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1. INTRODUCTION

In this note we compare two notions of Chern class of an algebraic scheme X (over C)
specializing to the Chern class of the tangent bundle ¢(7X) N [X] when X is nonsingular.
The first of such notions is MacPherson’s Chern class, defined by means of Mather-Chern
classes and local Euler obstructions [5]. MacPherson’s Chern class is functorial with respect
to a push-forward defined via topological Euler characteristics of fibers; in particular, map-
ping to a point shows that the degree of the zero-dimensional component of MacPherson’s
Chern class of a complete variety X equals the Euler characteristic x(X) of X. We denote
MacPherson’s Chern class of X by cprp(X). The second notion is Fulton’s intrinsic class of
schemes X’ that can be embedded in a nonsingular variety M: Fulton shows ([3], Example
4.2.6) that the class

cr(X") =c(TM)Ns(X', M)
is independent of the choice of embedding of X’. This class has the advantage of being
defined over arbitrary fields and in a completely algebraic fashion, but does not satisfy at
first sight nice functorial properties: cf. [3], p. 377. (MacPherson’s class can also be defined
algebraically over any field of characteristic 0: this is done in [4].)

To state our result we need to remind the reader that if W is a scheme supported on a
Cartier divisor X of a nonsingular variety M, then the Segre class of W in M can be written
in terms of the Segre class of X and the Segre class of the residual scheme J to X in W: for
a precise statement of this fact, see [3], Proposition 9.2, or section 2 below. By modifying
this expression, we can make sense of the “Segre class” in M of an object “X \ J” in which J
is intuitively speaking “removed” from X. Since this object has a Segre class, we can define
its Fulton—Chern class as above. Here is our result:

Theorem 1. Let X be a section of a very ample line bundle on a nonsingular complex
variety M, and let J be its singular subscheme. Then

cup(X) =cp(X\J)

Here = means that the classes equal after push-forward via the map to a projective space
determined by £ = O(X). We strongly suspect that the classes are actually equal in the
Chow group of X, and that the hypothesis on £ is unnecessary (in fact, our proof works when-
ever L is globally generated and the corresponding map to projective space is gen. finite);
and that a suitable generalization should hold for arbitrary schemes over an algebraically
closed field; but the methods we use in this note can only go so far. On the other hand, our
proof of this theorem is remarkably simple (once granted the results of [2]), and is enough
for example to imply:
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Corollary 1. Under the hypotheses of the theorem,
W) = [erx )

where [ denotes degree.

The statement of theorem 1 is philosophically satisfying in that it highlights precisely
in what cy;p and cp must differ: Fulton’s class equals MacPherson’s after the scheme is
‘corrected’ for the presence of singularities. At the moment we take this corrected “X \ J”
purely as a formal object, although we wonder whether a more concrete geometric meaning
can be attached to it (after all this object has a well-defined Chern class!)

Section 2 in the paper defines c¢x(X \ J) precisely, and introduces notations that we found
helpful in these computations. The proof of the theorem is in section 3, and a simple example
illustrating the result is in section 4.

2. CF(X \ J)

Let X be a Cartier divisor of a nonsingular proper n-dimensional variety M (over an
algebraically closed field), and let J be a subscheme of M whose support is contained in X.
Our task in this section is to define a class c¢p(X \ J) in the Chow group A.(X) of X. This
class can be written explicitly in terms of the Segre classes of X and J in M:

cr(X\J)=c(TM)Ns(X\J, M) |,

where the term of dimension m of s(X \ J, M) is defined to be

S(X\ J, M)y = s(X, M) + (1) i (” - m) X7+ 5(J, M)

=0 N 7

However, we feel we should motivate this definition; in doing so we will also introduce
notations that will be useful in §3.

Let Z, J be respectively the ideal sheaves of X and J in M. For any nonnegative integer ¢
we may consider the subscheme W (t) of M with ideal sheaf Z J*: that is, W (¢) is a subscheme
of M containing X and such that the residual scheme to X in W (¢) is the subscheme with
ideal sheaf J¢.

Definition 1. Fort a nonnegative integer, define

p(X, J 1) = cp(W(t))
where cg denotes Fulton’s intrinsic class (cf. section 1).
Lemma 1. p(X, J,t) is a polynomial in t (with coefficients in A.(X)).

