MACPHERSON'S AND FULTON'S CHERN CLASSES OF HYPERSURFACES

PAOLO ALUFFI

1. Introduction

In this note we compare two notions of Chern class of an algebraic scheme X (over \mathbb{C}) specializing to the Chern class of the tangent bundle $c(TX) \cap [X]$ when X is nonsingular. The first of such notions is MacPherson's Chern class, defined by means of Mather-Chern classes and local Euler obstructions [5]. MacPherson's Chern class is functorial with respect to a push-forward defined via topological Euler characteristics of fibers; in particular, mapping to a point shows that the degree of the zero-dimensional component of MacPherson's Chern class of a complete variety X equals the Euler characteristic $\chi(X)$ of X. We denote MacPherson's Chern class of X by $c_{MP}(X)$. The second notion is Fulton's intrinsic class of schemes X' that can be embedded in a nonsingular variety M: Fulton shows ([3], Example 4.2.6) that the class

$$c_F(X') = c(TM) \cap s(X', M)$$

is independent of the choice of embedding of X'. This class has the advantage of being defined over arbitrary fields and in a completely algebraic fashion, but does not satisfy at first sight nice functorial properties: cf. [3], p. 377. (MacPherson's class can also be defined algebraically over any field of characteristic 0: this is done in [4].)

To state our result we need to remind the reader that if W is a scheme supported on a Cartier divisor X of a nonsingular variety M, then the Segre class of W in M can be written in terms of the Segre class of X and the Segre class of the residual scheme J to X in W: for a precise statement of this fact, see [3], Proposition 9.2, or section 2 below. By modifying this expression, we can make sense of the "Segre class" in M of an object " $X \setminus J$ " in which J is intuitively speaking "removed" from X. Since this object has a Segre class, we can define its Fulton–Chern class as above. Here is our result:

Theorem 1. Let X be a section of a very ample line bundle on a nonsingular complex variety M, and let J be its singular subscheme. Then

$$c_{MP}(X) \doteq c_F(X \setminus J)$$

Here $\stackrel{.}{=}$ means that the classes equal after push-forward via the map to a projective space determined by $\mathcal{L} = \mathcal{O}(X)$. We strongly suspect that the classes are actually equal in the Chow group of X, and that the hypothesis on \mathcal{L} is unnecessary (in fact, our proof works whenever \mathcal{L} is globally generated and the corresponding map to projective space is gen. finite); and that a suitable generalization should hold for arbitrary schemes over an algebraically closed field; but the methods we use in this note can only go so far. On the other hand, our proof of this theorem is remarkably simple (once granted the results of [2]), and is enough for example to imply:

Date: April 15, 2005.

Corollary 1. Under the hypotheses of the theorem,

$$\chi(X) = \int c_F(X \setminus J)$$

where \int denotes degree.

The statement of theorem 1 is philosophically satisfying in that it highlights precisely in what c_{MP} and c_F must differ: Fulton's class equals MacPherson's after the scheme is 'corrected' for the presence of singularities. At the moment we take this corrected " $X \setminus J$ " purely as a formal object, although we wonder whether a more concrete geometric meaning can be attached to it (after all this object has a well-defined Chern class!)

Section 2 in the paper defines $c_F(X \setminus J)$ precisely, and introduces notations that we found helpful in these computations. The proof of the theorem is in section 3, and a simple example illustrating the result is in section 4.

2.
$$c_F(X \setminus J)$$

Let X be a Cartier divisor of a nonsingular proper n-dimensional variety M (over an algebraically closed field), and let J be a subscheme of M whose support is contained in X. Our task in this section is to define a class $c_F(X \setminus J)$ in the Chow group $A_*(X)$ of X. This class can be written explicitly in terms of the Segre classes of X and J in M:

$$c_F(X \setminus J) = c(TM) \cap s(X \setminus J, M)$$

where the term of dimension m of $s(X \setminus J, M)$ is defined to be

$$s(X \setminus J, M)_m = s(X, M)_m + (-1)^{n-m} \sum_{j=0}^{n-m} {n-m \choose j} X^j \cdot s(J, M)_{m+j}$$
.

