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SUMMARY

Proper orthogonal decomposition (POD) and singular value decomposition (SVD) methods are

used to study a finite difference discretization scheme (FDS) for the tropical Pacific Ocean reduced

gravity model. Ensembles of data are compiled from transient solutions computed from the

discrete equation system derived by FDS for the tropical Pacific Ocean reduced gravity model.

The optimal orthogonal bases are used to reconstruct the elements of the ensemble with POD

and SVD. Combining the above approach with a Galerkin projection procedure yields a new

optimizing FDS model of lower dimensions and high accuracy for the tropical Pacific Ocean

reduced gravity model. An error estimate of the new reduced order optimizing FDS model is

then derived. Numerical examples are presented illustrating that the error between the POD

approximate solution and the full FDS solution is consistent with previously obtained theoretical

results, thus validating the feasibility and efficiency of POD method.
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1. INTRODUCTION

The finite difference scheme (FDS) is one of the important discretization approaches for
numerical solution of a system of partial differential equations, for example those used
for the tropical Pacific Ocean reduced gravity model. However, since the tropical Pacific
Ocean reduced gravity model is used to compute the variability of fluid flow and fluid
total layer thickness over total field near by tropical Pacific Ocean (see [1], or [2]), its
high resolution FDS is characterized by a large number of degrees of freedom. Thus, an
important problem is how to alleviate the computational load and save time–consuming
calculations and resource demands in the computational process in a way that guarantees
a sufficiently accurate numerical solution. Proper orthogonal decomposition (POD), also
known as the Karhounen–Loève expansion in signal analysis and pattern recognition (see
[3]), or principal component analysis in statistics (see [4]), or the method of empirical
orthogonal functions in geophysical fluid dynamics (see [5], [6]) or meteorology (see [7]),
is a technique offering an adequate approximation for representing fluid flow with a
reduced number of degrees of freedom, i.e., with a lower dimensional model (see [8]) so as
to alleviate the computational load and provide CPU and memory requirements savings.
The POD method mainly provides a useful tool for efficiently approximating a large
amount of data. The method provides an orthogonal basis for representing the given
data in a certain least squares optimal sense, that is, it provides a way to find optimal
lower dimensional approximations of the given data. In addition to being optimal in
a least squares sense, POD has the property that it uses a model decomposition that
is completely data dependent and does not assume any prior knowledge of the process
employed to generate the data. This property is advantageous in situations where a priori
knowledge of the underlying process is insufficient to warrant a particular choice of basis.
Combined with the Galerkin projection procedure, POD provides a powerful method for
generating lower dimensional models of dynamical systems that have a very large or even
infinite dimensional phase space. The fact that this method always searches for linear (or
affine) subspaces instead of curved submanifolds renders it computationally tractable. In
many cases, the behavior of a dynamic system is governed by characteristics or related
structures, even though the ensemble is formed by a large number of different temporal
solutions.

Since the POD method can capture these temporal and spatial structures by applying
a statistical analysis to the ensemble of data, it has found widespread applications in
statistics. In fluid dynamics, Lumley first employed the POD technique to capture the
large eddy coherent structures in a turbulent boundary layer (see [9]); this technique was
further extended in [10], where a link between the turbulent structure and the dynamics
of a chaotic system was investigated. In Holmes et al. [9], the overall properties of POD
were reviewed and extended to widen the applicability of the method. The method of
snapshots was introduced by Sirovich [11], and is widely used in applications to reduce
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the order of the POD eigenvalue problem. Examples of these are applications to optimal
flow control problems (see [12], [13], 14]) and turbulence (see [8], [9], [15], [16]). In [17],
though the tropical Pacific Ocean reduced gravity model was dealt with by the POD
method, an exact theoretical analysis was not carried out. In particular, to the best of
our knowledge, there are no published results addressing accuracy of the approximate
solution of FDS derived with the POD and SVD for the tropical Pacific Ocean reduced
gravity model.

In this paper, the POD and SVD techniques are used to study the FDS solutions
for the tropical Pacific Ocean reduced gravity model. Ensembles of data are compiled
from transient solutions computed from the equation system derived using FDS for the
tropical Pacific Ocean reduced gravity model. Optimal orthogonal bases are used to
reconstruct the elements of the ensemble with POD and SVD. Combining above results
with a Galerkin projection procedure yields a new optimizing FDS model of lower dimen-
sional order and of high accuracy for the tropical Pacific Ocean reduced gravity model.
We show using numerical examples that the error between the optimizing POD approxi-
mate solution and the full FDS solution is consistent with theoretical error results, thus
validating both the feasibility and efficiency of the POD method. Our method is differ-
ent from the approaches used in Ref. [18] and [19], whose methods consist of Galerkin
projection approaches where original variables are substituted for linear combination of
POD bases and the error estimates therein are also derived. While the SVD approach
combined with POD technology is used to treat the Burgers equation in [20] and the cav-
ity flow problem in [21], the error estimates have not completely been derived, especially,
an optimizing FDS has not been derived. Therefore, our method improves upon existing
methods.

The paper is organized as follows. Section 2 is devoted to deriving the FDS based
on staggered mesh for the tropical Pacific Ocean reduced gravity model and choosing
the snapshots from transient solutions computed from the equation system derived by
FDS. The optimal orthogonal bases are reconstructed from the elements of the snapshots
with POD and SVD in Section 3. In Section 4, a new optimizing FDS model with lower
dimensional number and high accuracy for the tropical Pacific Ocean reduced gravity
model is obtained by combining the optimal orthogonal bases with a Galerkin projection
procedure, an error estimate of the new optimizing FDS model is derived, and numerical
examples are presented illustrating that the error between optimizing POD approximate
solution and the full FDS solution is consistent with previously obtained theoretical
results, thus validating the feasibility and efficiency of POD method. Section 5 provides
main conclusions and gives future tentative idea. Finally, some of the error analysis are
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presented in Appendix A for the sake of the paper being self-contained.