The constant term of this polynomial will be

cr(X) = p(X,J,0)

Fulton’s Chern class of X. Given lemma 1, we can define
cr(X\J) =p(X, J,-1)

intuitively, just as p(X, J,t) evaluates (for t > 0) Fulton’s Chern class of a scheme supported
on X and with an embedded component along J ‘counted t times’, this cp(X \ J) should
stand for Fulton’s Chern class of an object obtained by ‘removing’ J from X. Of course the
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notation X \ J is not to be intended set-theoretically; we do not know how to interpret this
object ‘geometrically’.

Lemma 1 follows immediately from writing the class explicitly in terms of the Segre classes
of X and J in M: for this we could just quote [3], Proposition 9.2. We prefer to introduce
some notations which work as a good shorthand in writing and manipulating formulas such
as the raw expression for ¢x(X \ J) given above; these notations will also save us some time
in section 3. For completeness, we will rewrite and prove Proposition 9.2 from [3] in terms
of these notations.

Suppose A is a rational equivalence class on a scheme S, and write A = a° + a' + ... with
a’ € A'S (that is, the a' are indexed by codimension).

Definition 2. (1) The ‘dual’ of A, denoted AV, is the class defined by
A\/ — Z(_1>Za2
i>0
(2) More generally, the ‘d-th Adams’ of A, denoted A\Y | is the class defined by
S
i>0
(8) For a line bundle L on S, the ‘tensor of A by L’, denoted A ® L, is the class defined
by

>0

It is clear that the operations introduced in definition 2 are linear in A; further, these
definitions are compatible with corresponding vector bundle operations. For a start, it is
clear that if £ is a vector bundle on S, then

(c(€)NA) = (c(€) N A

(A® L)Y = AY ® LY should be equally clear from the definitions.
Next, there are compatibilities with tensoring after capping with Chern classes:

Proposition 1. If £ is a rank-r vector bundle on S, then

C(i)r(;(e ©L)N(A® L)

(c&)nA)eL=

and

(c&)"NA)@L=c(L)c(ERL)'N(AB L)

Proof. For the first formula, we may assume by linearity that A = a?. If ¢; = ¢;(€), we have

(c(&)nA)@L= (Zcma3>®£ Zc’ﬂi]—zc&)imc(a?j)j

1
= ERLN(AR L
EeEeDN(AsL)
for example by [3], Remark 3.2.3 (b)).
For the second formula, simply replace A by ¢(£)™' N A in the first. U

Also, the notation is fully compatible with tensoring with line bundles:
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Proposition 2. If M is another line bundle on S, then
(AQL)YOM=A® (LRI M)

Proof. By linearity we may assume A = a?. Also, let £ = ¢;(L), m = ¢;(M); then we have

(A L)@ M = « QM = (Z (H‘j_l)(—l)%imaj) ® M

(1+¢) i

i

-2 ()

20 et

B 1 a’ B a’
(4 (H+m)y (L4 m)
=AR (ﬁ X ./\/l)
as needed. O

Also, it is clear from the definition that if 7 : S; — S5 is a proper map, A is a class on Sy,
and L is a line bundle on S,, then

7T*(A ® 7T*£> _ C(L)dimSQfdimsl ((W*A) ® E)

Finally, note that if D is a Cartier divisor on S, then the Segre class of D in S can be
written in terms of ®:
[D]

(we are abusing notations a little here: the ® is taken in S, while the result is a class on D.)
And note that if J is defined by the ideal J in S, and J@ denotes the subscheme defined
by J¢, then the segre class of J@ in S is the d-th Adams of s(J,S).

Here is a restatement of Proposition 9.2 from [3] in terms of our notations:

Proposition 3. Let X C W C M be closed embeddings, with X a Cartier divisor on M.
Let J be the residual scheme to X in W, and L = O(X). Then

s(W, M) =s(X,M)+c(L) N (s(J,M)® L)
And here is the standard argument, written in our notations:

Proof. If W = M, the statement amounts to the definition of s(X, M).
If W # M, let 1 : M — M be the blow-up of M along J, and let W = 7= }(W),
J=7YJ)and X = 771(X): then W = X + J as Cartier divisors on M. Let n be the

induced morphism from W to W. By the birational invariance of Segre classes and the
remarks preceding the statement:

S(W, M) = n.s(W, M) = . (([X]+ [T]) @ O(X + )
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Letting L= (’)()Af) =1L and R = (’)(j), and applying propositions 1 and 2,
(X]+[M)ooX+))=(X]oR+[J]eR)® L

