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Abstract

This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method
for the approximation of statistical quantities related to the solution of partial differential equa-
tions with random coefficients and forcing terms (input data of the model). To compute solution
statistics, the sparse grid stochastic collocation method uses approximate solutions, produced
here by finite elements, corresponding to a deterministic set of points in the random input space.
This naturally requires solving uncoupled deterministic problems as in the Monte Carlo method.

If the number of random variables needed to describe the input data is moderately large, full
tensor product spaces are computationally expensive to use due to the curse of dimensionality.
In this case the sparse grid approach is still expected to be competitive with the classical Monte
Carlo method. Therefore, it is of major practical relevance to understand in which situations
the sparse grid stochastic collocation method is more efficient than Monte Carlo. This work
provides strong error estimates for the fully discrete solution using Lq norms and analyzes
the computational efficiency of the proposed method. In particular, it demonstrates algebraic
convergence with respect to the total number of collocation points. The derived estimates are
then used to compare the method with Monte Carlo, indicating for which problems the first is
more efficient than the latter.

Computational evidence complements the present theory and shows the effectiveness of the
sparse grid stochastic collocation method compared to full tensor and Monte Carlo approaches.

Key words: Collocation techniques, stochastic PDEs, finite elements, uncertainty quantifica-
tion, sparse grids, Smolyak approximation, multivariate polynomial approximation.
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Introduction

Mathematical modeling and computer simulations are nowadays widely used tools to predict the
behavior of physical and engineering problems. Whenever a particular application is considered,
the mathematical models need to be equipped with input data, such as coefficients, forcing terms,
boundary conditions, geometry, etc. However, in many applications, such input data may be
affected by a relatively large amount of uncertainty. This can be due to an intrinsic variability in
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the physical system as, for instance, in the mechanical properties of many bio-materials, polymeric
fluids, or composite materials, the action of wind or seismic vibrations on civil structures, etc.

In other situations, uncertainty may come from our difficulty in characterizing accurately the
physical system under investigation as in the study of groundwater flows, where the subsurface
properties such as porosity and permeability in an aquifer have to be extrapolated from measure-
ments taken only in few spatial locations.

Such uncertainties can be included in the mathematical model adopting a probabilistic setting,
provided enough information is available for a complete statistical characterization of the physical
system. In this framework, the input data are modeled as random variables, or more generally, as
random fields with a given spatial (or temporal) correlation structure.

Therefore, the goal of the mathematical and computational analysis becomes the prediction of
statistical moments of the solution (mean value, variance, covariance, etc.) or statistics of some
given responses of the system (sometimes also called quantities of physical interest which are real
valued functionals of the solution), given the probability distribution of the input random data.
Examples of quantities of interest could be the solution values in a given region, fluxes across given
boundaries, etc.

In order to parametrize the input data for a given PDE, random fields that are either coefficients
or loads can often be expanded as an infinite combination of random variables by, for instance, the so
called Karhunen-Loève [23] or Polynomial Chaos (PC) expansions [33,37]. Although such random
fields are properly described only by means of an infinite number of random variables, whenever
the realizations are slowly varying in space, with a correlation length comparable to the size of the
domain, only a few terms in the above mentioned expansions are typically needed to describe the
random field with sufficient accuracy. Therefore, in this case, it is reasonable to limit the analysis
to just a few random variables in the expansion (see e.g. [2, 16]).

In this work we focus on partial differential equations whose coefficients and forcing terms
are described by a finite dimensional random vector (finite dimensional noise assumption, either
because the problem itself can be described by a finite number of random variables or because the
input coefficients are modeled as truncated random fields.

The most popular approach to solve mathematical problems in a probabilistic setting is the
Monte Carlo method (see e.g. [15] and references therein). The Monte Carlo method is easy to
implement and allows one to reuse available deterministic codes. Yet, the convergence rate is
typically very slow, although with a mild dependence on the number on sampled random variables.

In the last few years, other approaches have been proposed, which in certain situations feature
a much faster convergence rate. We mention, among others, the Spectral Galerkin method [3,
4, 16, 20, 22, 25, 27, 36], Stochastic Collocation [5, 24, 29, 35], perturbation methods or Neumann
expansions [1, 17,30,34].

For certain classes of problems, the solution may have a very regular dependence on the input
random variables. For instance, it was shown in [5] and [3] that the solution of a linear elliptic PDE
with diffusivity coefficient and/or forcing term described as truncated expansions of random fields
is analytic in the input random variables. In such situations, Spectral Galerkin or Stochastic Col-
location methods based on orthogonal tensor product polynomials feature a very fast convergence
rate.

In particular, our earlier work [5] proposed a Stochastic Collocation/Finite Element method
based on standard finite element approximations in space and a collocation on a tensor grid built
upon the zeros of orthogonal polynomials with respect to the joint probability density function of
the input random variables. It was shown that for an elliptic PDE the error converges exponentially
fast with respect to the number of points employed for each random input variable.

The Stochastic Collocation method can be easily implemented and leads naturally to the solu-
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tion of uncoupled deterministic problems as in the Monte Carlo method, even in presence of input
data which depend nonlinearly on the driving random variables. It can also treat efficiently the
case of non independent random variables with the introduction of an auxiliary density and handle
for instance cases with lognormal diffusivity coefficient, which is not bounded in Ω × D but has
bounded realizations. When the number of input random variables is small, Stochastic Collocation
is a very effective numerical tool.

On the other hand, approximations based on tensor product grids suffer from the curse of
dimensionality since the number of collocation points in a tensor grid grows exponentially fast in
the number of input random variables.

If the number of random variables is moderately large, one should rather consider sparse tensor
product spaces as first proposed by Smolyak [28] and further investigated by e.g. [6, 16, 18, 35],
which will be the primary focus of this paper. It is natural to expect that the use of sparse grids
will reduce dramatically the number of collocation points, while preserving a high level of accuracy
and thus being able to successfully compete with Monte Carlo. Our main purpose is to clarify
the limitations of the previous statement and to understand in which situations the sparse grid
stochastic collocation method is more efficient than Monte Carlo.

Motivated by the above, this work proposes and analyzes a Smolyak-type sparse grid stochastic
collocation method for the approximation of statistical quantities related to the solution of partial
differential equations whose input data are described through a finite number of random variables.
The sparse tensor product grids are built upon either Clenshaw-Curtis [11] or Gaussian abscissas.
After outlining the method, this work provides strong error estimates for the fully discrete solu-
tion and analyzes its computational efficiency. In particular, it proves algebraic convergence with
respect to the total number of collocation points, or equivalently, the total computational work
which is directly proportional to the number of collocation points. The exponent of such algebraic
convergence is connected to both the regularity of the solution and the number of input random
variables, N , and essentially deteriorates with N by a 1/ log(N) factor. Then, these error estimates
are used to compare the method with the standard Monte Carlo, indicating for which problems the
first is more efficient than the latter.

Moreover, this work addresses the case where the input random variables come from suitably
truncated expansions of random fields. There it discusses how to relate the number of points in
the sparse grid to the number of random variables retained in the truncated expansion in order
to balance discretization error with truncation error in the input random fields. Computational
evidence complements the present theory and shows the effectiveness of the sparse grid stochastic
collocation method. It also includes a comparison with full tensor and Monte Carlo methods.

The outline of the work is the following: Section 1 introduces the mathematical problem, basic
notations and states a regularity assumption to be used later in the error analysis. Section 2
summarizes various collocation techniques and describes the sparse approximation method under
study. It also describes two types of abscissas, Clenshaw Curtis and Gaussian, that will be employed
in the sparse approximation method.

Section 3 is the core of the work. We first develop strong error estimates for the fully discrete
solution using L∞P and L2

P norms for Clenshaw-Curtis and Gaussian abscissas, respectively (P
being the probability measure considered). These norms control the error in the approximation of
expected values of smooth functionals of the solution. Then, in Section 3.2 these error estimates
are used to compare the method with the standard Monte Carlo, explaining cases where the first
is more efficient than the latter.

Sections 4 and 5 focus on applications to linear elliptic PDEs with random input data. In Section
4 we verify that the assumptions under which our general theory works hold in this particular case.
Then we present in Section 5 some numerical results showing the effectiveness of the proposed
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method when compared to the full tensor and Monte Carlo methods.

1 Problem setting

We begin by focusing our attention on a differential operator L, linear or nonlinear, on a domain
D ⊂ Rd, which depends on some coefficients a(ω, x) with x ∈ D, ω ∈ Ω, where (Ω,F , P ) a
complete probability space. Here Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events and
P : F → [0, 1] is a probability measure. Similarly the forcing term f = f(ω, x) can be assumed
random as well.

Consider the stochastic boundary value problem: find a random function, u : Ω×D → R, such
that P -almost everywhere in Ω, or in other words almost surely (a.s.), the following equation holds:

L(a)(u) = f in D (1.1)

equipped with suitable boundary conditions. Before introducing some assumptions we denote by
W (D) a Banach space of functions v : D → R and define, for q ∈ [1,∞], the stochastic Banach
spaces

Lq
P (Ω;W (D)) =

{
v : Ω →W (D) | v is strongly measurable and

∫
Ω
‖v(ω, ·)‖q

W (D)dP (ω) < +∞
}

and

L∞P (Ω;W (D)) =
{
v : Ω →W (D) | v is strongly measurable and P − ess sup

ω∈Ω
‖v(ω, ·)‖2

W (D) < +∞
}
.

Of particular interest is the space L2
P (Ω;W (D)), consisting of Banach valued functions that have

finite second moments.
We will now make the following assumptions:

A1) the solution to (1.1) has realizations in the Banach space W (D), i.e. u(·, ω) ∈ W (D) almost
surely and ∀ω ∈ Ω

‖u(·, ω)‖W (D) ≤ C‖f(·, ω)‖W ∗(D)

where we denote W ∗(D) to be the dual space of W (D), and C is a constant independent of
the realization ω ∈ Ω.

A2) the forcing term f ∈ L2
P (Ω;W ∗(D)) is such that the solution u is unique and bounded in

L2
P (Ω;W (D)).

Here we give two example problems that are posed in this setting:

Example 1.1 The linear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(1.2)

with a(ω, ·) uniformly bounded and coercive, i.e.

there exists amin, amax ∈ (0,+∞) such that P (ω ∈ Ω : a(ω, x) ∈ [amin, amax]∀x ∈ D) = 1

and f(ω, ·) square integrable with respect to P , satisfies assumptions A1 and A2 with W (D) =
H1

0 (D) (see [5]).
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Example 1.2 Similarly, for k ∈ N+, the nonlinear problem{
−∇ · (a(ω, ·)∇u(ω, ·)) + u(ω, ·)2k+1 = f(ω, ·) in Ω×D,

u(ω, ·) = 0 on Ω× ∂D,
(1.3)

with a(ω, ·) uniformly bounded and coercive and f(ω, ·) square integrable with respect to P , satisfies
assumptions A1 and A2 with W (D) = H1

0 (D) ∩ L2k+2(D).