2. FDS FOR THE TROPICAL PACIFIC OCEAN REDUCED GRAVITY

MODEL AND GENERATE SNAPSHOTS

The variability of fluid flow and fluid total layer thickness over tropical oceans is an
important question in studies of climate change and air-sea interaction. However, the ac-
curate assessment of fluid flow and fluid total layer thickness is greatly limited due to the
lack of direct measurements and an insufficient knowledge of air-sea exchange processes.
The tropical Pacific Ocean reduced gravity model is a useful model for simulating fluid
flow and fluid total layer thickness over tropical Pacific Ocean and it has been extensively
applied to studying the ocean dynamics in tropical regions (see, [22] and [23]). The model
consists of two layers above the thermocline with the same constant density. The ocean
below the thermocline, with a higher density, is assumed to be sufficiently deep so that its
velocity vanishes (Figure 1). The upper of the two active layers is a fixed-depth surface
layer in which the thermodynamics are included. The surface layer communicates with
the lower active layer through entrainment/ detrainment at their interface and through
frictional horizontal shearing. We assume that there is no density difference across the
base of the surface layer; that is, the surface layer is treated as part of the upper layer.

Figure 1. Ocean depth

Following Seager et al. (see [24]), the equations for the depth-averaged currents are
written as:

Problem (I). Find (u, v) and h such that




∂u

∂t
− fv = −g′

∂h

∂x
+

τx

ρ0H
+ A(

∂2u

∂x2
+

∂2u

∂y2
), (x, y, t) ∈ Ω× (0, T ),

∂v

∂t
+ fu = −g′

∂h

∂y
+

τy

ρ0H
+ A(

∂2v

∂x2
+

∂2v

∂y2
), (x, y, t) ∈ Ω× (0, T ),

∂h

∂t
+ H(

∂u

∂x
+

∂v

∂y
) = 0, (x, y, t) ∈ Ω× (0, T ),

(1)

4



where (u, v) is the horizontal velocity of the depth-averaged currents; h the total layer
thickness; f the Coriolis force; H the mean depth of the layer (constant); ρ0 the density
of water; g′ reduced gravity; and A the horizontal eddy viscosity coefficient, (τx, τy) the
wind stress which is calculated by the aerodynamic bulk formula

(τx, τy) = ρaCD

√
U2

wind + V 2
wind(Uwind, Vwind), (2)

here ρα is the density of the air; CD the wind stress drag coefficient; (Uwind, Vwind) the
wind velocity vector. The seasonal net surface heat flux over tropical oceans has been
only simulated with the equations (1) to add to a thermodynamics equation by Yu and
O’Brien (see, [25]). However, since the computational field over the tropical Pacific ocean
is very extensive, and finite difference meshes are very dense and difficult to compute,
fluid flow and fluid total layer thickness over tropical oceans are not simulated.

Let 4x and 4y be the spatial mesh size in x-direction and y-direction, respectively,
and 4t be the time step size , un

j+ 1
2
,k

, vn
j,k+ 1

2

, and hn
j,k denote function values of u, v,

and h at point (xj+ 1
2
, yk, tn), (xj , yk+ 1

2
, tn), and (xj , yk, tn) (0 ≤ j ≤ J, 0 ≤ k ≤ K, 0 ≤

n ≤ N = T/4t), respectively.
In the following, we apply a staggered mesh (see Figure 2) FDS for solving Problem

(I).

(1) Discretizing the continuous equation
∂h

∂t
+ H(

∂u

∂x
+

∂v

∂y
) = 0 yields

hn+1
j,k = hn

j,k + H4t

(uj+ 1
2
,k − uj− 1

2
,k

∆x
+

vj,k+ 1
2
− vj,k− 1

2

∆y

)n+1

. (3)

Figure 2. Staggered mesh graphics

(2) Discretizing the momentum equation

∂u

∂t
− fv = −g′

∂h

∂x
+

τx

ρ0H
+ A(

∂2u

∂x2
+

∂2u

∂y2
) (4)

in the x–direction at point (xj+ 1
2
, yk) yields

un+1
j+ 1

2
,k

= Fn
j+ 1

2
,k
− g′

∆t

∆x
[hn

j+1,k − hn
j,k], (5)
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where

Fn
j+ 1

2
,k

= un
j+ 1

2
,k

+ ∆t

[
fv +

τx

ρ0H

]n

j+ 1
2
,k

+

A∆t

[
uj+ 1

2
,k−1 − 2uj+ 1

2
,k + uj+ 1

2
,k+1

∆y2
+

uj− 1
2
,k − 2uj+ 1

2
,k + uj+ 3

2
,k

∆x2

]n

,

(6)

(3) Expanding the momentum equation

∂v

∂t
+ fu = −g′

∂h

∂y
+

τy

ρ0H
+ A(

∂2v

∂x2
+

∂2v

∂y2
) (7)

in the y−direction at point (xj , yk+ 1
2
) yields

vn+1
j,k+ 1

2

= Gn
j,k+ 1

2

− g′
∆t

∆y
[hn

j,k+1 − hn
j,k], (8)

where

Gn
j,k+ 1

2

= vn
j,k + ∆t

[
τy

ρ0H
− fu

]n

j,k+ 1
2

+

A∆t

[
vj−1,k+ 1

2
− 2vj,k+ 1

2
+ uj+1,k+ 1

2

∆x2
+

vj,k− 1
2
− 2vj,k+ 1

2
+ vj,k+ 3

2

∆y2

]n

.