= (eR)N[X]+s(J,M)®L

=(X]=-X-s(J,M)+s(J,M)® L

= s(X, M)+ (c(L)YNs(J, M) & L

= s(X, M)+ (L) n(s(J,M)® L)
Pushing forward by 7 gives the statement. 0

Proposition 3 yields an explicit expression for p(X, J,t): we have already observed that
the Segre class of the scheme J) defined by J* is s(J, M)®, so

s(W(t), M) =s(X,M)+c(L)yn(s(J,M)PL)

and p(X, J,t) equals the class cp(W (t), M) = c(TM)Ns(W(t), M). In particular, p(X, J, t)
is a polynomial over A,(X), as claimed in lemma 1, since s(J, M)® is.

We can now again write cp(X \ J) explicitly; our hope is that at this point this definition
will look more insightful than the (equivalent) expression given at the beginning of this
section:

Definition 3. We set cp(X \ J) = p(X, J, —1), that is
cr(X\J)=c(TM)N (s(X, M)+ (L) N (s(J,M)" @ L))

Our goal in this note is to show that if we work over C and choose J to be the singular
subscheme of X, then this class agrees with MacPherson’s Chern class of X after push-
forward by the map defined by £. This is done in the next section.

3. PROOF OF THEOREM 1

The statement again: if X is a hypersurface of a nonsingular variety M, and J is its
singular subscheme (that is: if F' is a local equation of X and zy, ..., z, are local parameters
on M, J is the subscheme defined locally by the ideal (g—fl, .., 2EY) then

CMP(X) = CF(X \ J)

where cpp(X) is MacPherson’s Chern class of X, ¢p(X \ J) was defined in section 2, and =
denotes equality after push-forward by the map defined by the linear system |X|, which we
are assuming to be very ample.

In other words, we have to check that for all j > 0:

ety nenn(x = [a@y nex )

where £ = O(X).
Our tool will be the p-class of J with respect to £, introduced in [2]: this is the class

pe(J)=c(T"M @ L) Ns(J, M) |
where TV M denotes the cotangent bundle of M.



6 P. ALUFFI
Lemma 2. For all j > 0, and letting n = dim M :
[ ey 0 earn() = e (X)) = (=17 [ ea(£ 0 ()
Proof. For j > 0, let M; denote the intersection of j general sections of £ (with My = M),

and let X; = M;NX. By Bertini’s theorem the M; are all non-singular; X; are hypersurfaces
of Mj, of class £ = L|y,. We also let J; be the singular subschemes of the X;.

Claim 1.

(1) cvp(X;) = a(L) N (e(L)7 Newp(X))

(2) cr(X;) = a (L)Y N (c(L)7 Nep(X))

(3) pe(J;) = (L) N ope(J)

(here and elsewhere we omit writing push-forwards implied by the context).

(1) follows from the compatibility of Nash blowups and Euler obstructions with general
sections, cf. for example [7], Lemmas 2.1 and 2.3.

For (2), cp(X;) = c(T'M;) N s(X;, M;) by definition. Now M; is embedded in M with
normal bundle L% so ¢(TM;) = ¢(L)7e(TM); and s(X;, M;) = (L) N s(X, M) by
repeated applications of Lemma A.3 from [1].

As for (3), this follows from Proposition 1.3 in [2].

Putting (1), (2) and (3) together we see that proving the statement of the lemma amounts
to showing that

[ enr() = enl) = (17 [ el

for all 5 > 0. Now recall that [ cpp(X;) equals the topological Euler characteristic of X;
while [ ¢r(X;) equals

/ o(TM;) 1 5(X;, Mj) = / (TM,)e(£) N [X,) = / (TM)e(£) ™ N (M)

since [X;] = [M;41] as divisors in M;; since ¢(T'M;)c(L)™! = ¢(T'M;11), we see that [ cp(X;)
equals the topological Euler characteristic of M;, that is of the general section of £ in M;.
So the left-hand-side of the formula equals the difference

X(Xj) - X(Mj+1)

of the Euler characteristics of the special section X; and the general section M, of £ on
M;. In [6], Corollary 1.7, Parusinski proves that this equals (—1)3mMiy(M;, X;), where
pu(M;, X;) is his generalization to non-isolated singularities of the Milnor number. But this
latter equals J 12(J;) by Proposition 2.1 in [2], so the above formula holds. O