However, we feel we should motivate this definition; in doing so we will also introduce notations that will be useful in §3.

Let \mathcal{I} , \mathcal{J} be respectively the ideal sheaves of X and J in M. For any nonnegative integer t we may consider the subscheme W(t) of M with ideal sheaf \mathcal{I} \mathcal{J}^t : that is, W(t) is a subscheme of M containing X and such that the residual scheme to X in W(t) is the subscheme with ideal sheaf \mathcal{J}^t .

Definition 1. For t a nonnegative integer, define

$$p(X, J, t) = c_F(W(t))$$

where c_F denotes Fulton's intrinsic class (cf. section 1).

Lemma 1. p(X, J, t) is a polynomial in t (with coefficients in $A_*(X)$).

The constant term of this polynomial will be

$$c_F(X) = p(X, J, 0) \quad ,$$

Fulton's Chern class of X. Given lemma 1, we can define

$$c_F(X \setminus J) = p(X, J, -1)$$
 :

intuitively, just as p(X, J, t) evaluates (for $t \ge 0$) Fulton's Chern class of a scheme supported on X and with an embedded component along J 'counted t times', this $c_F(X \setminus J)$ should stand for Fulton's Chern class of an object obtained by 'removing' J from X. Of course the

notation $X \setminus J$ is not to be intended set-theoretically; we do not know how to interpret this object 'geometrically'.

Lemma 1 follows immediately from writing the class explicitly in terms of the Segre classes of X and J in M: for this we could just quote [3], Proposition 9.2. We prefer to introduce some notations which work as a good shorthand in writing and manipulating formulas such as the raw expression for $c_F(X \setminus J)$ given above; these notations will also save us some time in section 3. For completeness, we will rewrite and prove Proposition 9.2 from [3] in terms of these notations.

Suppose A is a rational equivalence class on a scheme S, and write $A = a^0 + a^1 + ...$ with $a^i \in A^iS$ (that is, the a^i are indexed by codimension).

Definition 2. (1) The 'dual' of A, denoted A^{\vee} , is the class defined by

$$A^{\vee} = \sum_{i \ge 0} (-1)^i a^i \quad .$$

(2) More generally, the 'd-th Adams' of A, denoted $A^{(d)}$, is the class defined by

$$A^{(d)} = \sum_{i>0} d^i a^i \quad .$$

(3) For a line bundle \mathcal{L} on S, the 'tensor of A by \mathcal{L} ', denoted $A \otimes \mathcal{L}$, is the class defined by

$$A \otimes \mathcal{L} = \sum_{i \geq 0} \frac{a^i}{c(\mathcal{L})^i}$$
.

It is clear that the operations introduced in definition 2 are linear in A; further, these definitions are compatible with corresponding vector bundle operations. For a start, it is clear that if \mathcal{E} is a vector bundle on S, then

$$(c(\mathcal{E}^{\vee}) \cap A) = (c(\mathcal{E}) \cap A^{\vee})^{\vee}$$

 $(A \otimes \mathcal{L})^{\vee} = A^{\vee} \otimes \mathcal{L}^{\vee}$ should be equally clear from the definitions.

Next, there are compatibilities with tensoring after capping with Chern classes:

Proposition 1. If \mathcal{E} is a rank-r vector bundle on S, then

$$(c(\mathcal{E}) \cap A) \otimes \mathcal{L} = \frac{1}{c(\mathcal{L})^r} c(\mathcal{E} \otimes \mathcal{L}) \cap (A \otimes \mathcal{L})$$

and

$$(c(\mathcal{E})^{-1} \cap A) \otimes \mathcal{L} = c(\mathcal{L})^r c(\mathcal{E} \otimes \mathcal{L})^{-1} \cap (A \otimes \mathcal{L})$$

Proof. For the first formula, we may assume by linearity that $A = a^j$. If $c_i = c_i(\mathcal{E})$, we have

$$(c(\mathcal{E}) \cap A) \otimes \mathcal{L} = \left(\sum_{i} c_{i} \cap a^{j}\right) \otimes \mathcal{L} = \sum_{i} \frac{c_{i} \cap a^{j}}{c(\mathcal{L})^{i+j}} = \sum_{i} \frac{c_{i}}{c(\mathcal{L})^{i}} \cap \frac{a^{j}}{c(\mathcal{L})^{j}}$$
$$= \frac{1}{c(\mathcal{L})^{r}} c(\mathcal{E} \otimes \mathcal{L}) \cap (A \otimes \mathcal{L})$$

for example by [3], Remark 3.2.3 (b)).