(9)

Inserting (5) and (8) into (3) could obtain

hn+1
j,k = hn

j,k + H4t

[
hj−1,k − 2hj,k + hj+1,k

∆x2
+

hj,k−1 − 2hj,k + hj,k+1

∆y2

]n

+ R, (10)

where
R =

1
∆x

[Fj+ 1
2
,k − Fj− 1

2
,k]

n +
1

∆y
[Gj,k+ 1

2
−Gj,k− 1

2
]n. (11)

Thus, if only the parameters f , H, ρ0, ρa, g′, A, CD, the wind velocity vector
(Uwind, Vwind), time step size, and spatial step size in x and y-directions are given, by
solving (5), (8), and (10), one could obtain un

j+ 1
2
,k

, vn
j,k+ 1

2

, hn
j,k (0 ≤ j ≤ J, 0 ≤ k ≤

K, 1 ≤ n ≤ N).
Write un

i = un
j+ 1

2
,k

, vn
i = vn

j,k+ 1
2

, and hn
i = hn

j,k, i = kJ + j + 1,m = JK (1 ≤ i ≤
m, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1, 0 ≤ n ≤ N).The L × m group of values consisting
of the ensemble {ul

i, vl
i, hl

i}L
l=1 (1 ≤ i ≤ m) (usually L ¿ N), known as ”snapshots”

which is useful and of interest for us, are chosen from N ×m group of {un
i , vn

i , hn
i }N

n=1

(1 ≤ i ≤ m).
Remark 1. When one computes actual problems, one may obtain the ensemble

of snapshots from physical system trajectories by drawing samples from experiments
and interpolation (or data assimilation). For example, for weather forecast, one can use
previous weather results to construct the ensemble of snapshots, then restructure the
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optimal basis for the ensemble of snapshots by following with POD, and finally combine
it with a Galerkin projection to derive a reduced order dynamical system. Thus, the
forecast of future weather change can be quickly simulated, which is of major importance
for actual real-life applications.

3. SINGULAR VALUE DECOMPOSITION AND POD OPTIMAL BASIS

The POD method has received much attention in recent years as a tool to analyze complex
physical systems. In this section, we use POD technique to deal with the ”snapshots”
obtained in previous Section 1 and to derive an ”optimal” representation in an ”average”
sense.

The ensemble of snapshots {ul
i, vl

i, hl
i}L

l=1(1 ≤ i ≤ m) can be expressed as three
m× L matrices as follows:




u1
1 u2

1 · · · uL
1

u1
2 u2

2 · · · uL
2

...
...

...
...

u1
m u2

m · · · uL
m




,




v1
1 v2

1 · · · vL
1

v1
2 v2

2 · · · vL
2

...
...

...
...

v1
m v2

m · · · vL
m




,




h1
1 h2

1 · · · hL
1

h1
2 h2

2 · · · hL
2

...
...

...
...

h1
m h2

m · · · hL
m




. (12)

If the means of columns of these matrices are denoted by

ul =
1
m

m∑

i=1

ul
i, vl =

1
m

m∑

i=1

vl
i, h

l =
1
m

m∑

i=1

hl
i, (13)

then we can form new ensembles by focusing on deviations from the mean value as follows

{ũl
i}L

l=1, {ṽl
i}L

l=1, {h̃l
i}L

l=1, 1 ≤ i ≤ m, (14)

where ũl
i = ul

i − ul, ṽl
i = vl

i − vl, h̃l
i = hl

i − h
l(1 ≤ i ≤ m). Thus, we can reform new

matrices as follows:

Au =




ũ1
1 ũ2

1 · · · ũL
1

ũ1
2 ũ2

2 · · · ũL
2

...
...

...
...

ũ1
m ũ2

m · · · ũL
m




, Av =




ṽ1
1 ṽ2

1 · · · ṽL
1

ṽ1
2 ṽ2

2 · · · ṽL
2

...
...

...
...

ṽ1
m ṽ2

m · · · ṽL
m




, Ah =




h̃1
1 h̃2

1 · · · h̃L
1

h̃1
2 h̃2

2 · · · h̃L
2

...
...

...
...

h̃1
m h̃2

m · · · h̃L
m




. (15)

Define matrix norm ‖ · ‖α,β as ‖A‖α,β = sup
~x6=0

‖A~x‖α

‖~x‖β
(where ‖ · ‖α and ‖ · ‖β are

the norm of vector), the set Λ as the collection of all normalized bases for Rm, and
{~φ1, ~φ2, · · · , ~φm} ⊂ Λ as an orthogonal basis for Rm. Then, finding ”optimal” represen-
tation for Au, Av, and Ah is formulated as the following optimization problem.

Optimization Problem (II). Find {~φ1, ~φ2, · · · , ~φm} ⊂ Λ, i.e., Φ = (~φ1, ~φ2, · · · ,
~φm) ∈ Rm×m such that it minimizes

J(Φ) = ‖Au − ΦΦT Au‖2,2. (16)
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Thus, each column in the matrix ΦT Au is the set of coefficients used to expand the
corresponding solutions in the new basis. And the POD basis is commonly defined by
an orthonormal basis {~φ1, ~φ2, · · · , ~φL} solving (16) for any L ∈ {1, 2, · · · ,m}.