Remark 1.3 (Goals of the computation) As said in the introduction, the goal of the mathe-
matical and computational analysis is the prediction of statistical moments of the solution u to (1.1)
(mean value, variance, covariance, etc.) or statistics of some given quantities of physical interest
ψ(u). Examples of quantities of interest could be the average value of the solution in a given region
Dc ⊂ D,

ψ(u) =
1
|Dc|

∫
Dc

udx,

and similarly average fluxes on a given direction n ∈ Rd. In the case of Examples 1.1 and 1.2 these
fluxes can be written as

ψ(u) =
1
|Dc|

∫
Dc

a
∂u

∂n
dx.

1.1 On Finite Dimensional Noise

In some applications, the coefficient a and the forcing term f appearing in (1.1) can be described
by a random vector [Y1, . . . , YN ] : Ω → RN , as in the following examples. In such cases, we will
emphasize such dependence by writing aN and fN .

Example 1.4 (Piecewise constant random fields) Let us consider again problem (1.2) where
the physical domain D is the union of non-overlapping subdomains Di, i = 1, . . . , N . We consider
a diffusion coefficient that is piecewise constant and random on each subdomain, i.e.

aN (ω, x) = amin +
N∑

i=1

σi Yi(ω)1Di(x).

Here 1Di is the indicator function of the set Di, σi, amin are positive constants, and the random
variables Yi are nonnegative with unit variance.

In other applications the coefficients and forcing terms in (1.1) may have other type of spatial
variation that is amenable to describe by an expansion. Depending on the decay of such expansion
and the desired accuracy in our computations we may retain just the first N terms.

Example 1.5 (Karhunen-Loève expansion) We recall that any second order random field g(ω, x),
with continuous covariance function cov[g] : D ×D → R, can be represented as an infinite sum of
random variables, by means, for instance, of a Karhunen-Loève expansion [23]. To this end, intro-
duce the compact and self-adjoint operator Tg : L2(D) → L2(D), which is defined by

Tgv(·) :=
∫

D
cov[g](x, ·) v(x) dx ∀v ∈ L2(D).

Then, consider the sequence of non-negative decreasing eigenvalues of Tg, {λi}∞i=1, and the corre-
sponding sequence of orthonormal eigenfunctions, {bi}∞i=1, satisfying

Tgbi = λibi, (bi, bj)L2(D) = δij for i, j ∈ N+.
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In addition, define mutually uncorrelated real random variables

Yi(ω) :=
1√
λi

∫
D

(g(ω, x)− E[g](x)) bi(x)dx, i = 1, . . .

with zero mean and unit variance, i.e. E[Yi] = 0 and E[YiYj ] = δij for i, j ∈ N+. The truncated
Karhunen-Loève expansion gN , of the stochastic function g, is defined by

gN (ω, x) := E[g](x) +
N∑

i=1

√
λi bi(x)Yi(ω) ∀N ∈ N+.

Then by Mercer’s theorem (cf [26, p. 245]), it follows that

lim
N→∞

{
sup
D
E
[
(g − gN )2

]}
= lim

N→∞

{
sup
D

( ∞∑
i=N+1

λib
2
i

)}
= 0.

Observe that the N random variables in (1.5), describing the random data, are then weighted
differently due to the decay of the eigen-pairs of the Karhunen-Loève expansion. The decay of
eigenvalues and eigenvectors has been investigated e.g. in the works [16] and [30].

The above examples motivate us to consider problems whose coefficients are described by finitely
many random variables. Thus, we will seek a random field uN : Ω × D → R, such that a.s., the
following equation holds:

L(aN )(uN ) = fN in D, (1.4)

We assume that equation (1.4) admits a unique solution uN ∈ L2
P (Ω;W (D)). Therefore, fol-

lowing the same argument as in [5, p.1010], yields that the solution uN of the stochastic boundary
value problem (1.4) can be described by the [Y1, . . . , YN ] random variables, i.e. uN = uN (ω, x) =
uN (Y1(ω), . . . , YN (ω), x).

We underline that the coefficients aN and fN in (1.4) may be an exact representation of the
input data as in Example 1.4 or a suitable truncation of the input data as in Example 1.5. In the
latter case, the solution uN will also be an approximation of the exact solution u in (1.1) and the
truncation error u− uN has to be properly estimated (see Section 3.2).

Remark 1.6 (Nonlinear coefficients) In certain cases, one may need to ensure qualitative prop-
erties on the coefficients aN and fN and may be worth while to describe them as nonlinear functions
of Y . For instance, in Example 1.1 one is required to enforce positiveness on the coefficient aN (ω, x),
say aN (ω, x) ≥ amin for all x ∈ D, a.s. in Ω. Then a better choice is to expand log(aN − amin).
The following standard transformation guarantees that the diffusivity coefficient is bounded away
from zero almost surely

log(aN − amin)(ω, x) = b0(x) +
∑

1≤n≤N

√
λnbn(x)Yn(ω), (1.5)

i.e. one performs a Karhunen-Loève expansion for log(aN − amin), assuming that aN > amin

almost surely. On the other hand, the right hand side of (1.4) can be represented as a truncated
Karhunen-Loève expansion fN (ω, x) = c0(x) +

∑
1≤n≤N

√
µncn(x)Yn(ω).

For this work we denote Γn ≡ Yn(Ω) the image of Yn, where we assume Yn(ω) to be bounded.
Without loss of generality we can assume Γn = [−1, 1]. We also let ΓN =

∏N
n=1 Γn and assume

that the random variables [Y1, Y2, . . . , YN ] have a joint probability density function

ρ : ΓN → R+, with ρ ∈ L∞(ΓN ). (1.6)
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Thus, the plan is to approximate the function uN = uN (y, x), for any y ∈ ΓN and x ∈ D.
(see [5], [3])

Remark 1.7 (Unbounded Random Variables) By using a similar approach to the work [5]
we can easily deal with unbounded random variables, such as Gaussian or exponential ones. For
the sake of simplicity in the presentation we focus our study on bounded random variables only.

The convergence properies of the collocation techniques that will be developed in the next
section depend on the regularity that the solution uN has with respect to y. Denote Γ∗n =

∏N
j=1

j 6=n
Γj ,

and let y∗n be an arbitrary element of Γ∗n. Here we require the solution to problem (1.1) to satisfy

Assumption 1.8 (Regularity) For each yn ∈ Γn, there exists τn > 0 such that the function
uN (yn, y

∗
n, x) as a function of yn, uN : Γn → C0(Γ∗n;W (D)) admits an analytic extension u(z, y∗n, x),

z ∈ C, in the region of the complex plane

Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}. (1.7)

Moreover, ∀z ∈ Σ(Γn; τn),
‖uN (z)‖C0(Γ∗n;W (D)) ≤ λ (1.8)

with λ a constant independent of n.

This assumption is sound in several problems; in particular, it can be verified for the linear
problem that will be analyzed in Section 4. In the more general case, this assumption should be
verified for each particular application, and will have implications on the allowed regularity of the
input data, e.g. coefficients, loads, etc., of the stochastic PDE under study. See also Remark 3.13
for related results based on less regularity requirements.

2 Collocation techniques

We seek a numerical approximation to the exact solution of (1.4) in a suitable finite dimensional
subspace. To describe such a subspace properly, we introduce some standard approximation sub-
spaces, namely:

• Wh(D) ⊂ W (D) is a standard finite element space of dimension Nh, which contains con-
tinuous piecewise polynomials defined on regular triangulations Th that have a maximum
mesh-spacing parameter h > 0. We suppose that Wh has the following deterministic approx-
imation property: for a given function ϕ ∈W (D),

min
v∈Wh(D)

‖ϕ− v‖W (D) ≤ C(s;ϕ)hs, (2.1)

where s is a positive integer determined by the smoothness of ϕ and the degree of the ap-
proximating finite element subspace and C(s;ϕ) is independent of h.

Example 2.1 Let D be a convex polygonal domain and W (D) = H1
0 (D). For piecewise

linear finite element subspaces we have

min
v∈Wh(D)

‖ϕ− v‖H1
0 (D) ≤ c h ‖ϕ‖H2(D).

That is, s = 1 and C(s;ϕ) = c‖ϕ‖H2(D), see for example [7].
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We will also assume that there exists a finite element operator πh : W (D) →Wh(D) with the
optimality condition

‖ϕ− πhϕ‖W (D) ≤ Cπ min
v∈Wh(D)

‖ϕ− v‖W (D), ∀ϕ ∈W (D), (2.2)

where the constant Cπ is independent of the mesh size h. It is worth noticing that in general
the operator πh will depend on the specific problem, as well as on y, i.e. πh = πh(y).

• Pp(ΓN ) ⊂ L2
ρ(Γ

N ) is the span of tensor product polynomials with degree at most p = (p1, . . . , pN )
i.e. Pp(ΓN ) =

⊗N
n=1 Ppn(Γn), with

Ppn(Γn) = span(yk
n, k = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp(ΓN ) is Np =
∏N

n=1(pn + 1).

Stochastic collocation entails the evaluation of approximate values πhuN (yk) = uN
h (yk) ∈ Wh(D),

to the solution uN of (1.4) on a suitable set of points yk ∈ ΓN . Then, the fully discrete solution
uN

h,p ∈ C0(ΓN ;Wh(D)) is a global approximation (sometimes an interpolation) constructed by linear
combinations of the point values. That is

uN
h,p(y, ·) =

∑
k∈K

uN
h (yk, ·)lpk (y), (2.3)

where, for instance, the functions lpk can be taken as the Lagrange polynomials (see Section 2.1
and 2.2). This formulation can be used to compute the mean value or variance of u, as described
in [5, Section 2], or to approximate expected values of functionals ψ(u), cf. Remark 1.3, by

E[ψ(u)] ≈ E[ψ(uN
h,p)] ≈

∑
k∈K

ψ(uN
h (yk))E[lpk ].

In the next sections we consider different choices of the evaluation points yk and corresponding
weights E[lpk ] in the associated quadrature formula.

2.1 Full tensor product interpolation

In this section we briefly recall interpolation based on Lagrange polynomials. We first introduce an
index i ∈ N+, i ≥ 1. Then, for each value of i, let {yi

1, . . . , y
i
mi
} ⊂ [−1, 1] be a sequence of abscissas

for Lagrange interpolation on [−1, 1].
For u ∈ C0(Γ1;W (D)) and N = 1 we introduce a sequence of one-dimensional Lagrange inter-

polation operators U i : C0(Γ1;W (D)) → Vmi(Γ
1;W (D))

U i(u)(y) =
mi∑
j=1

u(yi
j) l

i
j(y), ∀u ∈ C0(Γ1;W (D)), (2.4)

where lij ∈ Pmi−1(Γ1) are the Lagrange polynomials of degree mi−1, i.e. lij(y) =
∏mi

k=1
k 6=j

(y−yi
k)

(yi
j−yi

k)
, and

Vm(Γ1;W (D)) =

{
v ∈ C0(Γ1;W (D)) : v(y, x) =

m∑
k=1

ṽk(x)lk(y), {ṽk}m
k=1 ∈W (D)

}
.
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Formula (2.4) reproduces exactly all polynomials of degree less than mi. Now, in the multivariate
case N > 1, for each u ∈ C0(ΓN ;W (D)) and the multi-index i = (i1, . . . , iN ) ∈ NN

+ we define the
full tensor product interpolation formulas

IN
i u(y) =

(
U i1 ⊗ · · · ⊗U iN

)
(u)(y) =

mi1∑
j1=1

· · ·
miN∑
jN=1

u
(
yi1

j1
, . . . , yiN

jN

) (
li1j1 ⊗ · · · ⊗ liNjN

)
. (2.5)

Clearly, the above product needs
∏N

n=1min function evaluations. These formulas will also be used
as the building blocks for the Smolyak method, described next.