For the second formula, simply replace A by $c(\mathcal{E})^{-1} \cap A$ in the first.

Also, the notation is fully compatible with tensoring with line bundles:

Proposition 2. If M is another line bundle on S, then

$$(A \otimes \mathcal{L}) \otimes \mathcal{M} = A \otimes (\mathcal{L} \otimes \mathcal{M})$$

Proof. By linearity we may assume $A = a^j$. Also, let $\ell = c_1(\mathcal{L}), m = c_1(\mathcal{M})$; then we have

$$(A \otimes \mathcal{L}) \otimes \mathcal{M} = \frac{a^{j}}{(1+\ell)^{j}} \otimes \mathcal{M} = \left(\sum_{i} \binom{i+j-1}{i} (-1)^{i} \ell^{i} \cap a^{j}\right) \otimes \mathcal{M}$$

$$= \sum_{i} \binom{i+j-1}{i} (-1)^{i} \frac{\ell^{i} \cap a^{j}}{(1+m)^{i+j}}$$

$$= \left(\sum_{i} \binom{i+j-1}{i} (-1)^{i} \frac{\ell^{i}}{(1+m)^{i}}\right) \cap \frac{a^{j}}{(1+m)^{j}}$$

$$= \frac{1}{(1+\frac{\ell}{1+m})^{j}} \cap \frac{a^{j}}{(1+m)^{j}} = \frac{a^{j}}{(1+\ell+m)^{j}}$$

$$= A \otimes (\mathcal{L} \otimes \mathcal{M})$$

as needed. \Box

Also, it is clear from the definition that if $\pi: S_1 \to S_2$ is a proper map, A is a class on S_1 , and \mathcal{L} is a line bundle on S_2 , then

$$\pi_*(A \otimes \pi^*\mathcal{L}) = c(\mathcal{L})^{\dim S_2 - \dim S_1} ((\pi_*A) \otimes \mathcal{L})$$

Finally, note that if D is a Cartier divisor on S, then the Segre class of D in S can be written in terms of \otimes :

$$s(D, V) = \frac{[D]}{1+D} = [D] \otimes \mathcal{O}(D)$$

(we are abusing notations a little here: the \otimes is taken in S, while the result is a class on D.) And note that if J is defined by the ideal \mathcal{J} in S, and $J^{(d)}$ denotes the subscheme defined by \mathcal{J}^d , then the segre class of $J^{(d)}$ in S is the d-th Adams of s(J,S).

Here is a restatement of Proposition 9.2 from [3] in terms of our notations:

Proposition 3. Let $X \subset W \subset M$ be closed embeddings, with X a Cartier divisor on M. Let J be the residual scheme to X in W, and $\mathcal{L} = \mathcal{O}(X)$. Then

$$s(W, M) = s(X, M) + c(\mathcal{L})^{-1} \cap (s(J, M) \otimes \mathcal{L})$$

And here is the standard argument, written in our notations:

Proof. If W = M, the statement amounts to the definition of s(X, M).

If $W \neq M$, let $\pi: \widetilde{M} \to M$ be the blow-up of M along J, and let $\widetilde{W} = \pi^{-1}(W)$, $\widetilde{J} = \pi^{-1}(J)$ and $\widetilde{X} = \pi^{-1}(X)$: then $\widetilde{W} = \widetilde{X} + \widetilde{J}$ as Cartier divisors on \widetilde{M} . Let η be the induced morphism from \widetilde{W} to W. By the birational invariance of Segre classes and the remarks preceding the statement:

$$s(W,M) = \eta_* s(\widetilde{W}, \widetilde{M}) = \eta_* \left(([\widetilde{X}] + [\widetilde{J}]) \otimes \mathcal{O}(\widetilde{X} + \widetilde{J}) \right)$$