In order to obtain an ”optimal” representation for Au, we employ the Singular Value
Decomposition (SVD), which is an important tool for finding optimal basis of optimiza-
tion problem, to solve Optimization Problem (II). For matrix Au ∈ Am×L(Av and Ah

are similar), there exists the SVD

Au = Uu

(
Su 0

0 0

)
V T

u , (17)

where Uu ∈ Rm×m and Vu ∈ RL×L are all orthogonal matrices and Su =diag{σu1, σu2,

· · · , σu`} ∈ R`×` is the diagonal matrix correspondent to Au. σui (i = 1, 2, · · · , `) are
the positive singular values. And the matrices Uu = (~φu1, ~φu2, · · · , ~φum) ∈ Rm×m and
Vu = (~ϕu1, ~ϕu2, · · · , ~ϕuL) ∈ RL×L contain the orthogonal eigenvectors to AuAT

u and
AT

u Au, respectively. The columns of these eigenvector matrices are organized so as to
correspond to the singular values σui comprised in Su in a non-increasing order. And
the singular values of the decomposition are connected to the eigenvalues of the matrices
AuAT

u and AT
u Au in a manner such that λui = σ2

ui (i = 1, 2, · · · , `). Since the number
of mesh points is by far larger than that of transient moment points, i.e., m À L, that
is also that the order m for matrix AuAT

u is far larger than the order L for matrix
AT

u Au, however their null eigenvalues are identical, therefore, we may first solve the eigen
equation corresponding to matrix AT

u Au to find the eigenvectors ~ϕuj(j = 1, 2, · · · , L),
and then by relationship

~φuj = Au~ϕuj/σuj , j = 1, 2, · · · , `, (18)

we may obtain ` (` ≤ L) eigenvectors corresponding to the non-null eigenvalues for matrix
AuAT

u , where formula (18) just follows from SVD.
Using the relationship properties of spectral radius and ‖ · ‖2,2 for matrices, if Mu <

r =rankAu (r ≤ ` ≤ L), then we obtain the following equation

σu(Mu+1) = min
rank(B)≤Mu

‖Au −B‖2,2 = ‖Au −AMu‖2,2, (19)

where AMu =
Mu∑
i=1

σui
~φui~ϕ

T
ui, ~φui (i = 1, 2, · · · ,Mu) and ~ϕuj (j = 1, 2, · · · , Mu) are Mu

first column vectors of matrices Uu and Vu, respectively.
By comparing the Optimization Problem (II) with Eq.(19), it is obvious that the

minimum distance between the matrix Au and B (which is of rank Mu), or the optimal
approximation of Au by B is obtained by using the matrix AMu defined in Eq.(19), i.e.,
the AMu should be the optimal representation of Au in the optimal base. Thus, the
optimal base is found in the construction of AMu . By using the property of eigenvector,
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it is well known that Φu = Uu = (~φu1, ~φu2, · · · , ~φMu) (Mu ¿ L) is a group of the optimal
base for Optimization Problem (II).

Denote the L column vectors of matrices Au by ~al
u = (ũl

1, ũ
l
2, · · · , ũl

m)T (l = 1, 2, · · · ,

L), and εl (l = 1, 2, · · · , L) by unit column vectors except that a vector component is 1,
while the other components are 0. Then by the compatibility of the norm for matrices
and vectors, we obtain

‖~al
u − PMu(~al

u)‖2 = ‖(Au −AMu)εn‖2 ≤ ‖Au −AMu‖2,2‖εn‖2 =
√

λu(Mu+1), (20)

where PMu(~al
u) =

Mu∑
j=1

(~φuj ,~a
j
u)~φuj , (~φuj ,~a

j
u) is the canonical inner product for vector ~φuj

and vector ~aj
u. Inequality (20) shows that PMu(~al

u) is the optimal approximation to ~al
u,

whose error is
√

λu(Mu+1).
By the same approach as the above (20), if ~al

v = (ṽl
1, ṽ

l
2, · · · , ṽl

m)T and ~al
h = (h̃l

1, h̃
l
2, · · · ,

h̃l
m)T (l = 1, 2, · · · , L) are L column vectors of matrices Av and Ah, respectively, then

PMv(~al
v) =

Mv∑
j=1

(~φvj ,~a
j
v)~φvj and PMh

(~al
h) =

Mh∑
j=1

(~φhj ,~a
j
h)~φhj are respectively the optimal

approximations to ~al
v and ~al

h, whose errors are respectively
√

λv(Mv+1) and
√

λh(Mh+1),
i.e.,

‖~al
v − PMv(~a

l
v)‖2 ≤

√
λv(Mv+1), (21)

‖~al
h − PMh

(~al
h)‖2 ≤

√
λh(Mh+1), (22)

where λv(Mv+1) is (Mv+1)–th eigenvalue for AvA
T
v and λh(Mh+1) is (Mh+1)–th eigenvalue

for AT
h Ah, and Φv = Uv = (~φv1, ~φv2, · · · , ~φvMv) and Φh = Uh = (~φh1, ~φh2, · · · , ~φhMh

) are
the optimal bases corresponding to Av and Ah, respectively.

4. OPTIMIZING NUMERICAL SOLUTION AND SIMULATION FOR THE

TROPICAL PACIFIC OCEAN REDUCED GRAVITY MODEL

4.1. Optimizing numerical solution for the tropical Pacific Ocean reduced gravity model

In this section, we construct the optimizing solution for the tropical Pacific Ocean reduced
gravity model using optimal bases Φu = (~φu1, ~φu2, · · · , ~φMu), Φv = (~φv1, ~φv2, · · · , ~φMv),
and Φh = (~φh1, ~φh2, · · · , ~φMh

) (Mu,Mv,Mh ¿ L), and it is shown by considering results
obtained for the numerical simulation of tropical Pacific Ocean reduced gravity model
that this validates the feasibility and efficiency of POD method.