2.2 Smolyak approximation

Here we follow closely the work [6] and describe the Smolyak isotropic formulas A (w,N). The
Smolyak formulas are just linear combinations of product formulas (2.5) with the following key
properties: only products with a relatively small number of points are used. With U 0 = 0 and for
i ∈ N+ define

∆i := U i −U i−1. (2.6)

Moreover, given an integer w ∈ N+, hereafter called the level, we define the sets

X(w,N) :=

{
i ∈ NN

+ , i ≥ 1 :
N∑

n=1

(in − 1) ≤ w

}
, (2.7a)

X̃(w,N) :=

{
i ∈ NN

+ , i ≥ 1 :
N∑

n=1

(in − 1) = w

}
, (2.7b)

Y (w,N) :=

{
i ∈ NN

+ , i ≥ 1 : w −N + 1 ≤
N∑

n=1

(in − 1) ≤ w

}
, (2.7c)

and for i ∈ NN
+ we set |i| = i1 + · · ·+ iN . Then the isotropic Smolyak formula is given by

A (w,N) =
∑

i∈X(w,N)

(
∆i1 ⊗ · · · ⊗∆iN

)
. (2.8)

Equivalently, formula (2.8) can be written as (see [32])

A (w,N) =
∑

i∈Y (w,N)

(−1)w+N−|i|
(

N − 1
w +N − |i|

)
·
(
U i1 ⊗ · · · ⊗U iN

)
. (2.9)

To compute A (w,N)(u), one only needs to know function values on the “sparse grid”

H (w,N) =
⋃

i∈Y (w,N)

(
ϑi1 × · · · × ϑiN

)
⊂ [−1, 1]N , (2.10)

where ϑi =
{
yi
1, . . . , y

i
mi

}
⊂ [−1, 1] denotes the set of abscissas used by U i. If the sets are nested,

i.e. ϑi ⊂ ϑi+1, then H (w,N) ⊂ H (w + 1, N) and

H (w,N) =
⋃

i∈ eX(w,N)

(
ϑi1 × · · · × ϑiN

)
. (2.11)
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The Smolyak formula is actually interpolatory whenever nested points are used. This result has
been proved in [6, Proposition 6 on page 277].

By comparing (2.11) and (2.10), we observe that the Smolyak approximation that employs
nested points requires less function evaluations than the corresponding formula with non nested
points. In the next section we introduce two particular sets of abscissas, nested and non nested,
respectively. Also, Figure 1 shows, as an example, the sparse grid H (5, 2) obtained in those two
cases. Note that the Smolyak approximation formula, as presented in this Section, is isotropic,
since all directions are treated equally. This can be seen from (2.8) observing that if a multi-index
i = (i1, i2, . . . , iN ) belongs to the set X(w,N), then any permutation of i also belongs to X(w,N)
and contributes to the construction of the Smolyak approximation A (w,N).

2.3 Choice of interpolation abscissas

Clenshaw-Curtis abscissas. We first suggest to use Clenshaw-Curtis abscissas (see [11]) in the
construction of the Smolyak formula. These abscissas are the extrema of Chebyshev polynomials
and, for any choice of mi > 1, are given by

yi
j = − cos

(
π(j − 1)
mi − 1

)
, j = 1, . . . ,mi. (2.12)

In addition, one sets yi
1 = 0 if mi = 1 and lets the number of abscissas mi in each level to grow

according to the following formula

m1 = 1 and mi = 2i−1 + 1, for i > 1. (2.13)

With this particular choice, one obtains nested sets of abscissas, i.e., ϑi ⊂ ϑi+1 and thereby
H (w,N) ⊂ H (w + 1, N). It is important to choose m1 = 1 if we are interested in optimal ap-
proximation in relatively large N , because in all other cases the number of points used by A (w,N)
increases too fast with N .
Gaussian abscissas. We also propose to use Gaussian abscissas, i.e. the zeros of the orthogonal
polynomials with respect to some positive weight. However, these Gaussian abscissas are in general
not nested. Regardless, as in the Clenshaw-Curtis case, we choose the number mi of abscissas that
are used by U i as in (2.13). See the work [31] for an insightful comparison of quadrature formulas
based on Clenshaw-Curtis and Gaussian abscissas. The natural choice of the weight should be
the probability density function ρ of the random variables Yi(ω) for all i. Yet, in the general
multivariate case, if the random variables Yi are not independent, the density ρ does not factorize,
i.e. ρ(y1, . . . , yn) 6=

∏N
n=1 ρn(yn). To this end, we first introduce an auxiliary probability density

function ρ̂ : ΓN → R+ that can be seen as the joint probability of N independent random variables,
i.e. it factorizes as

ρ̂(y1, . . . , yn) =
N∏

n=1

ρ̂n(yn), ∀y ∈ ΓN , and is such that
∥∥∥∥ρρ̂
∥∥∥∥

L∞(ΓN )

<∞. (2.14)

For each dimension n = 1, . . . , N , let the mn Gaussian abscissas be the roots of the mn degree
polynomial that is ρ̂n-orthogonal to all polynomials of degree mn − 1 on the interval [−1, 1]. The
auxiliary density ρ̂ should be chosen as close as possible to the true density ρ, so as to have the
quotient ρ/ρ̂ not too large. Indeed, such quotient will appear in the final error estimate (see
Section 3.1.2).

Examples of isotropic sparse grids, constructed from the nested Clenshaw-Curtis abscissas and
the non-nested Gaussian abscissas are shown in Figure 1. There, we consider a two-dimensional
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parameter space and a maximum level w = 5 (sparse grid H (5, 2)). To see the reduction in function
evaluations with respect to full tensor product grids, we also include a plot of the corresponding
Clenshaw-Curtis isotropic full tensor grid having the same maximum number of points in each
direction, namely 2w + 1 = 33. Observe that if we take m points in each direction, the isotropic
full tensor grid will contain mN points while the analogous isotropic Smolyak grid H (w,N) will
contain much less points. Figure 2 shows the total number of points contained in the full tensor
grid and in the Smolyak sparse grid as a function of the level w (or the corresponding maximum
number m of points in each direction), for dimensions N = 5, 11, 21.

33x33 Clenshaw!Curtis Grid ALPHA = [ 1.000000, 1.000000] 0 <= LEVEL <= 5

Figure 1: For a two-dimensional parameter space (N = 2) and maximum level w = 5, we plot the
full tensor product grid using the Clenshaw-Curtis abscissas (left) and isotropic Smolyak sparse
grids H (5, 2), utilizing the Clenshaw-Curtis abscissas (middle) and the Gaussian abscissas (right).

3 Error analysis

In this section we develop error estimates that will help us compare the efficiency of the Isotropic
Smolyak approximation with other alternatives, for instance the Monte Carlo method as explained
in Section 3.2. Much about this has been claimed in the existing literature based on particular
numerical examples. Our main goal is therefore to understand in which situations the sparse grid
stochastic collocation method is more efficient than Monte Carlo.

As explained in Section 2 collocation methods can be used to approximate the solution uN ∈
C0(ΓN ;W (D)) using finitely many function values, each of them computed by finite elements.
Recall that by Assumption 1.8, uN admits an analytic extension. Let the fully discrete numerical
approximation be A (w,N)πhuN . Our aim is to give a priori estimates for the total error

e = u−A (w,N)πhuN

where the operator A (w,N) is described by (2.8) and πh is the finite element projection operator
described by (2.2). We will investigate the error

‖u−A (w,N)πhuN‖ ≤ ‖u− uN‖︸ ︷︷ ︸
(I)

+ ‖uN − πhuN‖︸ ︷︷ ︸
(II)

+ ‖πhuN −A (w,N)πhuN‖︸ ︷︷ ︸
(III)

(3.1)

evaluated in the norm Lq
P (Ω;W (D)) with either q = 2 or q = ∞. This yields also control of the

error in the expected value of u, ‖E[e]‖W (D) ≤ E
[
‖e‖W (D)

]
≤ ‖e‖Lq

P (Ω;W (D)) , and the error in the

11
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Figure 2: For a finite dimensional ΓN withN = 5, 11 and 21 we plot the log of the number of distinct
Clenshaw-Curtis collocation points used by the isotropic Smolyak method and the corresponding
isotropic full tensor product method versus the level w (or the maximum number of points m
employed in each direction).

approximation of E[ψ(u)], with ψ being a smooth functional of u. In such a case we have

|E[ψ(u)− ψ(A (w,N)πhuN )]| ≤
(∫ 1

0
‖δeψ(u+ θe)‖

Lq∗
P (Ω;W ∗(D))

dθ

)
‖e‖Lq

P (Ω;W (D))

with 1/q + 1/q∗ = 1 and δeψ(u+ θe) denoting the Fréchet derivative of ψ at u+ θe.
The quantity (I) controls the truncation error for the case where the input data aN and fN

are suitable truncations of random fields. This contribution to the total error will be considered
in Section 3.2. The quantity (I) is otherwise zero if the representation of aN and fN is exact, as
in Example 1.4. The second term (II) controls the convergence with respect to h, i.e. the finite
element error, which will be dictated by standard approximability properties of the finite element
space Wh(D), given by (2.1), and the regularity in space of the solution u (see e.g. [7, 10]). For
example, if we let q = 2 we have

‖uN − πhuN‖L2
ρ(ΓN ;W (D)) ≤ hs

(∫
ΓN

(Cπ(y)C(s;u(y)))2ρ(y) dy
)1/2

.

The full tensor product convergence results are given by [5, Theorem 1] and therefore, we will
only concern ourselves with the convergence results when implementing the Smolyak approximation
formula described in Section 2.2. Namely, our primary concern will be to analyze the Smolyak
approximation error

(III) = ‖πhuN −A (w,N)πhuN‖Lq
ρ(ΓN ;W (D))

for both the Clenshaw-Curtis and Gaussian versions of the Smolyak formula.
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Under the very reasonable assumption that the semi-discrete finite element solution πhuN admits
an analytic extension as described in Assumption 1.8 with the same analyticity region as for uN ,
the behavior of the error (III) will be analogous to ‖uN −A (w,N)uN‖Lq

ρ(ΓN ;W (D)). For this reason
in the next sections we will analyze the latter.