Letting $\widetilde{\mathcal{L}} = \mathcal{O}(\widetilde{X}) = \pi^* \mathcal{L}$ and $\widetilde{\mathcal{R}} = \mathcal{O}(\widetilde{J})$, and applying propositions 1 and 2,

$$\begin{split} ([\widetilde{X}] + [\widetilde{J}]) \otimes \mathcal{O}(\widetilde{X} + \widetilde{J}) &= ([\widetilde{X}] \otimes \widetilde{\mathcal{R}} + [\widetilde{J}] \otimes \widetilde{\mathcal{R}}) \otimes \widetilde{\mathcal{L}} \\ &= (c(\widetilde{\mathcal{R}})^{-1} \cap [\widetilde{X}] + s(\widetilde{J}, \widetilde{M})) \otimes \widetilde{\mathcal{L}} \\ &= ([\widetilde{X}] - \widetilde{X} \cdot s(\widetilde{J}, \widetilde{M}) + s(\widetilde{J}, \widetilde{M})) \otimes \widetilde{\mathcal{L}} \\ &= s(\widetilde{X}, \widetilde{M}) + (c(\widetilde{\mathcal{L}}^{\vee}) \cap s(\widetilde{J}, \widetilde{M})) \otimes \widetilde{\mathcal{L}} \\ &= s(\widetilde{X}, \widetilde{M}) + c(\widetilde{\mathcal{L}})^{-1} \cap (s(\widetilde{J}, \widetilde{M}) \otimes \widetilde{\mathcal{L}}) \end{split} .$$

Pushing forward by η gives the statement.

Proposition 3 yields an explicit expression for p(X, J, t): we have already observed that the Segre class of the scheme $J^{(t)}$ defined by \mathcal{J}^t is $s(J, M)^{(t)}$, so

$$s(W(t), M) = s(X, M) + c(\mathcal{L})^{-1} \cap (s(J, M)^{(t)} \otimes \mathcal{L})$$

and p(X, J, t) equals the class $c_F(W(t), M) = c(TM) \cap s(W(t), M)$. In particular, p(X, J, t) is a polynomial over $A_*(X)$, as claimed in lemma 1, since $s(J, M)^{(t)}$ is.

We can now again write $c_F(X \setminus J)$ explicitly; our hope is that at this point this definition will look more insightful than the (equivalent) expression given at the beginning of this section:

Definition 3. We set $c_F(X \setminus J) = p(X, J, -1)$, that is

$$c_F(X \setminus J) = c(TM) \cap (s(X, M) + c(\mathcal{L})^{-1} \cap (s(J, M)^{\vee} \otimes \mathcal{L}))$$

Our goal in this note is to show that if we work over \mathbb{C} and choose J to be the *singular subscheme* of X, then this class agrees with MacPherson's Chern class of X after pushforward by the map defined by \mathcal{L} . This is done in the next section.

3. Proof of theorem 1

The statement again: if X is a hypersurface of a nonsingular variety M, and J is its singular subscheme (that is: if F is a local equation of X and x_1, \ldots, x_n are local parameters on M, J is the subscheme defined locally by the ideal $(\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n})$), then

$$c_{MP}(X) \doteq c_F(X \setminus J)$$

where $c_{MP}(X)$ is MacPherson's Chern class of X, $c_F(X \setminus J)$ was defined in section 2, and \doteq denotes equality after push-forward by the map defined by the linear system |X|, which we are assuming to be very ample.

In other words, we have to check that for all $j \geq 0$:

$$\int c_1(\mathcal{L})^j \cap c_{MP}(X) = \int c_1(\mathcal{L})^j \cap c_F(X \setminus J)$$

where $\mathcal{L} = \mathcal{O}(X)$.

Our tool will be the μ -class of J with respect to \mathcal{L} , introduced in [2]: this is the class

$$\mu_{\mathcal{L}}(J) = c(T^{\vee}M \otimes \mathcal{L}) \cap s(J, M)$$
,

where $T^{\vee}M$ denotes the cotangent bundle of M.