Write 



~um(t) = (u1(t), u2(t), · · · , um(t))T ,

~vm(t) = (v1(t), v2(t), · · · , vm(t))T ,

~hm(t) = (h1(t), h2(t), · · · , hm(t))T ,

(23)
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where ui = uj+ 1
2
,k, vi = vj,k+ 1

2
, and hi = hj,k (1 ≤ i ≤ m, i = kJ + j + 1,m = JK,

0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1, 0 ≤ n ≤ N). Thus, (5), (8), and (10) are written as the
following vector formulation:

(
~un+1

m , ~vn+1
m ,~hn+1

m

)T
=

(
~un

m, ~vn
m,~hn

m

)T
+ ∆tF̃ (~un

m, ~vn
m,~hn

m), (24)

where F̃ (~un
m, ~vn

m,~hn
m) = (F̃1(~un

m, ~vn
m,~hn

m), F̃2(~un
m, ~vn

m,~hn
m), F̃3(~un

m, ~vn
m,~hn

m))T is the vector
function following from (5), (6) and (8)∼(11). Put

(
~̃un

m, ~̃vn
m,

~̃
hn

m

)T

=
(
Φu~αn

Mu
, Φv

~βn
Mv

, Φh~γ
n
Mh

)T
, (25)

where ~̃un
m = (ũn

1 , ũn
2 , · · · , ũn

m)T , ~̃vn
m = (ṽn

1 , ṽn
2 , · · · , ṽn

m)T , ~̃
hn

m = (h̃n
1 , h̃n

2 , · · · , h̃n
m)T , ũn

i =
un

i − un, ṽn
i = vn

i − vn, h̃n
i = hn

i − h
n(1 ≤ i ≤ m), and un, vn, and h

n are given in (13).
Inserting (25) into (24), and noting that Φu, Φv, and Φh are orthogonal matrices,

we may obtain the reduced model which has Mu + Mv + Mh (Mu,Mv,Mh ¿ L ¿ m)
unknown values:

(
~αn+1

Mu
, ~βn+1

Mv
, ~γn+1

Mh

)T
=

(
~αn

Mu
, ~βn

Mv
, ~γn

Mh

)T
+ G̃(~αn

Mu
, ~βn

Mv
, ~γn

Mh
), n = 0, 1, 2, · · · , (26)

where G̃(~αn
Mu

, ~βn
Mv

, ~γn
Mh

) = ∆t(ΦT
u F̃1(Φu~αn

Mu
+ ūnIm, Φv

~βn
Mv

+ v̄nIm,Φh~γ
n
Mh

+ h̄nIm),
ΦT

v F̃2(Φu~αn
Mu

+ ūnIm, Φv
~βn

Mv
+ v̄nIm,Φh~γ

n
Mh

+ h̄nIm), ΦT
h F̃3(Φu~αn

Mu
+ ūnIm, Φv

~βn
Mv

+
v̄nIm, Φh~γ

n
Mh

+ h̄nIm))T +(ΦT
u (ūn− ūn+1)Im, ΦT

v (v̄n− v̄n+1)Im,ΦT
h (h̄n− h̄n+1)Im)T , Im =

(1)m×1, which initial values are ~α0
Mu

= ΦT
u
~̃u0

m, ~β0
Mv

= ΦT
v
~̃v0

m, ~γ0
Mh

= ΦT
h
~̃
h0

m.
After one has obtained ~αn

Mu
, ~βn

Mv
, and ~γn

Mh
from (26), one obtains the POD optimal

solutions for Problem (I) by u∗ni = ũn
i + un, v∗ni = ṽn

i + vn, h∗ni = h̃n
i + h

n and (25),

where un =
1
m

m∑

i=1

un
i , vn =

1
m

m∑

i=1

vn
i , h

n =
1
m

m∑

i=1

hn
i (1 ≤ n ≤ N). Thus, we get the

optimal numerical solutions which are written as (u∗n
j+ 1

2
,k

, v∗n
j,k+ 1

2

, h∗nj,k) (0 ≤ j ≤ J−1, 0 ≤
k ≤ K − 1, 0 ≤ n ≤ N) for Problem (I), where u∗n

j+ 1
2
,k

= u∗ni , v∗n
j,k+ 1

2

= v∗ni , h∗nj,k = h∗ni

(j = i− 1− kJ ≥ 0, 1 ≤ i ≤ m, 0 ≤ k ≤ K − 1, 0 ≤ n ≤ N).
Remark 2. If 0 ≤ n = l ≤ L, the solution vectors obtained by PMu(~al

u) =
Mu∑
j=1

(~φuj ,~a
j
u)~φuj , PMv(~al

v) =
Mv∑
j=1

(~φvj ,~a
j
v)~φvj , and PMh

(~al
h) =

Mh∑
j=1

(~φhj ,~a
j
h)~φhj are the same

as that the above optimal method (25) and (26). However, the above equations (25) and
(26) can be used to compute the transient solutions backward the longest time (at this
moment, one doesn’t have to take deviations from the mean value, and can directly take
ul = vl = h

l=0), that is, one can use present data to forecast model future evolution.
Therefore, POD-FDS is a method with extensive applications. Especially, (26) has only
(Mu +Mv +Mh)×n unknown values, but (5), (8), and (10) have 3m×n (n = 1, 2, 3, · · · )
unknown values (usually Mu, Mv,Mh ¿ L ¿ m).
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Remark 3. By (20)–(22), we have





|ul
j+ 1

2
,k
− u∗l

j+ 1
2
,k
| ≤ ‖~au − PMu(~al

u)‖2 =
√

λu(Mu+1),

|vl
j,k+ 1

2

− v∗l
j,k+ 1

2

| ≤ ‖~av − PMv(~a
l
v)‖2 =

√
λv(Mv+1),

|hl
j,k − h∗lj,k| ≤ ‖~ah − PMh

(~al
h)‖2 =

√
λh(Mh+1), 1 ≤ l ≤ L,

(27)

where | · | is the absolute value of real number. Since the error of numerical solutions
(un

j+ 1
2
,k

, vn
j,k+ 1

2

, hn
j,k) (1 ≤ n ≤ N , 1 ≤ j ≤ J , 1 ≤ k ≤ K) for Problem (I) obtained by

(5), (8), and (10) (see [1] or [2], or see Appendix A) is

|En(un
j+ 1

2
,k

, vn
j,k+ 1

2

, hn
j,k)| = |(u(xj+ 1

2
, yk, tn), v(xj , yk+ 1

2
, tn), h(xj , yk, tn))