3.1 Analysis of the approximation error

In this work the technique to develop error bounds for multidimensional Smolyak approximation
is based on one dimensional results. Therefore, we first address the case N = 1. Let us recall the
best approximation error for a function v : Γ1 →W (D) which admits an analytic extension in the
region Σ(Γ1; τ) = {z ∈ C, dist(z,Γ1) < τ} of the complex plane, for some τ > 0. We will still
denote the extension by v; in this case, τ is smaller than the distance between Γ1 ⊂ R and the
nearest singularity of v(z) in the complex plane. Since we are considering only the case of bounded
random variables, we recall the following result, whose proof can be found in [5, Lemma 7] and
which is an immediate extension of the result given in [12, Chapter 7, Section 8]:

Lemma 3.1 Given a function v ∈ C0(Γ1;W (D)) which admits an analytic extension in the region
of the complex plane Σ(Γ1; τ) = {z ∈ C, dist(z,Γ1) ≤ τ} for some τ > 0, there holds

Emi ≡ min
w∈Vmi

‖v − w‖C0(Γ1;W (D)) ≤
2

eσ̂ − 1
e−σ̂ mi max

z∈Σ(Γ1;τ)
‖v(z)‖

W (D)

where 0 < σ̂ = log

(
2τ
|Γ1|

+

√
1 +

4τ2

|Γ1|2

)
.

Remark 3.2 (Approximation with unbounded random variables) A related result with
weighted norms holds for unbounded random variables whose probability density decays as the Gaus-
sian density at infinity (see [5]).

In the multidimensional case, the size of the analyticity region will depend, in general, on the
direction n and it will be denoted by τn (see e.g. problem considered in Section 4). The same holds
for the decay coefficient σ̂n. In what follows, we set

σ̂ ≡ min
n
σ̂n. (3.2)

3.1.1 Interpolation estimates for the Clenshaw-Curtis abscissas

In this section we develop L∞ error estimates for the Smolyak interpolant based on Clenshaw-
Curtis abscissas, cf. (2.12) and (2.13), applied to analytic functions u ∈ C0(ΓN ;W (D)) that satisfy
Assumption 1.8. We remind the reader that even though in the global estimate (3.1) it is enough to
bound the approximation error (III) in the L2

ρ(Γ
N ;W (D)) norm we will still work with the more

stringent L∞(ΓN ;W (D)) norm.
In our notation the norm ‖ · ‖∞,N is shorthand for ‖ · ‖L∞(ΓN ;W (D)) and will be used henceforth.

We also define IN : ΓN → ΓN as the identity operator on an N -dimensional space. We begin by
letting Em be the error of the best approximation to functions u ∈ C0(Γ1;W (D)) by functions
w ∈ Vm. Similarly to [6], since the interpolation U i is exact on the subspace Vmi−1 we can apply
the general formula ∥∥u−U i(u)

∥∥
∞,1

≤ Emi−1(u) · (1 + Λmi) (3.3)
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where Λm is the Lebesgue constant for our choice (2.12). It is known that

Λm ≤ 2
π

log(m− 1) + 1 (3.4)

for m ≥ 2, see [13]. Using Lemma 3.1, the best approximation to functions u ∈ C0(Γ1;W (D)) that
admit an analytic extension as described by Assumption 1.8 is bounded by:

Emi(u) ≤ Ĉ e−σ̂mi (3.5)

where Ĉ and σ̂ > 0 are constants dependent on the value of τ defined in Lemma 3.1. Hence
(3.3)-(3.5) implies ∥∥(I1 −U i)(u)

∥∥
∞,1

≤ C log(mi)e−σmi ≤ C ie−σ2i
,∥∥(∆i)(u)

∥∥
∞,1

=
∥∥(U i −U i−1)(u)

∥∥
∞,1

≤
∥∥(I1 −U i)(u)

∥∥
∞,1

+
∥∥(I1 −U i−1)(u)

∥∥
∞,1

≤ 2C ie−σ2i−1

for all i ∈ N+ with positive constants C and σ = σ̂/2 depending on u but not on i.
The convergence proof will be split in several steps, the main results being given in Theorems

3.6 and 3.9, which state the convergence rates in terms of the level w and the total number of
collocation points, respectively. We denote by Id the identity operator applicable to functions
which depend on the first d variables y1, . . . , yd. Then the following result holds:

Lemma 3.3 For functions u ∈ C0(ΓN ;W (D)) satisfying the assumption of Lemma 3.1 the isotropic
Smolyak formula (2.8) based on Clenshaw Curtis abscissas satisfies:

‖(IN −A (w,N)) (u)‖∞,N ≤
N∑

d=1

R(w, d) (3.6)

with

R(w, d) :=
1
2

∑
i∈X̃(w,d)

(2C)d

(
d∏

n=1

in

)
e−σh(i,d) (3.7)

and

h(i, d) =
d∑

n=1

2in−1. (3.8)

Proof. We start providing and equivalent representation of the isotropic Smolyak formula:

A (w,N) =
∑

i∈X(w,N)

N⊗
n=1

∆in

=
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗
1+w−

PN−1
n=1 (in−1)∑

j=1

∆j

=
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗U 1+w−
PN−1

n=1 (in−1).
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Introducing the one-dimensional identity operator I(n)
1 : Γn → Γn, for n = 1, . . . , N , the error

estimate can be computed recursively using the previous representation, namely

IN −A (w,N) = IN −
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗
(
U 1+w−

PN−1
n=1 (in−1) − I

(N)
1

)

−
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗ I
(N)
1

=
∑

i∈X(w,N−1)

N−1⊗
n=1

∆in ⊗
(
I

(N)
1 −U 1+w−

PN−1
n=1 (in−1)

)
+ (IN−1 −A (w,N − 1))⊗ I

(N)
1

=
N∑

d=2

[
R̃(w, d)

N⊗
n=d+1

I
(n)
1

]
+
(
I

(1)
1 −A (w, 1)

) N⊗
n=2

I
(n)
1

(3.9)

where, for a general dimension d, we define

R̃(w, d) =
∑

i∈X(w,d−1)

d−1⊗
n=1

∆in ⊗
(
I

(d)
1 −U îd

)
and, for any (i1, . . . , id−1) ∈ X(w, d−1), we have set îd = 1+w−

∑d−1
n=1(in−1). Observe that with

this definition, the d-dimensional vector j = (i1, . . . , id−1, îd) belongs to the set X̃(w, d), defined in
(2.7), and the term R̃(w, d) can now be bounded as follows:∥∥∥R̃(w, d)(u)

∥∥∥
∞,d

≤
∑

i∈X(w,d−1)

d−1∏
n=1

∥∥(∆in)(u)
∥∥
∞,d

∥∥∥(I(d)
1 −U îd

)
(u)
∥∥∥
∞,d

≤ 1
2

∑
i∈X(w,d−1)

(2C)d

(
d−1∏
n=1

in

)
îd e

−σ(
Pd−1

n=1 2in−1+2îd )

≤ (2C)d

2

∑
i∈X̃(w,d)

(
d∏

n=1

in

)
e−σ h(i,d) =: R(w, d).

Hence, the Smolyak approximation error satisfies

‖(IN −A (w,N))(u)‖∞,N ≤
N∑

d=2

R(w, d) +
∥∥∥(I(1)

1 −A (w, 1))(u)
∥∥∥
∞,1

.

Observe that the last term in the previous equation can also be bounded by R(w, 1) defined in
(3.7). Indeed, the set X̃(w, 1) contains only the point i1 = 1 + w and∥∥∥(I(1)

1 −A (w, 1)
)

(u)
∥∥∥
∞,1

=
∥∥∥(I(1)

1 −U 1+w
)

(u)
∥∥∥
∞,1

≤ C (1 + w)e−σ 21+w

≤
∑

i1∈X̃(w,1)

C i1 e
−σ 2i1−1

=: R(w, 1)

and this concludes the proof. �
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Lemma 3.4 Let δ > 0. Under the assumptions of Lemma 3.3 the following bound holds for the
term R(w, d), d = 1, . . . , N :

R(w, d) ≤ C1(σ, δ)d

2
exp

(
−σd

(
2w/d − δC̃2(σ)w

))
(3.10)

where

C̃2(σ) := 1 +
1

log(2)

√
π

2σ
(3.11)

and

C1(σ, δ) :=
4C
eδσ

exp
(
δσ

{
1

σ log2(2)
+

1
log(2)

√
2σ

+ 2
(

1 +
1

log(2)

√
π

2σ

)})
. (3.12)

Proof. The proof is divided in several steps.

1. Expand the function h(i, d) up to second order around the point i∗ = (1 +w/d, . . . , 1 +w/d)
on the subspace {x ∈ Rd :, |x− 1| = w}. Observe that i∗ is a constrained minimizer of h(i, d)
and

h(i, d) ≥ d2w/d +
log2(2)

2

d∑
n=1

(in − (1 + w/d))2, for all i ∈ X̃(w, d). (3.13)

2. Combining (3.7) and (3.13) estimate

R(w, d) ≤(2C)d

2
e−σd2w/d

∑
i∈X̃(w,d)

(
d∏

n=1

in

)
e−σ

log2(2)
2

Pd
n=1(in−(1+w/d))2

≤(2C)d

2
e−σd2w/d

(
w+1∑
i=1

i e−σ
log2(2)

2
(i−(1+w/d))2

)d

.

(3.14)

3. Next, use (A.2) from Corollary A.4 to estimate the term T1 :=
∑w+1

i=1 i e−σ
log2(2)

2
(i−(1+w/d))2 .

We have

T1 ≤ 2
(

1
σ log2(2)

+
1

log(2)
√

2σ

)
+ 2(int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)
. (3.15)

Combine (3.14) and (3.15), arriving at

R(w, d) ≤C1(σ, d, w)e−σd 2w/d (3.16)

with

C1(σ, d, w) ≤ 1
2

(4C)d

{(
1

σ log2(2)
+

1
log(2)

√
2σ

)
+ (int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)}d

.

Now let δ > 0 and use the inequality x+ 1 ≤ ex, x ≥ 0, to bound

C1(σ, d, w)

≤ 1
2

(
4C
δσ

)d

exp
(
dδσ

{(
1

σ log2(2)
+

1
log(2)

√
2σ

)
+ (int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)}
− d

)
≤ C1(σ, δ)d

2
exp

(
δσ

(
1 +

1
log(2)

√
π

2σ

)
w

)
.

(3.17)
with C1(σ, δ) := 4C

eδσ exp
(
δσ
{

1
σ log2(2)

+ 1
log(2)

√
2σ

+ 2
(
1 + 1

log(2)

√
π
2σ

)})
defined as in (3.12).
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Estimate (3.10) follows from (3.16) and (3.17). The proof is now complete.
�

Remark 3.5 (Alternative estimate) Observe that an alternative upper bound for T1 in (3.15)
is

T1 ≤ exp
(
σ log2(2)

(
1 +

w

d

)) (2 + w)2

2
(3.18)

which remains bounded as σ → 0. This does not happen with the bound C1(σ, d), cf. (3.12), which
blows up as σ → 0. As an implication of (3.18), we have

R(w, d) ≤ (C(2 + w)2)d

2
e−σd(2w/d−w

d
log2(2)),

which is an alternative to the estimate (3.10) that has an extra polynomial growth in w but remains
bounded for small values of σ.