Lemma 2. For all $j \ge 0$, and letting $n = \dim M$:

$$\int c(\mathcal{L})^{-j} c_1(\mathcal{L})^j \cap (c_{MP}(X) - c_F(X)) = (-1)^{n-j} \int c_1(\mathcal{L})^j \cap \mu_{\mathcal{L}}(J)$$

Proof. For $j \geq 0$, let M_j denote the intersection of j general sections of \mathcal{L} (with $M_0 = M$), and let $X_j = M_j \cap X$. By Bertini's theorem the M_j are all non-singular; X_j are hypersurfaces of M_j , of class $\mathcal{L} = \mathcal{L}|_{M_j}$. We also let J_j be the singular subschemes of the X_j .

Claim 1.

$$(1) c_{MP}(X_j) = c_1(\mathcal{L})^j \cap \left(c(\mathcal{L})^{-j} \cap c_{MP}(X)\right)$$

(2)
$$c_F(X_j) = c_1(\mathcal{L})^j \cap \left(c(\mathcal{L})^{-j} \cap c_F(X)\right)$$

(3)
$$\mu_{\mathcal{L}}(J_j) = c_1(\mathcal{L})^j \cap \mu_{\mathcal{L}}(J)$$

(here and elsewhere we omit writing push-forwards implied by the context).

(1) follows from the compatibility of Nash blowups and Euler obstructions with general sections, cf. for example [7], Lemmas 2.1 and 2.3.

For (2), $c_F(X_j) = c(TM_j) \cap s(X_j, M_j)$ by definition. Now M_j is embedded in M with normal bundle $\mathcal{L}^{\oplus j}$, so $c(TM_j) = c(\mathcal{L})^{-j}c(TM)$; and $s(X_j, M_j) = c_1(\mathcal{L})^j \cap s(X, M)$ by repeated applications of Lemma A.3 from [1].

As for (3), this follows from Proposition 1.3 in [2].

Putting (1), (2) and (3) together we see that proving the statement of the lemma amounts to showing that

$$\int c_{MP}(X_j) - c_F(X_j) = (-1)^{n-j} \int \mu_{\mathcal{L}}(J_j)$$

for all $j \geq 0$. Now recall that $\int c_{MP}(X_j)$ equals the topological Euler characteristic of X_j ; while $\int c_F(X_j)$ equals

$$\int c(TM_j) \cap s(X_j, M_j) = \int c(TM_j) c(\mathcal{L})^{-1} \cap [X_j] = \int c(TM_j) c(\mathcal{L})^{-1} \cap [M_{j+1}]$$

since $[X_j] = [M_{j+1}]$ as divisors in M_j ; since $c(TM_j)c(\mathcal{L})^{-1} = c(TM_{j+1})$, we see that $\int c_F(X_j)$ equals the topological Euler characteristic of M_{j+1} , that is of the general section of \mathcal{L} in M_j . So the left-hand-side of the formula equals the difference

$$\chi(X_j) - \chi(M_{j+1})$$

of the Euler characteristics of the special section X_j and the general section M_{j+1} of \mathcal{L} on M_j . In [6], Corollary 1.7, Parusinski proves that this equals $(-1)^{\dim M_j}\mu(M_j,X_j)$, where $\mu(M_j,X_j)$ is his generalization to non-isolated singularities of the Milnor number. But this latter equals $\int \mu_{\mathcal{L}}(J_j)$ by Proposition 2.1 in [2], so the above formula holds.

Next we use lemma 2 to obtain the class of $c_{MP}(X) - c_F(X)$ (more precisely, of its push-forward by the map defined by \mathcal{L}); the result is best expressed in terms of the notations introduced in definition 2:

Lemma 3.

$$c_{MP}(X) - c_F(X) \doteq c(\mathcal{L})^{n-1} \cap (\mu_{\mathcal{L}}(J)^{\vee} \otimes \mathcal{L})$$