−(un
j+ 1

2
,k

, vn
j,k+ 1

2

, hn
j,k)| = O(∆t, ∆x2, ∆y2),

(28)

if the solution (u(x, y, t), v(x, y, t), h(x, y, t)) for Problem (I) has more regularity, the error
of optimal numerical solutions obtaining from (24)–(26) is, by (20)–(22) and (28),

|E(u∗l
j+ 1

2
,k

, v∗l
j,k+ 1

2

, h∗lj,k)| = |(u(xj+ 1
2
, yk, tl), v(xj , yk+ 1

2
, tl), h(xj , yk, tl))

−(u∗l
j+ 1

2
,k

, v∗l
j,k+ 1

2

, h∗lj,k)|
≤ |(u(xj+ 1

2
, yk, tl), v(xj , yk+ 1

2
, tl), h(xj , yk, tl))

−(ul
j+ 1

2
,k

, vl
j,k+ 1

2

, hl
j,k)|

+|(ul
j+ 1

2
,k

, vl
j,k+ 1

2

, hl
j,k)− (u∗l

j+ 1
2
,k

, v∗l
j,k+ 1

2

, h∗lj,k)|
= O(∆t, ∆x2, ∆y2,

√
λu(Mu+1),

√
λv(Mv+1),

√
λh(Mh+1)),

(29)

where l = 1, 2, · · · , L.

4.2. Numerical simulation for the tropical Pacific Ocean reduced gravity model

In this study, we applied the model to the tropic Pacific Ocean domain (29◦S∼29◦N,
120◦E∼70◦W), using parameters values of f = 2(7.29E − 5) sin(x, y), H = 150m, ρ0 =
1.2kg·m−3, ρa = 1025kg·m−3, g′ = 3.7×10−2, A = 750m2sec−1, and CD = 1.5×10−3 for
Problem (I). This chosen model domain allows all possible equatorially trapped waves to
be excited by the applied wind forcing (see [25]). We choose the spatial mesh size for the
dynamical model to be ∆x = ∆y = 0.5◦ and the time mesh size to be ∆t = 100s. The
model is driven by the Florida State University (FSU) climatology monthly mean winds
( cf. [26]), and the data are projected onto each time step by a linear interpolation and
onto each grid point by a bilinear interpolation, for instance, in January (see Figure 3

11



(a)) and in July (see Figure 3 (b)).

Figure 3. Wind velocity vector for January and for July

We choose 20 or 30 values (i.e., snapshots) from the solutions solving (5), (8), and (10)
for 1 year. It is shown by computing that eigenvalues λu8, λv8, and λh8 are satisfying
max{√λu8,

√
λv8,

√
λh8} ≤ 10−3. We obtain POD-FDS solution for fluid total layer

thickness h depicted graphically in Figure 4(a) and Figure 4(b),respectively, where the
red curves represent numerical solution for 20 snapshots using 7 optimal bases to solve
(24)–(26), the green curves represent numerical solution for 30 snapshots using 7 optimal
bases to solve (24)–(26), and the black curves represent the solutions solving equation
(5), (8), and (10) on January and on July.

Figure 4. Fluid total layer thickness for full bases (black curve), 7 optimal bases for 20 POD bases (red

curve), and 7 optimal bases for 30 POD bases for month of January (Figure (a)) and July (Figure (b))

We also obtain POD-FDS solution for fluid velocity on longitude direction u depicted
graphically in Figure 5(c) and Figure 5(d),respectively, for 20 snapshots using 7 optimal
bases to solve (24)–(26), and Figure 5(a) and Figure 5(b) are respectively the solutions

12



solving equations (5), (8), and (10) for January and for July.

Figure 5. Fluid velocity in longitude direction for full bases and 20 POD bases

The POD-FDS solution for fluid velocity in the latitude direction u for 20 snapshots
using 7 optimal bases to solve (24)–(26) for January and for July are depicted graphically
in Figure 6(c) and Figure 6(d), respectively, and the solutions solving equation (5), (8),
and (10) are depicted graphically in Figure 6(a) and Figure 6(b), respectively.

Figure 7 shows the errors between numerical solutions obtained with a different num-
ber of optimal bases and solutions obtained with (5), (8), and (10), where the red curve
represents the error of fluid total layer thickness, the blue curve represents the error of
fluid velocity in the longitude direction, and the green curve represents the error of fluid
velocity in the latitude direction in Figure 7. It is shown by comparing results for full
and POD reduced model that the computational load for velocity vector and fluid to-
tal layer thickness with POD-FDS is sizably reduced, and the error between them does
not exceed 2 × 10−3. And the results of the error for the actual example are consistent
with theoretical results obtained by computing with Eq.(29). This also shows that find-
ing the approximate solutions for the tropical Pacific Ocean reduced gravity model with
POD-FDS is computationally very effective. This also shows that finding the approxi-
mate solutions for the tropical Pacific Ocean reduced gravity model with POD-FDS is

13



computationally very effective.