Theorem 3.6 For functions u ∈ C0(ΓN ;W (D)) satisfying the assumption of Lemma 3.1. The
isotropic Smolyak formula (2.8) based on Clenshaw Curtis abcissas satisfies:

‖(IN −A (w,N)) (u)‖∞,N ≤ inf
δ∈(0, χ√

π
)
Ĉ(σ, δ,N)×


e−σw(e log(2)−δC̃2(σ)), if 0 ≤ w ≤ N

log(2)

e−σw(N
w

2w/N−δC̃2(σ)), otherwise.
(3.19)

Here and function Ĉ(σ, δ,N) = C1(σ,δ)
2

1−C1(σ,δ)N

1−C1(σ,δ) . The values of C̃2(σ) and C1(σ, δ) have been
defined in (3.11) and (3.12), respectively.

Proof. From Lemmas 3.3 and 3.4 we obtain the following bound for the approximation error

‖(IN −A (w,N)) (u)‖∞,N ≤ 1
2

N∑
d=1

C1(σ, δ)d e−σd(2w/d−w
d

δC̃2(σ)),

with C1(σ, δ) defined in (3.12). Then,

‖(IN −A (w,N)) (u)‖∞,N ≤1
2

max
1≤d≤N

e−σw( d
w

2w/d−δC̃2(σ))
N∑

d=1

C1(σ, δ)d,

≤Ĉ(σ, δ,N)eσwδC̃2(σ) max
1≤d≤N

e−σw( d
w

2w/d),

with

Ĉ(σ, δ,N) :=
1
2

N∑
d=1

C1(σ, δ)d

=
C1(σ, δ)

2
1− C1(σ, δ)N

1− C1(σ, δ)
.

(3.20)

To finish the proof we further bound

‖(IN −A (w,N)) (u)‖∞,N ≤Ĉ(σ, δ,N) eσwδC̃2(σ) e−σw(min1≤d≤N
d
w

2w/d)

≤Ĉ(σ, δ,N) eσwδC̃2(σ) e−σw(mins∈[w/N,w]
1
s
2s)
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and observe that

min
s∈[w/N,w]

1
s
2s =


e log(2), if 0 ≤ w ≤ N

log(2)
N

w
2w/N , otherwise.

�

Remark 3.7 (Alternative estimate) Following Remark 3.5 we have an alternative to (3.19) in
the estimate

‖(IN −A (w,N)) (u)‖∞,N ≤ C(2 + w)2

2
(C(2 + w)2)N − 1
C(2 + w)2 − 1

×


e−σwχ, if 0 ≤ w ≤ N

log(2)

e−σw(N
w

2w/N−log2(2)), otherwise.
(3.21)

Here we used the notation χ = log(2) (e− log(2)) ≈ 1.4037. The previous estimate can be used to
produce estimates like those in Theorems 3.9 and 3.10. The alternative estimates have constants
which do not blow up as σ → 0 but have the drawback of exhibiting additional multiplicative powers
of log(η). A completely identical discussion applies to the estimates based on Gaussian abscissas,
see Section 3.1.2, and will not be repeated there.

Now we relate the number of collocation points, η = η(w,N) = #H (w,N), to the level w of the
isotropic Smolyak formula. We state the result in the following lemma:

Lemma 3.8 Using the isotropic Smolyak interpolant described by (2.8) with Clenshaw-Curtis ab-
scissas, the total number of points required at level w satisfies the following bounds:

N(2w − 1) ≤ η ≤ (2eN)w min{w + 1, 2eN}, (3.22)

Moreover, as a direct consequence of (3.22) we get that:

log(η)
1 + log(2) + log(N)

− 1 ≤ w. (3.23)

Proof. By using formula (2.8) and exploiting the nested structure of the Clenshaw-Curtis abscissas
the number of points η = η(w,N) = #H (w,N) can be counted in the following way:

η =
∑

i∈X(w,N)

N∏
n=1

r(in), where r(i) :=


1 if i = 1
2 if i = 2
2i−2 if i > 2

. (3.24)

Now notice that for all n = 1, 2, . . . , N the following bound holds:

2in−2 ≤ r(in) ≤ 2in−1. (3.25)

We now produce a lower bound and an upper bound for η.
A lower bound on the number η of points can be obtained considering only the contribution

from certain tensor grids. Indeed, for a fixed value of w̃ = 1, . . . , w, let us consider the N grids
with indices in = 1, for n 6= m and im = w̃ + 1, m = 1, . . . , N . Since each of those N grids has
2w̃−1 points, we have

η ≥
w∑

w̃=1

N 2w̃−1 = N(2w − 1).
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On the other hand, to produce an upper bound for η, we recall that |i−1| =
∑N

n=1(in−1) ≤ w
so the following bounds hold:

η =
∑

i∈X(w,N)

N∏
n=1

r(in) ≤
∑

i∈X(w,N)

2|i−1| ≤
w∑

j=0

∑
|i−1|=j

2j

≤
w∑

j=0

2j

(
N − 1 + j

N − 1

)
≤

w∑
j=0

2j
N−1∏
s=1

(
1 +

j

s

)

≤
w∑

j=0

2j exp

(
N−1∑
s=1

j

s

)
≤

w∑
j=0

2j exp (j(1 + log(N)))

≤
w∑

j=0

(2eN)j ≤ min{(w + 1)(2eN)w, (2eN)w+1}

and this finishes the proof. �
The next Theorem provides an error bound in terms of the total number η of collocation points.

The proof follows directly from the results in Theorem 3.6 (taking δ = (e log(2) − 1)/C̃2(σ)) and
Lemma 3.8; it is therefore omitted.

Theorem 3.9 (algebraic convergence) For functions u ∈ C0(ΓN ;W (D)) satisfying the as-
sumption of Lemma 3.1 the isotropic Smolyak formula (2.8) based on Clenshaw Curtis abscissas
satisfies:

‖(IN −A (w,N)) (u)‖∞,N ≤ C1(σ, δ∗)eσ

|1− C1(σ, δ∗)|
max{1, C1(σ, δ∗)}N η−µ1 ,

with µ1 =
σ

1 + log(2N)
.

(3.26)

Here δ∗ = (e log(2)−1)/C̃2(σ) and the constants C̃2(σ) and C1(σ, δ∗), defined in (3.11) and (3.12),
respectively, do not depend on η.

Observe that the previous result indicates at least algebraic convergence with respect to the number
of collocation points η. Under the same assumptions of the previous theorem and with a completely
similar derivation, for large values of w we have the following sharper estimate:

Theorem 3.10 (Subexponential convergence) Under the same assumptions of theorem 3.9
and for w > N

log(2) it holds

‖(IN −A (w,N)) (u)‖∞,N ≤ C1(σ, δ∗)

eσδ∗C̃2(σ)

max{1, C1(σ, δ∗)}N

|1− C1(σ, δ∗)|
ηµ3 e

− Nσ

21/N
ηµ2
,

with µ2 =
log(2)

N(1 + log(2N))
and µ3 =

σδ∗C̃2(σ)
1 + log(2N)

.

(3.27)

with constant C1(σ, δ∗) defined in (3.12) and independent of η.

Proof. We start from the result stated in Theorem 3.6 and observe that for w > N/ log(2) the
function

g(w) = σ(N2w/N − wδC̃2(σ))

is increasing in w for all values of δ < log(2)e/C̃2(σ). Hence, combining (3.19) with the lower bound
(3.23) we obtain the desired result. �
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The previous theorem indicates at least asymptotic subexponential convergence with respect
to the number of collocation points η. It should be pointed out however that the large values of
w > N/ log(2) under which the bound holds are seldom used in practical computations. Therefore,
from this point of view estimate (3.27) is less useful than (3.26).

Remark 3.11 (Deterioration of the estimates with respect to the dimension N)
Depending on the distance to the singularities of the solution, related to the parameter τ introduced
in Lemma 3.1, the constant C1(σ, δ∗) may be less than 1. In such a case the only dependence of
the error bounds for ‖(IN −A (w,N)) (u)‖∞,N is in the exponent, whose denominator slowly grows
like log(2N).

Remark 3.12 (Full tensor versus Smolyak) An isotropic full tensor product interpolation con-
verges roughly like C(σ,N) exp(−σp), where p is the order of the polynomial space. Since the number
of collocation points relates to p in this case as η = (1 + p)N then log(η) = N log(1 + p) ≤ Np
and with respect to η the convergence rate can be bounded as C(σ,N)η−σ/N . The slowdown effect
that the dimension N has on the last convergence is known as the curse of dimensionality and it
is the reason for not using isotropic full tensor interpolantion for large values of N . On the other
hand, the isotropic Smolyak approximation seems to be better suited for this case. Indeed, from the
estimate (3.26) we see that the Smolyak algebraic convergence has the faster exponent O( σ

log(2N)).
This is a clear advantage of the isotropic Smolyak method with respect to the full tensor and justifies
our claim that the use of Smolyak approximation greatly reduces the curse of dimensionality. In
Section 5 numerical results will give computational ground to this claim.

Remark 3.13 (Estimates based on bounded mixed derivatives) We can proceed in a sim-
ilar way to analyze the approximation error for functions that have a bounded mixed derivative
of order (k, . . . , k). In that case, the one dimensional best approximation error is ‖u − U i(u)‖ ≤
Cm−k

i (1 + Λmi), with C depending on u and k but not on mi, and using again the recursion (3.9)
yields

‖(IN −A (w,N)) (u)‖∞,N ≤ C

|C(1 + 2k)− 1|
(C(1 + 2k))N (w + 1)2N2−kw. (3.28)

Finally, the combination of (3.28) with the counting estimates in Lemma 3.8 yields

‖(IN −A (w,N)) (u)‖∞,N

≤ (C(1 + 2k))N

|1 + 2k − 1/C|

(
1 + log2

(
1 +

η

N

))2N
min

{
2kη

− k log(2)
1+log(2N) , η−k

(
1 + log2

(
1 +

η

N

))Nk
}
.

This estimate improves the one derived in [6]. Analogous results can be derived for gaussian abcissas
and L2 norms.

3.1.2 Approximation estimates for Gaussian abscissas

Similarly to the previous section, we now develop error estimates for Smolyak approximation, using
Gaussian abscissas cf. Section 2.3, of C0(ΓN ;W (D)) analytic functions described by Assumption
1.8. As before, we remind the reader that in the global estimate (3.1) we need to bound the
approximation error (III) in the norm L2

ρ(Γ
N ;W (D)). Yet, the Gaussian abscissas defined in

Section 2.3 are constructed for the auxiliary density ρ̂ =
∏N

n=1 ρ̂n, still yielding control of the
desired norm

‖v‖L2
ρ(ΓN ;W (D)) ≤

∥∥∥∥ρρ̂
∥∥∥∥1/2

L∞(ΓN )

‖v‖L2
ρ̂(ΓN ;W (D)), for all v ∈ C0(ΓN ;W (D)).
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In what follows we will use the shorthand notation ‖ · ‖ρ̂,N for ‖ · ‖L2
ρ̂(ΓN ;W (D)). We now quote a

useful result from Erdös and Turán [14]:

Lemma 3.14 For every function u ∈ C0(Γ1;W (D)) the interpolation error with Lagrange polyno-
mials based on gaussian abscissas satisfies

‖u−U i(u)‖ρ̂,1 ≤ 2

√∫
Γ1

ρ̂(y) dy inf
w∈Vmi

‖u− w‖∞,1. (3.29)

Similarly to Section 3.1.1, the combination of (3.5) with (3.29) yields∥∥(I1 −U i)(u)
∥∥

ρ̂,1
≤ C̃ e−σ2i

,∥∥(∆i)(u)
∥∥

ρ̂,1
=
∥∥(U i −U i−1)(u)

∥∥
ρ̂,1

≤
∥∥(I1 −U i)(u)

∥∥
ρ̂,1

+
∥∥(I1 −U i−1)(u)

∥∥
ρ̂,1

≤ 2C̃ e−σ2i−1

for all i ∈ N+ with positive constants C̃ = Ĉ
√(∫

Γ1 ρ̂(y)dy
)

and σ = σ̂/2 depending on u but
not on i. We then present the following Lemma and theorem whose proofs follow, with minor
changes, those given in Lemma 3.4 and Theorem 3.9, respectively. For instance, we apply (A.1)
from Corollary A.4 to bound the corresponding T1 sum in the estimate of R(w, d).