Proof. If A is a class on M, and $a_{n-j} \in \mathbb{Q}$ denotes

$$\frac{\int c_1(\mathcal{L})^j \cap A}{\int c_1(\mathcal{L})^n \cap [M]} \quad ,$$

then

$$A \doteq \sum_{i>0} a_i c_1(\mathcal{L})^i \cap [M] \quad .$$

We let then $\ell^i = c_1(\mathcal{L})^i \cap [M]$, and write

$$c_{MP}(X) - c_F(X) \doteq A = a_0 + a_1 \ell + a_2 \ell^2 + \dots$$

 $\mu_{\mathcal{L}}(J) \doteq B = b_0 + b_1 \ell + b_2 \ell^2 + \dots$

Lemma 2 then can be restated as:

$$b_{i} = (-1)^{i} \cdot \text{ coefficient of } \ell^{i} \text{ in } \frac{a_{0} + a_{1}\ell + a_{1}\ell^{2} + \dots}{(1+\ell)^{n-i}}$$
$$= (-1)^{i} \sum_{k=0}^{i} {n-k-1 \choose i-k} (-1)^{i-k} a_{k} ,$$

so we have

$$B = \sum_{i=0}^{n} (-1)^{i} \sum_{k=0}^{i} \binom{n-k-1}{i-k} (-1)^{i-k} a_{k} \ell^{i}$$

$$= \sum_{k\geq 0} (-1)^{k} \left(\sum_{i=k}^{n} \binom{n-k-1}{i-k} \ell^{i} \right) a_{k}$$

$$= \sum_{k\geq 0} (-1)^{k} \left(\sum_{j=0}^{n-k} \binom{n-k-1}{j} \ell^{j+k} \right) a_{k}$$

$$= \sum_{k\geq 0} (-1)^{k} (1+\ell)^{n-k-1} a_{k} \ell^{k}$$

$$= (1+\ell)^{n-1} \sum_{k\geq 0} \frac{(-1)^{k} a_{k} \ell^{k}}{(1+\ell)^{k}}$$

$$= c(\mathcal{L})^{n-1} \cap (A^{\vee} \otimes \mathcal{L}) .$$

To get the statement of the lemma, we just need to "solve this for A": start from

$$c(\mathcal{L})^{n-1} \cap (A^{\vee} \otimes \mathcal{L}) = B \quad ;$$

cap by $c(\mathcal{L})^{-(n-1)}$:

$$A^{\vee} \otimes \mathcal{L} = c(\mathcal{L})^{-(n-1)} \cap B$$
 ;

tensor by \mathcal{L}^{\vee} and apply propositions 1 and 2:

$$A^{\vee} = (c(\mathcal{L})^{-(n-1)} \cap B) \otimes \mathcal{L}^{\vee} = c(\mathcal{L}^{\vee})^{n-1} \cap (c(\mathcal{L} \otimes \mathcal{L}^{\vee})^{-(n-1)} \cap (B \otimes \mathcal{L}^{\vee}))$$
$$= c(\mathcal{L}^{\vee})^{n-1} \cap (B \otimes \mathcal{L}^{\vee})$$

Taking duals gives the statement.

Theorem 1 follows now easily from the last lemma:

$$c_{MP}(X) \doteq c_F(X) + c(\mathcal{L})^{n-1} \cap (\mu_{\mathcal{L}}(J)^{\vee} \otimes \mathcal{L})$$

by lemma 3; expanding the right-hand-side gives:

$$c(TM) \cap s(X, M) + c(\mathcal{L})^{n-1} \cap ((c(T^{\vee}M \otimes \mathcal{L}) \cap s(J, M))^{\vee} \otimes \mathcal{L})$$

$$= c(TM) \cap s(X, M) + c(\mathcal{L})^{n-1} \cap ((c(TM \otimes \mathcal{L}^{\vee}) \cap s(J, M)^{\vee}) \otimes \mathcal{L})$$

$$= c(TM) \cap s(X, M) + c(\mathcal{L})^{-1} c(TM) \cap (s(J, M)^{\vee} \otimes \mathcal{L})$$

by proposition 1,

$$= c(TM) \cap \left(s(X, M) + c(\mathcal{L})^{-1} \cap \left(s(J, M)^{\vee} \otimes \mathcal{L} \right) \right)$$

= $c_F(X \setminus J)$

by the expression obtained in section 2. This concludes the proof of theorem 1.