Figure 6. Fluid velocity in latitude direction for full bases and 20 POD bases

Figure 7. Error of numerical solutions of different optimal bases for 20 and 30 snapshots

Remark 4. Equations (24)–(26) to solve the tropical Pacific Ocean reduced gravity
model only contain 21n unknown values since Mu = Mv = Mh = 7, in addition, order
20 eigenproblems which are easily solved using the Matlab software package, however,
equations (5), (8), and (10) contain 3× 121× 321n unknown values since the computing
domain is 29◦S∼29◦N and 120◦E∼70◦W, and the spatial mesh size for the dynamical
model is chosen as ∆x = ∆y = 0.5◦. Therefore, our optimizing reduced order FDS does
alleviate the computational load and saves time–consuming calculations and resource
demands in the actual computational process, in a way that guarantees a sufficiently
accurate numerical solution as shown by the error analysis provided. The results of the
error for the actual example are consistent with theoretical results obtained by computing
with Eq.(29). This also shows that finding the approximate solutions for the tropical
Pacific Ocean reduced gravity model with POD-FDS is computationally very effective.
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5. CONCLUSIONS

In this paper, we have employed the POD and SVD techniques to study the FDS
solutions for the tropical Pacific Ocean reduced gravity model and to reconstruct optimal
orthogonal bases of ensembles of data which are compiled from transient solutions derived
by using FDS the equation system. We have also combined the optimal orthogonal bases
with a Galerkin projection procedure, thus yielding a new optimizing FDS model of
lower dimensional order and of high accuracy for the tropical Pacific Ocean reduced
gravity model. We have then proceeded to derive error estimates between our optimizing
FDS approximate solutions and the usual full order FDS numerical solutions, and have
shown using numerical examples that the error between the optimizing POD approximate
solution and the full FDS solution is consistent with the theoretical error results, thus
validating both feasibility and efficiency of our optimizing FDS. Future work in this area
will aim to extend the optimizing FDS, by implementing it to a realistic sea forecast
system and to more complicated system of PDEs, for instance, the nonlinear shallow
water equation system consisting of water dynamics equations, the silt transport equation
and the equation of bottom topography change. We have shown both by theoretical
analysis as well as by numerical examples that the optimizing FDS presented herein has
extensive perspective applications.
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21. Ahlman D, Södelund F, Jackson J, Kurdila A, Shyy W. Proper orthogonal decomposition
for time-dependent lid-driven cavity flows. Numerical Heal Transfer Part B–Fundamentals,
2002; 42(4): 285–306.

22. Cane MA. The response of an equatorial ocean to simple wind stress patterns: Part I. Model
formulation and analytical results. J. Mar. Res., 1979; 37: 233–252.

23. Moore DW, Philander SGH. Modeling of the tropical ocean circulation. the Sea, E. D.
Goldbrick, Ed., Marine Modeling, Wiley and Sons, 1978; 6: 319–361.

24. Seager R, Zebiak SE, Cane MA. A model of the tropical Pacific sea surface temperature
climatology. J. Geophys. Res., 1988; 93: 1265–1280.

25. Yu L, O’Brien JJ. Variational data assimilation for determining the seasonal net surface flux
using a tropical Pacific Ocean model. Journal of Physical Oceanography, 1995; 5: 2319–2343.

26. Stricherz J, O’Brien JJ, Legler DM. Atlas of Florida State University Tropical Pacific Winds
for TOGA 1966–1985. Florida State University, Tallahassee, FL, 1992.

APPENDIX A

The proof of (28). First, by expanding all terms of (3) at point (xj , yk, tn+1) and using Taylor
expansion yields

hn
j,k = hn+1

j,k −4t

(
∂h

∂t

)n+1

j,k

+
(4t)2

2!

(
∂2h

∂t2

)n+1

j,k

− (4t)3

3!

(
∂3h

∂t3

)n+1

j,k

+ · · · , (30)
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un+1
j+ 1

2 ,k
− un+1

j− 1
2 ,k

= un+1
j+ 1

2 ,k
− un+1

j,k + un+1
j,k − un+1

j− 1
2 ,k

=
4x

2

(
∂u

∂x

)n+1

j,k

+
1
2!

(4x

2

)2 (
∂2u

∂x2

)n+1

j,k

+
1
3!

(4x

2

)3 (
∂3u

∂x3

)n+1

j,k

+ · · ·

+
4x

2

(
∂u

∂x

)n+1

j,k

− 1
2!

(4x

2

)2 (
∂2u

∂x2

)n+1

j,k

+
1
3!

(4x

2

)3 (
∂3u

∂x3

)n+1

j,k

− · · ·

= 4x

(
∂u

∂x

)n+1

j,k

+
(4x)3

24

(
∂3u

∂x3

)n+1

j,k

+ · · · ,

(31)

vn+1
j,k+ 1

2
− vn+1

j,k− 1
2

= vj,k+ 1
2
− vn+1

j,k + vn+1
j,k − vn+1

j,k− 1
2

=
4y

2

(
∂v

∂y

)n+1

j,k

+
1
2!

(4y

2

)2 (
∂2v

∂y2

)n+1

j,k

+
1
3!

(4y

2

)3 (
∂3v

∂y3

)n+1

j,k

+ · · ·

+
4y

2

(
∂v

∂y

)n+1

j,k

− 1
2!

(4y

2

)2 (
∂2v

∂y2

)n+1

j,k

+
1
3!

(4y

2

)3 (
∂3v

∂y3

)n+1

j,k

− · · ·

= 4y

(
∂v

∂y

)n+1

j,k

+
(4y)3

24

(
∂3v

∂y3

)n+1

j,k

+ · · · .

(32)

Inserting (30)–(32) into (3) yields

(
∂h

∂t

)n+1

j,k

+ H

[(
∂u

∂x

)n+1

j,k

+
(

∂v

∂y

)n+1

j,k

]

=
4t

2!

(
∂2h

∂t2

)n+1

j,k

− (4x)2

24

(
∂3u

∂x3

)n+1

j,k

− (4y)2

24

(
∂3v

∂y3

)n+1

j,k

+ · · · .