Lemma 3.15 For functions u ∈ C0(ΓN ;W (D)) satisfying the assumption of Lemma 3.1. The
isotropic Smolyak formula (2.8) based on Gaussian abcissas satisfies:

‖(IN −A (w,N)) (u)‖ρ,N ≤
√
‖ρ/ρ̂‖L∞(ΓN )

C̃1(σ)
2

1− C̃1(σ)N

1− C̃1(σ)
×


e−σe log(2) w, if 0 ≤ w ≤ N

log(2)

e−σN2w/N
, otherwise.

(3.30)
Here we have

C̃1(σ) := 4C̃
(

1 +
1

log(2)

√
π

2σ

)
. (3.31)

Now we relate the number of collocation points η = η(w,N) = #H (w,N) to the level w of the
Smolyak formula. We state the result in the following lemma:

Lemma 3.16 Using the Smolyak interpolant described by (2.9) with Gaussian abscissas, the total
number of points required at level w satisfies the following bounds:

N(2w + 1) ≤ η ≤ (e 21+log2(1.5)N)w min{(w + 1), e 21+log2(1.5)N} (3.32)

which implies
log(η)

ζ + log(N)
− 1 ≤ w.

with ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1.

Proof. By using formula (2.9), where we collocate using the Gaussian abscissas the number of
points η = η(w,N) = #H (w,N), can be counted in the following way:

η =
∑

i∈Y (w,N)

N∏
n=1

r̃(in), where 2i−1 ≤ r̃(i) :=
{

1 if i = 1
2i−1 + 1 if i ≥ 2

. (3.33)
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Proceeding in a similar way as for the proof of Lemma 3.8, a lower bound on the number of
points η can be obtained as

η ≥ N
w∑

w̃=w−N+1

(
2w̃ + 1

)
≥ N(2w + 1).

On the other hand, an upper bound on η can be obtained following the same lines as in the proof
of Lemma 3.8 and observing that 2i−1 ≤ r̃(i) ≤ 2(1+ε)(i−1), with ε = log2(1.5) ≈ 0.585. �

Finally, the next Theorem relates the error bound (3.30) to the number of collocation points
η = η(w,N) = #H (w,N), described by Lemma 3.16.

Theorem 3.17 (algebraic convergence) For functions u ∈ C0(ΓN ;W (D)) satisfying the as-
sumption of Lemma 3.1 the isotropic Smolyak formula (2.8) based on Gaussian abscissas satisfies:

‖(IN −A (w,N)) (u)‖ρ,N ≤
√
‖ρ/ρ̂‖L∞(ΓN ) e

σ e log(2) C̃1(σ)
max{1, C̃1(σ)}N

|1− C̃1(σ)|
η−µ̃1 ,

µ̃1 :=
σ e log(2)
ζ + log(N)

,

(3.34)

with ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1. The constant C̃1(σ) was defined in (3.31).

Similarly to Section 3.1.1 and with the same assumptions of the previous theorem, for large values
of w we have the following sharper estimate:

Theorem 3.18 (subexponential convergence) If w > N
log(2) then

‖(IN −A (w,N)) (u)‖ρ,N ≤
√
‖ρ/ρ̂‖L∞(ΓN )C̃1(σ)

max{1, C̃1(σ)}N

|1− C̃1(σ)|
e
− Nσ

21/N
ηµ̃2
,

with µ̃2 =
log(2)

N(ζ + log(N))

(3.35)

and ζ := 1 + (1 + log2(1.5)) log(2) ≈ 2.1.

3.2 Influence of truncation errors

In this Section we consider the case where the coefficients aN and fN from (1.4) are suitably
truncated random fields. Therefore, the truncation error u− uN is nonzero and contributes to the
total error. Such contribution should be considered as well in the error analysis. In particular,
understanding the relationship of this error with the discretization error allows us to compare
the efficiency of isotropic Smolyak method with other computational alternatives, for instance the
Monte Carlo method.

To this end, we make the assumption that the truncation error u− uN decays as

‖u− uN‖L2
P (Ω;W (D)) ≤ ζ(N) (3.36)

for some monotonic decreasing function ζ(N) such that ζ(N) → 0 as N →∞. For example, if one
truncates the input random fields with a Karhunen-Loève expansion (see [16]), the function ζ(N)
is typically related to the decay of the eigenpairs of their covariance operators.
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Now, given a desired computational accuracy to achieve, tol > 0, our aim is to choose the
dimension N = N(tol) and the level w = w(tol) (or equivalently η = η(tol), the number of
collocation points) such that

‖u−A (w,N)(uN )‖L2
P (Ω;W (D)) ≤ ζ(N) + ‖uN −A (w,N)(uN )‖L2

P (Ω;W (D)) ≈ tol.

More precisely, we will impose that both error contributions should be of size tol, i.e.

ζ(N) ≈ tol (3.37)

and
‖uN −A (w,N)(uN )‖L2

P (Ω;W (D)) ≈ tol. (3.38)

Condition (3.37) determines the dimension N(tol), while (3.38) determines the necessary number
of collocation points in the isotropic Smolyak approximation. Then, this number of collocation
points is compared to the number of samples required in the standard Monte Carlo method to
approximate a statistical quantity of interest with accuracy tol. The latter is O(tol−2).

We detail only the procedure for the choice of Clenshaw-Curtis abscissas, since the discussion
for Gaussian abscissas is identical. To impose condition (3.38), we apply Theorem 3.6, with the
choice δ∗ = (e log(2)− 1)/C̃2(σ) and C̃2(σ) as in (3.11), yielding

‖uN −A (w,N)(uN )‖L2
ρ(ΓN ;W (D)) ≤

C1(σ, δ∗)
|1− C1(σ, δ∗)|

max{1, C1(σ, δ∗)}Ne−σw

where the constant C1(σ, δ∗) is defined in (3.12). Now define the constants C = C1(σ,δ∗)
|1−C1(σ,δ∗)| and

F = max{1, C1(σ, δ∗)}. With this notation and using (3.23), we have an upper bound in terms of
the number of collocation points,

‖uN −A (w,N)(uN )‖L2
ρ(ΓN ;W (D)) ≤C F

Ne−σw

≤C FNeσ η
− σ

1+log(2N) ≈ tol.

Then, given the value of N(tol) we can find

η(tol) ≈
(
CFNeσ

tol

) 1+log(2N)
σ

(3.39)

and compare with the number of samples needed to achieve accuracy tol with Monte Carlo, which
is ηMC ≈ tol−2.

Exponential truncation error. Here we have ζ(N) = θe−γN , with θ and γ positive constants.
Therefore the dimension depends on the required accuracy like

N(tol) =
1
γ

log
(
θ

tol

)
and the number of corresponding collocation points, following (3.39), is

η(tol) ≈
(
CeσF

1
γ

log(θ)
) log(2e/γ)+log(log(θ/tol))

σ
tol

−(1+log(F )/γ)
“

log(2e/γ)+log(log(θ/tol))
σ

”
.

From here we can see roughly that for the exponential truncation error case the isotropic Smolyak
method would be more efficient than Monte Carlo only if(

1 +
log(F )
γ

)
log(2e/γ) + log(log(θ/tol))

σ
< 2.
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Observe that for sufficiently stringent accuracy requirements, i.e. tol sufficiently small, the Monte
Carlo method will have a better convergence rate. On the other hand, due to the very slow growth
of the log(log(θ/tol)) term above, these values of tol may be much smaller than the ones we need
in practice. Thus, the range of parameters for which the isotropic Smolyak approximation gives
a better convergence rate than Monte Carlo can still be relevant in may practical problems with
truncated coefficients.

Observe, moreover, that whenever the parameter γ is large, the behavior of the one dimensional
interpolation error varies widely with respect to the different y directions. In such a case, it is likely
that the isotropic Smolyak method uses too many points in the directions with fastest decay. For
such a case, the isotropic Smolyak method may still be better than Monte Carlo, yet we recommend
the use of an anisotropic version of the Smolyak method to obtain faster convergence. For instance,
see [8, 19] where anisotropic Smolyak formulas have been proposed.

Algebraic truncation error. Here we have ζ(N) = θN−r, with θ and r positive constants.
Therefore the dimension is N(tol) = (tol/θ)−

1
r and we have

tol

F (θ/tol)1/r
≈ Ceση

σ

log(2e)+ 1
r log(θ/tol) .

After denoting t̂ol = tol

F (θ/tol)1/r ≤ tol, the corresponding number of collocation points is

η(tol) ≈
(
Ceσ t̂ol

)− log(2e)+ 1
r log(θ/tol)

σ
, (3.40)

Observe that even for the case where F = 1 we now have an asymptotically faster growth of η(tol)
than in the exponential truncation case. In fact, for such a case we need to have

log(2e) + 1
r log(θ/tol)
σ

< 2

for the Isotropic Smolyak method to be more efficient than Monte Carlo. If F > 1 then t̂ol < tol
and this makes, as tol gets smaller, the comparison even more favorable to Monte Carlo, cf. (3.40).

