2�). For small enough Æ > 0 and (1� �)=(1� 2�)� Æ <

a < (1� �)=(1� 2�), it follows that a� 0=b > 1. The conjunction of

(1�
2

r0
)
1

a
+

1

b
= 1�

1

r0

from (12) and equation (19) yields

2

r
= 3�

1

�
�

1

r0
+

1

a
(
1� �

�
� 1 +

2

r0
):

This gives r1�Æ0 < r < r1 if r1 is de�ned by (21) and if (1��)=(1�2�)�Æ <

a < (1 � �)=(1 � 2�). Thus (20) holds for these values of r and so, by

interpolation, for 1 � r < r1 as claimed. This completes the proof that (1)

implies (3).
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If, on the other hand, (4) holds for p, q with 1=q = (1 � 1=p)=� then

(1) follows from the (easily veri�ed) existence of f with �P � bf and kfkp �

C(p) m2(P )
1�1=p. Thus Theorem 2b is proved.

Theorem 3. Suppose 0 < � < 1=3 and let �(t) = t1=��1 on (0;1). Then

the estimate �Z 1

0

j bf�t; �(t)�jqdt
� 1

q

� C(p) kfkp

holds whenever 1

q
= 1

�
(1� 1

p
) and 1 � p < min

�
4

3
; 1

1��

�
.

Proof of Theorem 3: We consider �rst the case 1=4 � � and will again prove

the dual estimate, for indicator functions,

(22) k[�Fd�ks � C(r) m1(F )
1
r if 1�

1

r
=

1

�s
; s > 4:

Here we identify F �  with �1(F ) � R. (The range s > 4 corresponds to

1 � p < 4=3.) We will actually establish the inequality

(23) k(�Fd�) � (�Fd�)
�kLd;1(R2) � C(r) m1(F )

2
r

for r, s, and d with 1� 1=r = 1=(�s), 1=d+ 2=s = 1, and with s > 4. Then

Hunt's generalization of the Hausdor�-Young theorem will imply (22):

�[�Fd�
�2

1
2

L
s
2
;1

(R2)
�

C(r) k(�Fd�) � (�Fd�)
�k

1
2

Ld;1(R2)
� C(r) m1(F )

1
r :

Now (23) will follow from the inequality

(24)Z 1

0

Z 1

0

�E

�
t� u; �(t)� �(u)

�
�F (u)�F (t) du dt � C(r) m2(E)

2
sm1(F )

2
r :

Rewriting the left hand side of (24) as

Z 1

0

Z 1

0

�E

�
t�u; �(t)��(u)

� 1

j�0(t)� �0(u)j
j�0(t)��0(u)j �F (u)�F (t) du dt

and bearing in mind that the change of variables (s; t) 7!
�
t�s; �(t)��(s)

�
has Jacobian with absolute value j�0(t) � �0(s)j, it is enough to prove the

inequality

(25) �
�Z Z

fu2F; t2F : 1

j�0(t)��0(u)j
��g

j�0(t)� �0(u)j du dt
� s�2

s

� C(r) m1(F )
2
r

11



for � > 0. A homogeneity argument (recall that �0 is homogeneous of degree

1=�� 2) shows that it suÆces to establish (25) for � = 1. With � = 1=�� 2

this will follow from

(26)

Z Z
fu2F; t2F :jt��u�j�1g

dt du � C(r) m1(F )
2s

r(s�2) :

The fact that 2s=
�
r(s� 2)

�
< 2 implies that the part of this integral over

f0 � u; t � 10g is controlled by m1(F )
2s=(r(s�2)), and so we consider the

integral over

f1 � u � t; t� � 1 + u�g � f1 � u � t � u+ �u1��g

for some � > 0. Thus, pretending that � = 1, (26) will follow from

(27)
���
Z 1

1

h(u)Tg(u) du
��� � C(r) khkLckgkLc

if

Tg(u) =

Z u+u1��

u

g(t) dt;

Lc = Lc
�
(1;1)

�
, and c =

r(s�2)

s
. We will majorize T by

P
j Tj where

Tjg(u) = �[0;2j ](u)
�
�[�2(1��)j ;0] � g(u)

�
:

Thus, if c0 is the index conjugate to c,

kTjgkLc0 � 2j(
1

c0
� 1

c
)k�[�2(1��)j ;0] � gkLc � 2j(

1

c0
� 1

c
)2j(1��)kgkLc;

and (27) will follow if

(28)
1

c0
�

1

c
+ 1� � < 0:

Recalling that � = 1=�� 2, that c = r(s� 2)=s, that 1=r = 1� 1=(�s), and

�nally that s > 4, a little algebra gives (28).

The case corresponding to 0 < � < 1=4 is similar: it is enough to prove

(22) for r, s with 1 � 1=r = 1=(�s) and (r; s) = (1; 1=�). The estimate

corresponding to (25) in this case is

�
�Z Z

fu2F; t2F : 1

j�0(t)��0(u)j
��g

j�0(t)� �0(u)j du dt
�1�2�

� C(�)

which follows (via another homogeneity argument) from

Z 1

1

Z u+u1��

u

dt du <1

where, again, � = 1=�� 2. This completes the proof of Theorem 3.
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