4. Example

We conclude with an explicit computation illustrating the result. Let X be a surface in $M = \mathbb{P}^3$, with ordinary singularities: the singular locus is a curve Y, and X has a certain number τ of triple points and a number ν of pinch points along Y. More precisely, we assume that the completion of the local ring of X is isomorphic to:

$$\frac{\mathbb{C}[[x,y,z]]}{(xy)} \qquad \text{at a general point of } Y$$

$$\frac{\mathbb{C}[[x,y,z]]}{(xyz)} \qquad \text{at a triple point}$$

$$\frac{\mathbb{C}[[x,y,z]]}{(z^2-x^2y)} \qquad \text{at a pinch point}$$

Let d be the degree of Y in \mathbb{P}^3 , and g the genus of its normalization. It is not hard to compute that each pinch point "contributes 1 point" to the Segre class of the singular subscheme J (supported on Y) in \mathbb{P}^3 , and each triple point "contributes -4 points"; that is,

$$s(J, \mathbb{P}^3) \doteq dh^2 + (2 - 2g - 4d - 4\tau + \nu)h^3$$
,

where h denotes the hyperplane class in \mathbb{P}^3 .

On the other hand, it is easy to see that in this situation one has necessarily

$$g = 1 - 2d + \frac{dm}{2} - \frac{\nu}{4} - \frac{3\tau}{2}$$
 :

for example one may compute the μ -class of J with respect to $\mathcal{O}(mh)$ both extrinsically, using the above expression for $s(J, \mathbb{P}^3)$, and intrinsically by using Theorem 6 in [2]; comparing the two expressions gives the above condition on g. Or see [8], p. 29. Therefore

$$s(J, \mathbb{P}^3) \doteq dh^2 + \left(-dm + \frac{3\nu}{2} - \tau\right)h^3$$
.

From this we get the polynomial introduced in §2:

$$p(X, J, t) = c(TM) \cap \left(s(X, M) + c(\mathcal{L})^{-1} \cap (s(J, M)^{(t)} \otimes \mathcal{L}) \right)$$

$$\stackrel{.}{=} mh + (4m - m^2 + dt^2)h^2 +$$

$$\left(6m - 4m^2 + m^3 + (4d - 3dm)t^2 + \left(-dm + \frac{3\nu}{2} - \tau \right) t^3 \right) h^3$$

For $t \geq 0$ this is (the push-forward to \mathbb{P}^3 of) Fulton's Chern class of a scheme consisting of X with an embedded copy of the 't-th thickening' of its singular subscheme. Evaluating at t = -1 gives

$$c(X \setminus J) \doteq mh + (d + 4m - m^2)h^2 + \left(6m - 4m^2 + m^3 - 2dm + 4d - \frac{3}{2}\nu + \tau\right)h^3$$
;

by theorem 1, this is the push-forward to \mathbb{P}^3 of MacPherson's Chern class of X. The coefficient of h^3 computes its Euler characteristic, in agreement with [8], p. 29.

References

- [1] P. Aluffi, The enumerative geometry of plane cubics. II: Nodal and cuspidal cubics, Math. Ann. 289 (1991), 543–572.
- [2] P. Aluffi, Singular schemes of hypersurfaces, available via mosaic on http://www.math.fsu.edu/~aluffi/eprint.archive.
- [3] W. Fulton, Intersection Theory, Ergebnisse der Math., 3 Ser. Vol. 2, Springer, New York, 1984.
- [4] G. Kennedy, MacPherson's Chern classes of singular algebraic varieties, Comm. in Algebra, 18 (9), 2821-2839 (1990).
- [5] R. MacPherson, Chern classes for singular algebraic varieties, Ann. Math. 100 (1974), 423–432.
- [6] A. Parusinski, A generalization of the Milnor number, Math. Ann. 281 (1988), 247–254.
- [7] A. Parusinski, P. Pragacz, Euler characteristic of degeneracy loci I; the general holomorphic map case, preprint (1992).
- [8] R. Piene Cycles polaires et classes de Chern pour les variétés projectives singulières, in Introduction à la Théorie des Singularités, II, Travaux en Cours 37, Hermann, Paris, 1988, 7–34.

FLORIDA STATE UNIVERSITY, TALLAHASSEE FL 32306 *E-mail address*: aluffi@@math.fsu.edu