4 Application to linear elliptic PDEs with random input data

In this section we apply the theory developed so far to the particular linear problem described in
Example 1.1. Problem (1.2) can be written in a weak form as: find u ∈ L2

P (Ω;H1
0 (D)) such that∫

D
E[a∇u · ∇v] dx =

∫
D
E[fv] dx ∀ v ∈ L2

P (Ω;H1
0 (D)). (4.1)

A straightforward application of the Lax-Milgram theorem allows one to state the well posedness
of problem (4.1) and yields

‖u(ω)‖H1
0 (D) ≤

CP

amin
‖f(ω, ·)‖L2(D) a.s., and ‖u‖L2

P (Ω;H1
0 (D)) ≤

CP

amin

(∫
D
E[f2] dx

)1/2

,

where CP denotes the constant appearing in the Poincaré inequality: ‖v‖L2(D) ≤ CP ‖∇v‖L2(D),
for all v ∈ H1

0 (D).
Once we have the input random fields described by a finite set of random variables, i.e. a(ω, x) =

aN (Y1(ω), . . . , YN (ω), x), and similarly for f(ω, x), the “finite dimensional” version of the stochastic
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variational formulation (4.1) has a “deterministic” equivalent which is the following: find uN ∈
L2

ρ(Γ
N ;H1

0 (D)) such that∫
ΓN

(aN∇uN ,∇v)L2(D) ρ(y)dy =
∫

ΓN

(fN , v)L2(D) ρ(y)dy, ∀ v ∈ L2
ρ(Γ

N ;H1
0 (D)), (4.2)

where ρ(y) is the joint probability density function defined by (1.6). Observe that in this work the
gradient notation, ∇, always means differentiation with respect to x ∈ D only, unless otherwise
stated. The stochastic boundary value problem (4.1) now becomes a deterministic Dirichlet bound-
ary value problem for an elliptic partial differential equation with an N−dimensional parameter.
Then, it can be shown that problem (4.1) is equivalent to∫

D
aN (y)∇uN (y) · ∇φdx =

∫
D
fN (y)φdx, ∀φ ∈ H1

0 (D), ρ-a.e. in ΓN . (4.3)

For our convenience, we will suppose that the coefficient aN and the forcing term fN admit a
smooth extension on the ρ-zero measure sets. Then, equation (4.3) can be extended a.e. in ΓN

with respect to the Lebesgue measure (instead of the measure ρdy).
It has been proved in [5] that problem (4.3) satisfies the analyticity result stated in Assumption

1.8. For instance, if we take the diffusivity coefficient as in Example 1.4 and a deterministic load
the size of the analyticity region is given by

τn =
amin

4σn
. (4.4)

On the other hand, if we take the diffusivity coefficient as a truncated expansion like in Remark
1.6, then the analyticity region Σ(Γn; τn) is given by

τn =
1

4
√
λn‖bn‖L∞(D)

(4.5)

Observe that, in the latter case, as
√
λn‖bn‖L∞(D) → 0 for a regular enough covariance function (see

[16]) the analyticity region increases as n increases. This fact introduces, naturally, an anisotropic
behavior with respect to the “direction” n. This effect will not be exploited in the numerical
methods proposed in the next sections but is the subject of ongoing research.

The finite element operator πh can be introduced for this problem by projecting equation (4.3)
onto the subspace Wh(D), for each y ∈ ΓN , i.e. uN

h (y) = πhuN (y) satisfies∫
D
aN (y)∇uN

h (y) · ∇φh dx =
∫

D
fN (y)φh dx, ∀φh ∈Wh(D), for a.e. y ∈ ΓN . (4.6)

Notice that the finite element functions uN
h (y) satisfy the optimality condition (2.2), for all y ∈ ΓN .

Finally, the Smolyak formula (2.8) can be applied to uN
h to obtain the fully discrete solution. The

error estimates for the Smolyak approximation, stated in Theorems 3.9-3.10 for Clensaw-Curtis
abscissas and Theorems 3.17-3.18 for Gaussian abscissas hold in this case, with parameter

σ =
1
2

min
n=1,...,N

log

(
2τn
|Γn|

+

√
1 +

4τn2

|Γn|2

)
. (4.7)
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5 Numerical Examples

This section illustrates the convergence of the sparse collocation method for the stochastic linear
elliptic problem in two spatial dimensions, as described in Section 4. The computational results
are in accordance with the convergence rates predicted by the theory. Actually, we observe a faster
convergence than stated in Theorems 3.9 and 3.17, which hints that the current estimates may be
improved.

We will also use this section to compare the convergence of the isotropic Smolyak approximation,
described and analyzed in Sections 2.2 and 3.1, respectively, with other ensemble-based methods
such as: the anisotropic adaptive full tensor product method described in the work [4, Section 9]
and the Monte Carlo method. The problem is to solve{

−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,
u(ω, ·) = 0 on Ω× ∂D,

(5.1)

withD = [0, d]2 and d = 1. We consider a deterministic load f(ω, x, z) = cos(x) sin(z) and construct
the random diffusion coefficient aN (ω, x) with one-dimensional (layered) spatial dependence as

log(aN (ω, x)− 0.5) = 1 + Y1(ω)
(√

πL

2

)1/2

+
N∑

n=2

ζn ϕn(x) Yn(ω) (5.2)

where

ζn :=
(√
πL
)1/2 exp

(
−
(
bn

2 cπL
)2

8

)
, if n > 1 (5.3)

and

ϕn(x) :=

 sin
(
bn

2
cπx

Lp

)
, if n even,

cos
(
bn

2
cπx

Lp

)
, if n odd.

(5.4)

In this example, the random variables {Yn(ω)}∞n=1 are independent, have zero mean and unit
variance, i.e. E[Yn] = 0 and E[YnYm] = δnm for n,m ∈ N+, and are uniformly distributed in
the interval [−

√
3,
√

3]. Consequently, the auxiliary probability density ρ̂ defined by (2.14) can be
taken equal to the joint probability density function ρ defined by (1.6). Expression (5.2) represents
the truncation of a one-dimensional random field with stationary covariance

cov[log(aN − 0.5)](x1, x2) = E
[
(log(a)(x1)− E[log(a)](x1)) ((log(a)(x2)− E[log(a)](x2))

]
= exp

(
−(x1 − x2)2

L2
c

)
.

For x ∈ [0, d], let Lc be a desired physical correlation length for the coefficient a, meaning that
the random variables a(x) and a(y) become essentially uncorrelated for |x− y| >> Lc. Then, the
parameter Lp in (5.4) is Lp = max{d, 2Lc} and the parameter L in (5.2) and (5.3) is L = Lc/Lp.

The rate of convergence of the isotropic Smolyak method is dictated by the decay coefficient σ
defined by (4.7), which in this case can be bounded as

σ ≥ 1
2

log

(
1 +

√
1

24
√
πL

)
. (5.5)

From (5.5) we notice that larger correlation lengths will have negative effects on the rate of conver-
gence, i.e. the coefficient σ appearing in the estimates (3.26)-(3.27) and (3.34)-(3.35) is approaching
1 as Lc becomes large. Hence, the effect of increasing Lc is a deterioration of the rate of convergence.
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Recall from Section 2.3 that the Clenshaw-Curtis abscissas are nested and therefore, in practice,
we exploit this fact and construct the isotropic Smolyak interpolant using formula (2.8) Hence, the
number of points η = η(w,N) = #H (w,N) can be counted as in formula (3.24). On the other
hand, the Gaussian abscissas, which in this case are the roots of the Legendre polynomials, are not
nested and to reduce the number of points necessary to build the isotropic Smolyak formula one
utilizes the variant of (2.8), given by (2.9). Consequently, we can count the number of points η
used by the Smolyak interpolant as in (3.33).

The finite element space for the spatial discretization is the span of continuous functions that
are piecewise polynomials with degree two over a uniform triangulation of D with 4225 unknowns.

Observe that the collocation method only requires the solution of uncoupled deterministic prob-
lems over the set of collocation points, even in the presence of a diffusivity coefficient which depends
nonlinearly on the random variables as in (5.2). This is a significant advantage that the collocation
method offers compared to the classical Stochastic-Galerkin finite element method as considered,
for instance, in [3,16,25,36]. To study the convergence of the isotropic Smolyak approximation we
consider a problem with a fixed dimension N and investigate the behavior when the level w in the
Smolyak formula is increased linearly.

The computational results for the L2(D) approximation error to the expected value, E[u],
using the isotropic Smolyak interpolant, are shown in Figure 3. Here we consider the truncated
probability space to have dimensions N = 5 and N = 11. To estimate the computational error
in the w-th level we approximate ‖E[ε]‖ ≈ ‖E[A (w,N)πhuN − A (w + 1, N)πhuN ]‖. The results
reveal, as expected, that for a small non-degenerate correlation length, i.e. Lc = 1/64, the error
decreases (sub)-exponentially, as the level w increases. We also observe that the convergence rate
is dimension dependent and slightly deteriorates as N increases.
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Figure 3: The rate of convergence of the isotropic Smolyak approximation for solving problem (5.1)
with correlation length Lc = 1/64 using both the Gaussian and Clenshaw-Curtis abscissas. For a
finite dimensional probability space ΓN with N = 5 and N = 11 we plot the L2(D) approximation
error in the expected value in the log-linear scale (left) and log-log scale (right).
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To investigate the performance of the isotropic Smolyak approximation by varying the correla-
tion length Lc we also include the cases where Lc = 1/16, Lc = 1/4 and Lc = 1/2 for both N = 5
and N = 11, seen in Figure 4. As predicted by (5.5), we observe that the larger correlation lengths
do indeed slow down the rate of convergence. Our final interest then, is to compare our isotropic
sparse tensor product method with the Monte Carlo approach and also, the anisotropic full tensor
product method, proposed in [4].
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Figure 4: The convergence of the isotropic Smolyak approximation for solving problem (5.1) with
given correlation lengths Lc = 1/2, 1/4, 1/16 and 1/64 using both the Gaussian and Clenshaw-
Curtis abscissas. For a finite dimensional probability space ΓN with N = 5 and N = 11 we plot
the L2(D) approximation error in the expected value versus the number of collocation points.

The anisotropic full tensor product algorithm can be described in the following way: given a
tolerance tol the method computes a multi-index p = (p1, p2, . . . , pN ), corresponding to the order
of the approximating polynomial spaces Pp(ΓN ). This adaptive algorithm increases the tensor
polynomial degree with an anisotropic strategy: it increases the order of approximation in one
direction as much as possible before considering the next direction. Table 1 and Table 2 show the
values of components of the 11-dimensional multi-index p for different values of tol, corresponding

28



to Lc = 1/2 and Lc = 1/64 respectively. These tables also give insight into the anisotropic behavior
of each particular problem. Notice, in particular, that for the case Lc = 1/64 the algorithm predicts
a multi-index p which is equal in all directions, i.e. an isotropic tensor product space. A convergence
plot for Lc = 1/2 and Lc = 1/64 can be constructed by examining each row of the Table 1 and
Table 2 respectively, and plotting the number of points in the tensor product grid versus the
error in expectation. We estimate the error in expectation by ‖E[ε]‖ ≈ ‖E[uN

h,p − uN
h,ep]‖, with

p̃ = (p1 + 1, p2 + 1, . . . , pN + 1). This entails an additional computational cost, which is bounded
by the factor exp

(∑N
n=1 1/pn

)
times the work to compute E[uN

h,p].

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11
1.0e-04 1 1 1 1 1 1
1.0e-05 2 1 1 1 1 1
1.0e-06 2 2 1 1 1 1
1.0e-07 3 2 2 1 1 1
1.0e-08 4 3 2 1 1 1
1.0e-09 4 4 3 1 1 1
1.0e-10 5 5 3 2 1 1
1.0e-11 5 5 4 2 1 1
1.0e-12 5 6 4 2 1 1

Table 1: The N = 11 components of the multi index p computed by the anisotropic full tensor
product algorithm when solving problem (5.1) with a correlation length Lc = 1/2.

tol N = 1 N = 2, 3 N = 4, 5 N = 6, 7 N = 8, 9 N = 10, 11
1.0e-03 1 1 1 1 1 1
1.0e-06 2 2 2 2 2 2
1.0e-09 3 3 3 3 3 3
1.0e-12 4 4 4 4 4 4

Table 2: The N = 11 components of the multi index p computed by the anisotropic full tensor
product algorithm when solving problem (5.1) with a correlation length Lc = 1/64.