Next we use lemma 2 to obtain the class of ¢y p(X) — cp(X) (more precisely, of its push-
forward by the map defined by L£); the result is best expressed in terms of the notations
introduced in definition 2:

Lemma 3.
enp(X) = ep(X) = (L) N (ne(J)Y @ L)
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Proof. If A'is a class on M, and a,_; € Q denotes

[ei(L)yinA
Ja)rnm] -

then

A= Zaicl(ﬁ)i N [M]

>0
We let then ¢ = ¢;(L£)" N [M], and write
CMP(X) —CF(X) = A= a0+a1€—|—a2€2+...
1e(J) = B = bo+ bl + bol® + ...

Lemma 2 then can be restated as:

a0+a1€+a1£2—|—...

bi = (—1)" - coefficient of ¢* in Y

so we have

“/n—k-1
= (—1)k < . ﬁ) ag
S (")
_ Z(_l)k (n_ (n —f — 1) £j+k> a
= (DR 0" gl
- RN
=1+ g)n_l ; <(113_ gl)clf

(L) A (A @ L)

To get the statement of the lemma, we just need to “solve this for A”: start from

cL)"*NnAYeL)=B ;

cap by c(£)~("=V;
AR L=cL)y™VNB ;
tensor by £Y and apply propositions 1 and 2:

AV = (L) " VB L =c¢L)" ' n(c(Le L) " "V n(BeLY))

=c( L) 'N(B®LY)

Taking duals gives the statement.



8 P. ALUFFI
Theorem 1 follows now easily from the last lemma:
CMP(X) = CF(X) + C(E)n_l N ([L[;(J)V (9 ,C)
by lemma 3; expanding the right-hand-side gives:
c(TM)Ns(X, M) +c(L)" N ((e(TVM @ L)Ns(J,M))" @ L)

=c(TM)Ns(X, M) +c(L)" N ((c(TM®LY)Ns(J,M)")® L)
=c(TM)Ns(X, M) + (L) 'e(TM) N (s(J,M)" ® L)

by proposition 1,
=c(TM)N (s(X, M)+ (L) N (s(J,M)" @ L))
=cr(X\J)

by the expression obtained in section 2. This concludes the proof of theorem 1.

4. EXAMPLE

We conclude with an explicit computation illustrating the result. Let X be a surface in
M = P3, with ordinary singularities: the singular locus is a curve Y, and X has a certain
number 7 of triple points and a number v of pinch points along Y. More precisely, we assume
that the completion of the local ring of X is isomorphic to:

Cllz.g: 2l i 4 general point of ¥
(zy)

CH:U, Y, Z]] at a trlple pOiIlt
(zy2)

% at a pinch point

Let d be the degree of Y in P3, and g the genus of its normalization. It is not hard
to compute that each pinch point “contributes 1 point” to the Segre class of the singular
subscheme J (supported on Y) in P2, and each triple point “contributes —4 points”; that is,

s(J,P%) =dh® + (2 — 29 — 4d — AT + V)h® |

where h denotes the hyperplane class in P3.
On the other hand, it is easy to see that in this situation one has necessarily
dm v 371
=1-2d4+ — — - — —
g TSI
for example one may compute the p-class of J with respect to O(mh) both extrinsically, using
the above expression for s(J,P?), and intrinsically by using Theorem 6 in [2]; comparing the
two expressions gives the above condition on g. Or see [8], p. 29. Therefore

s(J,P?) = dh* + (—dm + 37” - 7'> R’
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From this we get the polynomial introduced in §2:
p(X, Jt) = c(TM) N (s(X, M) + (L)~ N (s(J, M)V & L))
= mh + (4m — m? + dt*)h>+

3
<6m —4m?® +m?® + (4d — 3dm)t* + (—dm + ?V - 7') t3> R’
For ¢ > 0 this is (the push-forward to P of) Fulton’s Chern class of a scheme consisting
of X with an embedded copy of the ‘t-th thickening’ of its singular subscheme. Evaluating
at t = —1 gives

(X \J) =mh+ (d+4m — m?)h* + (6m—4m2+m3—2dm+4d—gy+7') R

by theorem 1, this is the push-forward to P* of MacPherson’s Chern class of X. The coeffi-
cient of h® computes its Euler characteristic, in agreement with [8], p. 29.
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