(33)

Therefore, the truncation error that (3) approximates to
∂h

∂t
+ H

(
∂2h

∂t2
+

∂3v

∂y3

)
= 0 is

TE1 = O(4t, (4x)2 , (4y)2). (34)

Second, by expanding all terms of (5) at point (xj+ 1
2
, yk, tn) using Taylor expansion yields

un+1
j+ 1

2 ,k
= un

j+ 1
2 ,k +4t

(
∂u

∂t

)n

j+ 1
2 ,k

+
(4t)2

2!

(
∂2u

∂t2

)n

j+ 1
2 ,k

+
(4t)3

3!

(
∂3u

∂t3

)n

j+ 1
2 ,k

+ · · · , (35)

hn
j+1,k − hn

j,k = hn
j+1,k − hn

j+ 1
2 ,k + hn

j+ 1
2 ,k − hn

j,k

=
(4x

2

)(
∂h

∂x

)n

j+ 1
2 ,k

+
1
2!

(4x

2

)2 (
∂2h

∂x2

)n

j+ 1
2 ,k

+
1
3!

(4x

2

)3 (
∂3h

∂x3

)n

j+ 1
2 ,k

+ · · ·

+
(4x

2

)(
∂h

∂x

)n

j+ 1
2 ,k

− 1
2!

(4x

2

)2 (
∂2h

∂x2

)n

j+ 1
2 ,k

+
1
3!

(4x

2

)3 (
∂3h

∂x3

)n

j+ 1
2 ,k

+ · · ·

= 4x

(
∂h

∂x

)n

j+ 1
2 ,k

+
(4x)3

24

(
∂3h

∂x3

)n

j+ 1
2 ,k

+ · · · ,

(36)
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uj+ 1
2 ,k−1 − 2uj+ 1

2 ,k + uj+ 1
2 ,k+1 = [uj+ 1

2 ,k−1 − uj+ 1
2 ,k] + [uj+ 1

2 ,k+1 − uj+ 1
2 ,k]

=

[
−4y

(
∂u

∂y

)n

j+ 1
2 ,k

+
(4y)2

2!

(
∂2u

∂y2

)n

j+ 1
2 ,k

− (4y)3

3!

(
∂3u

∂y3

)n

j+ 1
2 ,k

+
(4y)4

4!

(
∂4u

∂y4

)n

j+ 1
2 ,k

+ · · ·
]

+

[
4y

(
∂u

∂y

)n

j+ 1
2 ,k

+
(4y)2

2!

(
∂2u

∂y2

)n

j+ 1
2 ,k

+
(4y)3

3!

(
∂3u

∂y3

)n

j+ 1
2 ,k

+
(4y)4

4!

(
∂4u

∂y4

)n

j+ 1
2 ,k

+ · · ·
]

= (4y)2
(

∂2u

∂y2

)n

j+ 1
2 ,k

+
(4y)4

12

(
∂4u

∂y4

)n

j+ 1
2 ,k

+ · · · ,

(37)

uj− 1
2 ,k − 2uj+ 1

2 ,k + uj+ 3
2 ,k = [uj− 1

2 ,k − uj+ 1
2 ,k] + [uj+ 3

2 ,k − uj+ 1
2 ,k]

=

[
−4x

(
∂u

∂x

)n

j+ 1
2 ,k

+
(4x)2

2!

(
∂2u

∂x2

)n

j+ 1
2 ,k

− (4x)3

3!

(
∂3u

∂x3

)n

j+ 1
2 ,k

+
(4x)4

4!

(
∂4u

∂x4

)n

j+ 1
2 ,k

+ · · ·
]

+

[
4x

(
∂u

∂x

)n

j+ 1
2 ,k

+
(4x)2

2!

(
∂2u

∂x2

)n

j+ 1
2 ,k

+
(4x)3

3!

(
∂3u

∂x3

)n

j+ 1
2 ,k

+
(4x)4

4!

(
∂4u

∂x4

)n

j+ 1
2 ,k

+ · · ·
]

= (4x)2
(

∂2u

∂x2

)n

j+ 1
2 ,k

+
(4x)4

12

(
∂4u

∂x4

)n

j+ 1
2 ,k

+ · · · ,

(38)

Inserting (35)–(38) into (5) yields
(

∂u

∂t

)n

j+ 1
2 ,k

−
(

fv +
τx

ρ0H

)n

j+ 1
2 ,k

+ g′
(

∂h

∂x

)n

j+ 1
2 ,k

+ A

[(
∂2u

∂x2

)n

j+ 1
2 ,k

+
(

∂2u

∂y2

)n

j+ 1
2 ,k

]

= −4t

2!

(
∂2h

∂t2

)n+1

j,k

− g′
(4x)2

24

(
∂3h

∂x3

)n

j+ 1
2 ,k

+A
(4x)2

12

(
∂4u

∂x4

)n+1

j,k

+ A
(4y)2

12

(
∂4v

∂y4

)n+1

j,k

+ · · · .

(39)

Therefore, the truncation error that (5) approximates to (4) is

TE2 = O(4t, (4x)2 , (4y)2). (40)

Next, using the same approach as in (40), the truncation error that (8) approximates to (7)
is given by

TE3 = O(4t, (4x)2 , (4y)2). (41)

Since (10) is developed from (3), (5), and (8), the error of numerical solutions (un
j+ 1

2 ,k
, vn

j,k+ 1
2
,

hn
j,k) (1 ≤ n ≤ N , 0 ≤ j ≤ J , 0 ≤ k ≤ K) for Problem (I) obtained by (5), (8), and (10)

|En(un
j+ 1

2 ,k
, vn

j,k+ 1
2
, hn

j,k)| = ‖(u(xj+ 1
2
, yk, tn), v(xj , yk+ 1

2
, tn), h(x,yk, tn))

−(un
j+ 1

2 ,k, vn
j,k+ 1

2
, hn

j,k)‖2 = O(∆t, ∆x2,∆y2),
(42)

which completes the proof of (28).
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