The standard Monte Carlo Finite Element Method is a popular choice for solving stochastic
problems such as (5.1) (see e.g. [4, 9, 21] and the references therein). If the aim is to compute a
functional of the solution such as the expected value, one would approximate E[u] numerically by
sample averages of iid realizations of the stochastic input data. Given a number of realizations,
M ∈ N+, we compute the sample average as follows: For each k = 1, . . . ,M , sample iid realizations
of a(ωk, ·) and f(ωk, ·), solve problem (5.1) and construct finite element approximations uN

h (ωk, ·).
We note that once we have fixed ω = ωk, the problem is completely deterministic, and may be
solved by standard methods as in the collocation approach. Finally, approximate E[u] by the
sample average: E[uN

h,k;M ](·) := 1
M

∑M
k=1 u

N
h (ωk, ·).

For the cases Lc = 1/2, 1/4, 1/16 and 1/64 we take M = 2i, i = 0, 1, 2, . . . , 11 realizations
and compute the approximation to the error in expectation by ‖E[ε]‖ ≈ ‖E[uN

h,k;M ] − E[A (w +
1, N)πhuN ]‖, where w = 0, 1, . . . , w, with w = 4, so that A (5, N) is a highly enriched Clenshaw-
Curtis isotropic sparse solution.

To study the advantages of utilizing an isotropic sparse tensor product space as opposed to an
anisotropic full tensor product space we show, in Figure 4, the convergence of these methods when
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solving problem (5.1), using correlation lengths Lc = 1/2, 1/4, 1/16 and Lc = 1/64 with N = 11.
We also include 5 ensembles of the Monte Carlo method described previously. Figure 4 reveals
that for the isotropic case with Lc = 1/64 the isotropic Smolyak method obtains a faster rate of
convergence than the anisotropic full tensor product method. This is due to a slower decay of the
eigenvalues expansion (5.2) and hence, an almost equal weighing of all N = 11 random variables.
On the contrary, opposite behavior can be observed for Lc = 1/2. Since, in this case, the rate of
decay of the expansion is faster, the anisotropic full tensor method weighs heavily the important
modes and, therefore, achieves a faster convergence than the isotropic Smolyak method.

In all four cases we observe that the 2 methods out-perform the Monte Carlo method. We know
that the amount of work to reach the accuracy ε in the Monte Carlo approach can be approximated
by ε ≈ O(M−1/2) times the amount of work per sample, where M is the number of samples. This
is only affected by the problem dimension through the eventual increase of the work per sample.
Nevertheless, the convergence rate is quite slow and a high level of accuracy is only achieved when
an large amount of function evaluations are required. This can been seen from Figure 4 where we
include reference lines with slopes −1/2 and −1, respectively, or in Table 3 where, for N = 11, we
compare the work, proportional to the number of samples, which is the number of collocation points,
required by each method to decrease the original error by a factor of 104, for all four correlation
lengths Lc = 1/2, 1/4, 1/16 and Lc = 1/64.

Lc AF IS MC
1/2 2.5× 102 2.5× 103 5.0× 109

1/4 1.2× 103 4.0× 103 2.0× 109

1/16 2.0× 103 5.0× 102 1.6× 109

1/64 2.0× 105 3.6× 102 1.3× 109

Table 3: For N = 11, we compare the number of function evaluations required by the Anisotropic
Full Tensor product method (AF) using Gaussian abscissas, Isotropic Smolyak (IS) using Clenshaw-
Curtis abscissas and the Monte Carlo (MC) method using random abscissas, to reduce the original
error of problem (5.1), in expectation, by a factor of 104.

6 Conclusions

In this work we proposed and analyzed a sparse grid stochastic collocation method for solving partial
differential equations whose coefficients and forcing terms depend on a finite number of random
variables. The sparse grids are constructed from the Smolyak formula, utilizing either Clenshaw-
Curtis or Gaussian abscissas. The method leads to the solution of uncoupled deterministic problems
and, as such, it is simple to implement, allows for the use of legacy codes and is fully parallelizable
like a Monte Carlo method.

This method is an improvement of the stochastic collocation method on tensor product grids
proposed in [5]. The use of sparse grids considered in the present work (as opposed to full tensor
grids), reduces considerably the curse of dimensionality and allows us to treat effectively problems
that depend on a moderately large number of random variables, while keeping a high level of
accuracy.

Upon assumption that the solution depends analytically on each random variable (which is
a reasonable assumption for a certain class of applications, see [3, 5]), we derived strong error
estimates for the fully discrete sparse grid stochastic collocation solution and analyzed its com-
putational efficiency. In particular, the main result is the algebraic convergence with respect to
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Figure 5: A 11-dimensional comparison of the isotropic Smolyak method, the anisotropic full tensor
product algorithm and Monte Carlo approach for solving problem (5.1) with correlation lengths
Lc = 1/2, 1/4, 1/16 and 1/64. We plot the L2(D) approximation error in the expected value versus
the number of collocation points (or samples of the Monte Carlo method).

the total number of collocation points, cf. Theorem 3.9 and Theorem 3.17. The exponent of such
algebraic convergence depends on both the regularity of the solution and the number of input
random variables, N . The exponent essentially deteriorates with N by a factor of 1/ log(N). The
theory is confirmed numerically by the examples presented in Section 5. We also utilized the error
estimates to compare the method with Monte Carlo in terms of computational work to achieve a
given accuracy, indicating for which problems the first is more efficient than the latter. To this
effect, in Section 3.2 we considered a case where the input random variables come from suitably
truncated expansions of random fields and related the number of collocation points in the sparse
grid to the number of random variables retained in the truncated expansion. We also developed
error estimates with less regularity requirements in Remark 3.13.

The sparse grid method is very effective for problems whose input data depend on a moderate
number of random variables, which “weigh equally” in the solution. For such an isotropic situation
the displayed convergence is faster than standard collocation techniques built upon full tensor
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product spaces.
On the other hand, the convergence rate deteriorates when we attempt to solve highly anisotropic

problems, such as those appearing when the input random variables come e.g. from Karhunen-
Loève truncated expansions of “smooth” random fields. In such cases, a full anisotropic tensor
product approximation, as proposed in [4, 5], may still be more effective for a small or moderate
number of random variables.

Future directions of this research will include the development and analysis of an anisotropic
version of the Sparse Grid Stochastic Collocation method, which will combine an optimal treatment
of the anisotropy of the problem while reducing the curse of dimensionality via the use of sparse
grids.
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[3] I. M. Babuška, R. Tempone, and G. E. Zouraris. Galerkin finite element approximations of
stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 42(2):800–825, 2004.
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A Additional Estimates

Here we present auxiliary results that are used in Section 3. Let us recall the definition for the integer
and fractional parts of a non-negative real number x, that satisfy x = frac {x}+ int {x} , ∀x ∈ R+

with int {x} being the largest natural number that is smaller or equal than x.

Lemma A.1 Given w ∈ N+, for any α > 0 and 0 ≤ β < w, we have

w∑
i=0

e−α(i−β)2 ≤ 2e−α(min{frac{β},1−frac{β}})2
(

1 +
1
2

√
π

α

)
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Proof. Let us write β = int {β}+ frac {β} . Then

w∑
i=0

e−α(i−β)2 =
w−int{β}∑

j=− int{β}

e−α(j−frac{β})2

=
0∑

j=− int{β}

e−α(j−frac{β})2 +
w−int{β}∑

j=1

e−α(j−frac{β})2

=
int{β}∑
j=0

e−α(j+frac{β})2 +
w−int{β}−1∑

j=0

e−α(j+(1−frac{β}))2 .

Finally, estimate

w∑
i=0

e−α(i−β)2 ≤2e−α(min{frac{β},1−frac{β}})2
∞∑

j=0

e−αj2

≤2e−α(min{frac{β},1−frac{β}})2

1 +
∞∑

j=1

e−αj2


≤2e−α(min{frac{β},1−frac{β}})2

(
1 +

∫ ∞

0
e−αx2

dx

)
≤2e−α(min{frac{β},1−frac{β}})2

(
1 +

1
2

√
π

α

)
.

�
Now we state and prove and auxiliary estimate, to be used later on in the proof of Lemma A.3.

Lemma A.2 If α > 0 we have
∞∑

k=1

k e−αk2 ≤ 1
α

+
1√
2α

Proof. Observe first that xe−αx2 ≤ 1√
2eα

for all x ≥ 0 and that the bound is attained at x∗ = 1√
2α

.
Then, for any integer k0 ≥ x∗ we can estimate

∞∑
k=1

k e−αk2 ≤ k0√
2eα

+
∫ +∞

k0

xe−αx2
dx ≤ k0√

2eα
+
e−αk2

0

2α
.

Finally, choosing k0 = int {x∗}+ 1 = int
{
1/
√

2α
}

+ 1 the desired result follows. �

Lemma A.3 Given w ∈ N+, for any α > 0 and 0 ≤ β < w, we have

w∑
i=1

i e−α(i−β)2 ≤2 e−α(1−frac{β})2
(

1
α

+
1√
2α

)
+ (int {β}+ 1) 2 e−α(min{frac{β},1−frac{β}})2

(
1 +

1
2

√
π

α

)
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Proof. Write
w∑

i=0

i e−α(i−β)2 =
w−int{β}∑

j=− int{β}

(j + int {β})e−α(j−frac{β})2

=
w−int{β}∑

j=− int{β}

(j − 1) e−α(j−frac{β})2

+ (int {β}+ 1)
w−int{β}∑

j=− int{β}

e−α(j−frac{β})2

and bound

w∑
i=0

i e−α(i−β)2 ≤
w−int{β}∑

j=1

(j − 1) e−α(j−frac{β})2

+ (int {β}+ 1) 2e−α(min{frac{β},1−frac{β}})2
(

1 +
1
2

√
π

α

)

≤e−α(1−frac{β})2
w−int{β}∑

j=1

(j − 1) e−α(j−1)2

+ (int {β}+ 1) 2e−α(min{frac{β},1−frac{β}})2
(

1 +
1
2

√
π

α

)
Finally, use the auxiliary Lemma A.2 to estimate

w−int{w/d}∑
j=0

j e−αj2 ≤
∞∑

j=1

j e−αj2 ≤
(

1
α

+
1√
2α

)
�

We have, as a direct consequence of Lemmas A.1 and A.3 the following estimates:

Corollary A.4 There holds

w∑
i=0

e−σ
log2(2)

2
(i−w/d)2 ≤ 2

(
1 +

1
log(2)

√
π

2σ

)
(A.1)

and
w∑

i=0

(1 + i) e−σ
log2(2)

2
(i−w/d)2 ≤2

(
1

σ log2(2)
+

1
log(2)

√
2σ

)
+ 2(int {w/d}+ 2)

(
1 +

1
log(2)

√
π

2σ

)
.

(A.2)
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